СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

13 x - 75

1 - 9044

Н.С.Амаглобели, Ю.А.Будагов, В.Б.Виноградов, А.Г.Володько, В.П.Джелепов, Ю.Дубински, Ж.К.Карамян, В.С.Кладницкий, Ю.Ф.Ломакин, Г.Мартинска, Р.Г.Салуквадзе, В.Б.Флягин, Ю.Н.Харжеев, Б.Г.Чиладзе, Л.Шандор

З 972/2-73 исследование спектров масс Лр

и Кор-систем,

11

C346.65

A-61

ОБРАЗУЮЩИХСЯ В *п*-УГЛЕРОД ВЗАИМОДЕЙСТВИЯХ ПРИ 5 ГЭВ/С

1 - 9044

Н.С.Амаглобели,¹ Ю.А.Будагов, В.Б.Виноградов, А.Г.Володько, В.П.Джелепов, Ю.Дубински,² Ж.К.Карамян, В.С.Кладницкий, Ю.Ф.Ломакин, Г.Мартинска,⁴ Р.Г.Салуквадзе,¹ В.Б.Флягин, Ю.Н.Харжеев, Б.Г.Чиладзе, Л.Шандор

исследование спектров масс $\Lambda_{\mathbf{p}}$ и $\mathbf{K}^{\mathbf{0}}_{\mathbf{p}}$ - систем, образующихся в π^{-} углерод взаимодействиях

образующихся в π -углерод взаимодеиствиях при 5 гэв/с

Университет им. П.Й.Шафарика, ЧССР, Кошице.

Тбилисский государственный университет.

² Институт экспериментальной физики, САН ЧССР, Кошице.

ЗЕреванский физический институт.

Амаглобели Н.С., Будагов Ю.А. и др.

1 - 9044

Исследование спектров масс Лр. и К^ор-систем, образующихся в *п*⁻-углерод-взаимодействиях при 5 ГэВ/с

Данная работа посвящена исследованию свойств процессов взаимодействия π^- -мезонов с ядрами ¹² С при р $_{\pi^-}$ = 5 ГэВ/с, приводящих к образованию нейтральных странных частиц.

В спектре эффективных масс Λp -системы наблюдается только один максимум при М Λp = 2127 МэВ/с².

В спектре эффективных масс К°р -системы наблюдается группировка событий при М_{К°р} = (1810+1910) МэВ/с², которая можат быть вызвана образованием Z*-резонанса.

Отчетливо наблюдается образование Y*+(1385) и K*+(890) - резонансов.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований Дубна 1975

© 1975 Объединенный институт ядерных исследований Дубна

В ряде работ $^{/1-4/}$, посвященных изучению реакции $K^-d \rightarrow \Lambda p \pi^-$ в широком днапазоне импульсов /от О до 1,5 ГэВ/с/, в спектре масс Λp наблюдался только один пик при $M_{\Lambda p} = 2127 \ M_3B/c^2$, который, по мнению авторов, является либо Λp резонансом, либо пороговым кинематическим эффектом, связанным с каскадным процессом

 $K^{-}d \rightarrow \pi^{-}Y(N_{sp}), \quad Y + N_{sp} \rightarrow \Lambda p,$

где Υ = Σ, Υ*,...

С другой стороны, при исследовании спектров масс системы Ар, образующейся в "нейтрон-углерод"-и "*n*⁻углерод"-взаимодействиях при импульсе ~ 7,5 и 4,0 *ГэВ/с*, соответственно, наблюдались узкие / Г \leq 30 *МэВ*/ пики при М_{Ар} = 2058, 2127 и 2252 *МэВ/с*^{/5/}. В данной работе сообщаются результаты исследования

В данной работе сообщаются результаты исследования свойств процессов взаимодействия π^- мезонов с ядрами ¹² С при р $\pi^- = 5,0$ ГэВ/с, приводящих к образованию нейтральных странных частиц (Λ, K°) в сопровождении протонов. Предварительные данные о Λp и К[°]р спектрах были представлены на XVII Международную конференцию по физике высоких энергий /Лондон, 1974/.

Работа выполнена на метровой пропановой камере Лаборатории ядерных проблем^{/6/}, установленной в магнитном поле 17 кГ на пучке π^- -мезонов синхрофазотрона ОИЯИ /7/

Для целей эксперимента было обработано 124000 стереофотографий, содержащих в среднем 6 π^- -мезонов на кадре.

Рис. 1. Спектр эффективных масс Λp -системы. Заштрихованы события, в которых вместе с Λ -гипероном зарегистрирован только один протон.

Отбирались события, отвечающие критериям отбора " π^- -углерод"-взаимодействий, собразованием по крайней мере одной V°-частицы. Все события были измерены по два раза на полуавтоматах ПУОС-1^{/8/}, работающих в режиме "on—line" с ЭВМ БЭСМ-4. Геометрическая реконструкция событий и идентификация V°-частиц проводилась по системе разработанных в ОИЯИ программ/9/.

Из-за погрешностей измерений и многократного рассеяния часть V°-частиц идентифицируется неоднозначно, т.е. гипотезы Λ -гиперона и К°-мезона имеют сравнимые вероятности. В нашем эксперименте доля таких V°-частиц составляла ~15% от всех V°. Оценки ионизации, измерения следов δ -электронов на треках вторичных частиц незначительно изменяют это соотношение. Проведенные исследования /10/ показали, что доля К°-мезонов среди неоднозначно идентифицированных V°-частиц составляет $\sim 10\%$, что согласуется с результатами, полученными в аналогичных условиях в других работах /11/. В дальнейшем все неодиозначно идентифицированные V°частицы считались Λ -гиперонами, при этом примесь К°-мезонов составляла не более 3%.

Идентификация вторичных частиц проводилась по остановкам треков в камере, по ионизации и длине следов δ -электронов. В нашем эксперименте π^+ -мезоны и протоны можно было надежно различить до $p \leq 0.9 \ \Gamma \Im B/c$, π^+ - и K⁺-мезоны - до $p \leq 0.7 \ \Gamma \Im B/c$.

На *рис.* 1 представлен полученный в данном эксперименте спектр эффективных масс системы Λp из событий, сопровождающихся испусканием Λ -гиперона и по крайней мере одного протона.

Фоновая кривая получена путем моделирования, в котором Λ -гипероны и протоны при вычислении эффектив-

ных масс берутся из различных событий. Тождественная фоновая кривая получается и в случае, когда Λ -гипероны берутся из одних событий, а протоны - из событий, где зарегистрирован только К^о-мезон.

Заштрихованная область на *рис.* 1 - события, в которых вместе с Λ -гипероном зарегистрирован только один протон.

Как видно из рисунка, за исключением превышения в области $M_{\Lambda p} \sim 2127 \ M \Im B/c$, никаких других особенностей в спектре масс Λp -системы не наблюдается.

Этот результат согласуется с данными, полученными в работах /1-4/, и расходится с результатом работы /5/, имеющей близкую статистическую точность.

На рис. 2 представлен спектр эффективных масс К°р-системы, полученный в этом же эксперименте.

Следует отметить, что основная часть наблюдаемых в данном эксперименте K° -мезонов имеет странность S = +1. Это следует, во-первых, из соотношения сечений рождения K° - и \tilde{K}° -мезонов в πN -взаимодействиях /~75% K° и -25% K° / и, во-вторых, из того, что вторичные взаимодействия K° - и \tilde{K}° -мезонов с нуклонами ядер еще более увеличивают это соотношение в пользу K° -мезонов.

Как видно из *рис.* 2, в спектре масс К^o р-системы наблюдается группировка событий в области масс/1810 \div \div 1910/ *МэВ/с*²,которая может быть связана с образованием Z*-резонансов (S = +1), на существование которых указывалось в ряде исследований по K⁺p - и K⁺d - рассеянию при $p_K - /1, O = 1, 5 / \Gamma \beta B / c^{-1/2}$.

Анализ $\pi \ C$ -событий с зарегистрированными парами ΛK° показал, что более 16% этих событий удовлетворяют 1 C-fit -гипотезе о реакции на свободном нуклоне $\pi \ N \rightarrow \Lambda + K^{\circ} + (\pi)$, причем это происходит практически независимо от степени наблюдаемого развала ядра. Проведенное моделирование показало, что эта величина возрастает до ~27% при учете "ферми-импульса"-нуклонов ядра.

Кроме того, наблюдается хорошее согласие между импульсными спектрами протонов / puc. 3/, а также между распределениями по числу вторичных протонов

Рис. 3. Импульсные спектры протонов для событий: с зарегистрированным Λ -гипероном; с зарегистрированным K° -мезоном.

/puc. 4/ для событий, в которых зарегистрированы либо ∧ -гипероны, либо К°мезоны.

С другой стороны, импульсный спектр Λ -гиперонов не имеет никаких особенностей и практически совпадает со спектром Λ -частиц для $\pi^- p$ -событий при той же энергии / рис. 5/.

Средние поперечные импульсы Λ -гиперонов равны 395 и 408 *МэВ/с* для π^- С - и π^- р-взаимодействий, соответственно.

На рис. б и 7 представлены спектры масс $\Lambda \pi^+$ и К° π^+ для π^- С -событий. Как и в π^- Р -взаимодействиях, наблюдается образование Y*⁺(1385) - и К*⁺(890) -резонанРис. 4. Распределения событий по числу вторичных протонов: - события с Λ -гиперонами; - события с K° - мезонами.

Рис. 5. Импульсные спектры Λ -гиперонов из $\pi^- p$ - и $\pi^- C$ - взаимодействий при 5 ГэВ/с.

сов, что также свидетелсьтвует о значительной доле "квазисвободных взаимодействий".

Интересно отметить, что в спектре К^о ^{*π*} никаких максимумов не наблюдается.

Все сказанное позволяет сделать вывод о том, что значительная часть /~30%/ Λ -гиперонов и К°-мезонов образуется в квазисвободных взаимодействиях на нуклонах ядра, а развал ядра и, следовательно, характеристики испускаемых протонов обусловлены в значительной мере взаимодействиями вторичных π -мезонов.

Таким образом, для исследования возможности образования Λp - или K°p - резонансов в столкновениях *п*-ядро необходимо выделение фона квазисвободных взаимодействий на нуклонах ядра.

Основные результаты данной работы сводятся к следующему:

1. В спектре эффективных масс _{Ар} -системы наблюдается только один максимум при М_{Ар} - 2127 МэВ/с. 2. В спектре эффективных масс К^{ор} системы наблю-

2. В спектре эффективных масс $K^{o}p^{\Lambda P}$ -системы наблюдается группировка событий при $M_{K^{o}p} = /1810 \div$ $\div 1910 / M_{3}B/c^{2}$, которая может быть вызвана образованием Z*-резонанса.

3. Значительная доля взаимодействий π^- -мезонов с ядром происходит так же, как на свободных нуклонах, и для исследования возможности образования Λp - или $K^{\circ}p$ -резонансов в таких столкновениях необходимо выделение фона квазисвободных взаимодействий.

Рис. 7. Спектр эффективных масс $K^{\circ}\pi^+$ -системы.

В заключение мы считаем приятным долгом поблагодарить коллектив синхрофазотрона за помощь при получении фотографий, группу лаборантов ЛЯП и ЛВТА за обработку событий, Русаковича Н.А. - за помощь при проведении расчетов.

Литература

- 1. O. Dahl et al. Phys. Rev., 6, 142, 1961.
- 2. D. Cline et al. Phys. Rev. Lett., 20, 1452, 1968.
- 3. G.Alexander et al. Phys. Rev., 173, 1452, 1968.
- 4. T.H.Tan. Proc. Int. Conf. on Hyper-Nucl. Phys., Argonne, 1969, 452.
- 5. Б.А.Шахбазян. ЭЧАЯ, т. 4, вып. 3, стр. 811, 1973.
- 6. А.В.Богомолов, Ю.А.Будагов и др. ПТЭ, 1, 61, 1964.
- 7. В.С.Кладницкий, В.Б.Флягин. Преприн**т ОИЯИ**, 1501, Дубна, 1964.
- 8. В.Я.Алмазов и др. Препринт ОИЯИ, 1352, Дубна, 1964.
- 9. Н.А.Буздавина, В.Б.Виноградов. Препринт ОИЯИ, P10-3350, Дубна, 1967.
- 10. Ю.А.Будагов и др. ЯФ, 15, 75, 1972.
- 11. Б.П.Банник и др. Препринт ОИЯИ, 1-3682, Дубна, 1968.
- 12. Review of Particle Properties. Rev.Mod.Phys., 45, 1973.

Рукопись поступила в издательский отдел 17 июля 1975 года.

11