ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

УДК 539.12 1-89-497

1427

ЛЕЙТНЕР Руперт

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ РАДИАЦИОННОГО РАССЕЯНИЯ тр→трү ПРИ ЭНЕРГИИ 43 ГэВ

Специальность: 01.04.16 - физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 1989

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Целью диссертационной работы являлось экспериментальное исследование процесса радиационного рассеяния:

π⁻ + p → π⁻ + p + γ, (I) при энергии 43 ГэВ, измерение интегральных и дифференциальных сечений этого процесса в широком диапазоне энергий γ-квантов, 2÷40 ГэВ.

Исследования, положенные в основу диссертации, были выполнены при участии автора совместной группой ОИЯИ-ИФВЭ-ИФ АН ГрССР-ИНФН (Милан) на установке "СИТМА-АЯКС" на серпуховском ускорителе У-70.

Научные результаты и новизна. В диссертации получены следующие новые результаты, выдвигаемые автором для защиты:

I) Путем математического моделирования обоснована возможность исследования на установке "СИГМА-АЯКС" ранее экспериментально неизученного процесса радиационного рассеяния пионов высоких энергий π⁻p → π⁻pγ. Оптимизирована постановка эксперимента, определены разрешение и аксептанс установки к изучаемой реакции.

2) Выполнен анализ данных эксперимента по исследованию реакции π p → π pγ при энергии 43 ГэВ. Разработаны и реализованы алгоритмы реконструкции зарегистрированных установкой событий. Найдены критерии выделения событий изучаемой реакции, позволившие отделить их от фоновых процессов. Разработаны процедуры технического контроля аппаратуры и выполнен анализ калибровочных измерений.

 σ_{I} = (I2,0 ± I,I_{стат} ± I,3_{сист}) мко для области

передач протону 0,2<|t_D|<0,8(ГэВ/с)²

и энергий ү-квантов ω > 2 ГэВ;

 $\sigma_2 = (0.31 \pm 0.07_{CTAT} \pm 0.04_{CUCT})$ мко для области

передач 0,16<|t_p|<0,4(ГэВ/с)² и энергий ү-квантов 32<ω<40 ГэВ.

4) Впервые при высоких энергиях измерены дийференциальные сечения эксклюзивного процесса радиационного рассеяния π^- -мезонов на протонах в широком диапазоне по энергии фотона, инвариантной массе конечной $(\pi^-\gamma)$ -системы и передаче протону.

5) Выполнены расчеты сечений процесса π р — π рγ в рамках подхода Лоу и его модификаций. Проведенные расчеты в пределах ошибок описывают полученные в эксперименте данные, что позволяет сделать

> ОБЪЕ ЭМ ЕННОЙ ИНСТИТУТ ЯДЕР Ы ОСЛЕД ВАТОТ

Работа выполнена в Лаборатории ядерных проблем Объединенного института ядерных исследований.

> Научный руководитель: доктор физико-математических наук Г.В.Мицельмахер

Официальные оппоненты:

доктор физико-математических наук, профессор П.Ф.Ермолов доктор физико-математических наук Б.З.Копелиович

> Ведущее научно-исследовательское учреждение: Московский инженерно-физический институт, Москва.

Защита диссертации состоится " 1989 г. в ____ часов на заседании специализированного совета д-047.01.03 при Лаборатории ядерных проблем Объединенного института ядерных исследований. Дубна Московской обл.

С диссертацией молно ознакомиться в библиотеке ОИЯИ.

Автореферат разослан "8 "авлуста/ 1989 г.

Ученый секретарь специализированного совета доктор физико-математических наук

D.А.Батусов

внвод о применимости подхода Лоу не только в предельном случае $\omega \rightarrow 0$, но и в широкой области энергий излученного γ -кванта (в нашем случае $\omega=2+40$ ГэВ).

Практическая ценность

Сравнения полученных в эксперименте дифференциальных сечений с расчетами, выполненными в рамках обобщенной теории Лоу, показывают применимость теории Лоу для описания процесса радиационного рассеяния $\pi^{-}p \longrightarrow \pi^{-}p\gamma$ при высоких энергиях в широкой области энергий γ -квантов.

Автором онли разработани процедури и на их основе создан комплекс программ моделирования экспериментальной установки и физического анализа данных. В частности, были разработаны процедуры калибровки экспериментальной установки, программы расчета дифференциальных сечений и аксептанса установки, программы обработки данных и определения сечений, а также учета фоновых процессов.

Структура диссертации

Диссертация состоит из введения, пяти глав, заключения и списка цитируемой литературы, включающего 58 наименований. Объем диссертации - IIO страниц, включая 33 рисунка и 2 таблицы.

<u>Апробация работн.</u> Результати работи докладивались на научных семинарах по физике высоких энергий ОИНИ и рабочих совещаниях сотрудничества СИГМА-АЯКС. Они опубликованы в виде препринтов и статей в физических журналах^{/1+5/}.

СОДЕРЖАНИЕ РАБОТЫ

<u>В первой главе</u> изложены теоретические вопросы, связанные с применением теории Лоу для описания процессов радиационного рассеяния и последующими ее обобщениями. Приводятся формулы для матричного элемента исследуемого процесса (ЕЕD, SPA-и НРТ-приближения), которые использовались для расчета сечений и аксептанса установки. Во втором параграфе обсуждаются существующие экспериментальные данные о процессе $\pi p \rightarrow \pi p \gamma$.

Процесс радиационного рассеяния $\pi p \longrightarrow \pi p\gamma$ можно описать 5 диаграммами, показанными на рис. I. Первые четыре описнвают излучение γ -квантов заряженными частицами в начальном и конечном состоянии. Их вклад в матричный элемент (МЭ) $M = \epsilon_{\mu} M^{\mu}$ (ϵ_{μ} - вектор поляризации γ -кванта) можно вычислить на основе квантовой электродинамики:

$$\begin{split} \mathbf{M}_{\text{ext}}^{\mu} = & eZ_{\pi} \Big[- \frac{p_1^{\mu}}{p_1 k} T(\mathbf{s}_1, \mathbf{t}_p) + \frac{p_3^{\mu}}{p_3 k} T(\mathbf{s}_1, \mathbf{t}_p) \Big] + eZ_p \Big[- \frac{p_2^{\mu}}{p_2 k} T(\mathbf{s}_1, \mathbf{t}_{\pi}) + \frac{p_4^{\mu}}{p_4 k} T(\mathbf{s}_1, \mathbf{t}_{\pi}) \Big], \\ \text{где } e - \text{электромагнитный заряд электрона (} e^2 = 4\pi\alpha, \alpha \approx I/I37 - \text{постоянная тонкой структуры}); \\ Z_{\pi, p}^{-} = \text{электромагнитный заряд π-мезона, протона в} \end{split}$$

единицах элементарного заряда; $s_1 = (p_1 + p_2)^2$; $s_1 = (p_3 + p_4)^2$; $t_p = (p_4 - p_2)^2$; $t_{\pi} = (p_3 - p_1)^2$; T(s,t) - MЭ упругого процесса I + 2 - - + 3 + 4 (обозначения см. на рис.1). В случае излучения мягких γ -квантов вклад этих диаграмм является основным и приводит к характерной I/ω -зависимости МЭ от энергии (ω) γ -кванта. В работе Лоу^I) было показано, что вклад $\approx \omega^0$ пятой диаграммы (M_{int}^{μ}) в разложении

 $M = a\omega^{-I} + b\omega^{0} + c\omega^{I} + ...$ (2) МЭ по энергиям у-кванта можно определить из требования калибровочной инвариантности $k_{\mu} \cdot (M_{ext}^{\mu} + M_{int}^{\mu}) = 0$ полного МЭ.

Рис. I. <u>Диаграммы, описывающие процесс радиационного рассеяния.</u> p_I, p₃- четырехимпульсы начального и конечного π -мезона; p₂, p₄четырехимпульсы начального и конечного протона; k- четырехимпульс γ-кванта; T(s,t)- матричный элемент упругого процесса; значения инвариантов: s₁ = (p₁+p₂)², s₁ = (p₃+p₄)², t_π = (p₃-p₁)², t_p = =(p₄-p₂)².

<u>Низкоэнергетическая теорема Лоу</u> утверждает, что в случае ω→О первые два члена разложения (2) (только они существенны для ω→О) МЭ процесса (I) полностью определены МЭ (и его производной по s) нерадиационного (упругого) процесса. Теоретически эта теорема была

Low F.E. Phys.Rev., 110(1958)974.

2

обобщена и для рассеяния неполяризованных частиц со спином²). Несмотря на то, что низкоэнергетическая теорема Лоу является предельной, расчеты, выполненные в рамках этого подхода, использовались и для описания экспериментальных данных с излучением фотонов конечных энергий. Для этого проводилось разложение МЭ нерадиационного процесса в некоторой промежуточной между значениями s₁ и s₁ точке, в частности в точке $\bar{s} = (s_1 + s_1)/2$: $T(s,t) = T(\bar{s},t) + \frac{\partial^2 T}{\partial s}(\bar{s},t)$ (s- \bar{s}). Полученное таким образом выражение для МЭ называется <u>SPA</u> (Soft Photon Approximation) – приближением.

Таол.1. экспериментальные данные о процессе и р и р				
Р _{лаб} ,ГэВ/с	Т _{КИН} ,ГэВ	√з,ГэВ	литература	
0,336	0,224	I,258	Deahl. Phys.Rev.,124(1961)1987	
0,848	0,720	I,585	Walle. Nuovo Cim.53A(1968)745	
0,459	0,340	1,342	Елохинцева. ЯФ,8(1968)928	
0,448 0,415 0,384	0,330 0,298 0,269	I,335 I,312 I,291	Nefkens. Phys.Rev.,D18(1978)3911	
0,300	0,192	1,234	Playfer. J.Phys, G13(1987)297	
43	43	9,0	настоящий эксперимент	

Наиболее детально процесс (I) изучался (вместе с процессом $\pi^+ p \longrightarrow \pi^+ p\gamma$) в экспериментах группы UCLA с целью измерения магнитного момента Δ -резонанса. Короткое время жизни Δ -резонанса не позволяет измерить магнитный момент во внешнем магнитном поле, и для его измерения было предложено³⁾ изучение реакции радиационного рассеяния. Полученные в этом эксперименте данные согласовывались с SPA-расчетами

Burnet T.H., Kroll Norman M. Phys.Rev.Lett., 20 (1968), 86;
 Bell J.S., Royen Van R. Nuovo Cim., 60A (1969), 62.

3 Кондратик Л.А., Пономарев Л.А. ЯФ,7 (1968) III; Захаров В.И., Кондратик Л.А., Пономарев Л.А. ЯФ,8 (1968) 783. только в области энергий γ-квантов ω<40 МэВ, и для описания всего спектра (до ω<I40 МэВ) был предложен МЭ <u>EED</u> (<u>External Emission</u> Dominance), полученный заменой

 $T(s,t) \longrightarrow T(\bar{s},\bar{t}) \ (\bar{s}=(s_1+s_1)/2$ и $\bar{t}=(t_p+t_\pi)/2$) в выражении для M_{ext}^{μ} .

В дальнейшем было показано⁴⁾, что в области резкого изменения МЭ нерадиационного процесса (как, напр., в области Δ-резонанса) разложение с точностью до первой производной недостаточно (результаты расчетов зависят от выбора промежуточной точки, в которой проводится разложение), и был предложен метод учета следующих членов в разложении МЭ нерадиационного процесса. Выражение, полученное таким методом (т.н. метод конечных разностей или <u>HPT</u> – <u>Hard Photon Theorem</u>), отличается от SPA-приближения заменой

 $\partial T/\partial s \longrightarrow (T(s_{1}) - T(s_{1}))/(s_{1} - s_{1}).$

Важным при проведении вычислений в рамках подхода Лоу является вопрос выбора между модификациями расчетов и вопрос о границах их применимости для описания процессов радиационного рассеяния. Теоретически эти вопросы изучались в работах⁴,⁵), где было указано на некоторое расширение области применимости подхода Лоу и его модификации для 7-квантов высоких энергий.

Практическая проверка этого утверждения важна еще и потому, что аналогичный подход был применен для описания процессов слабого взаимодействия⁶⁾.

Экспериментальное доказательство применимости подхода Лоу для области высоких начальных энергий и для широкой области энергий ү-квантов в настоящее время представляет особый интерес, поскольку такой подход обобщается в теории для описания процессов излучения других типов безмассовых частиц⁷. (калибровочных бозонов, гравитонов).

<u>Во второй главе</u> описана экспериментальная установка^{/3/}, с помощью которой был исследован процесс радиационного рассеяния π^- -мезонов на протонах^{/1/}.

4 Пономарев Л.А. ЯФ, 12(1970)570;

Fischer W.E., Minkowski P. Nucl.Phys., B36(1972)519; Haddock R.P., Leung K.C. Phys.Rev., D9(1974)2151.

⁵ Грибов В.Н. ЯФ,5(1967)399.

7

Adler S.L., Dothan Y. Phys.Rev., 151 (1966)1267.

Lipatov L.N. Nucl. Phys., B307 (1988)705.

Сечение реакции (I) сильно меняется в зависимости от энергии излученного фотона (на два порядка в нашем случае). Поэтому изучение реакции (I) проводилось в два этапа. Область относительно мягких ү-квантов исследовалась одновременно с процессом упругого рассеяния /4/ в сеансе I, а область жестких ү-квантов - в отдельном сеансе 2. Схема установки приведена на рис.2.

Рис. 2. Схема экспериментальной установки.

S_I÷S₄ – сцинтилляционные счетчики совпадений; $A_{1}, A_{2}, A_{\gamma}, B$ сцинтилляционные Счетчики антисовпадений; H_{1}, H_{2} пучковые сцинтилляционные годоскопы; С1, С2 - пороговые черенковские счетчики; D дифференциальный черенковский счетчик; I+34 - (РСН I+34) пропорциональные камеры; Т - жидководородная мишень; S_I,S_B сцинтилляционные запускающие счетчики; ССН - цилиндрическая камера; АЈ цилиндрический сцинтилляционный спектрометр; W_L, W_R - плоские сцинтилляционные спектрометры; H_{3x}, H_{3z} - сцинтилляционный годоскоп; СІО8 - гамма-детектор (ГД).

<u>Пучок</u> т-мезонов с импульсом 43±1 ГэВ/с выделялся с помощью сцинтилляционных счетчиков совпадений S_T+S_A, антисовпадательных счетчиков A_1 и A_2 и газовых черенковских счетчиков C_1 , C_2 и D. Направление пучковой частицы измерялось годоскопами Н, и Н, и пропорциональными камерами (РСН) I+8 с точностью о=0, I мрад в обеих проекциях ХҮ и ХZ⁸⁾.

В эксперименте использовалась жидководородная мишень Т с рабочим объемом: длина 400 мм, Ø 60 мм.

Направление рассеянного в мишени <u>т-мезона</u> в проекции XY измерялось с помощью пропорциональных камер 9+14 с точностью с=0.35 мрад. Направление в проекции ZY измерялось пропорциональными камерами 15+18 и 34 с точностью 0,2 мрад. Импульс рассеянного пиона измерялся с точностью $\sigma_{\rm D}/{\rm p}$ = 4% (для частиц с импульсом 43 ГэВ/с). Это определялось, в основном, точностью измерения направления рассеянной частицы (σ_А=0,6 мрад) в плоскости XY с помощью камер 3I+33 за магнитом.

Протоны регистрировались двухплечевым спектрометром. Направление измерялось пропорциональными камерами (У-координата протонов плоскостями 19+22 (25+28); Z-координата плоскостями 23,24 (29,30)), а также цилиндрической камерой ССН. Точность измерения определяли многократное рассеяние в веществе спектрометра на цути протона до пропорциональных камер (суммарное количество вещества - 0,04 рад.дл.) и разрешение пропорциональных камер о=3 мрад. Кинетическая энергия Т. протонов измерялась в диапазоне 60+220 МэВ сцинтилляционными калориметрами W_{L} , W_{R} с разрешением $\sqrt{5}$, $\sigma_{T_{k}}/T_{k} = (0.74^{2}/T_{k} [M_{BB}] + 0.03^{2})^{1/2}$.

(3)

Для измерения направления и энергии <u>у-квантов</u> служил гаммадетектор (ГД) C108 с апертурой XxZ=I200x900 мм², составленный из черенковских счетчиков полного поглощения с радиаторами из свинцового стекла с поперечным размером IOOxIOO мм² и длиной 420 мм (I4 рад. дл. и ≈I яд. дл.). Калибровка и изучение характеристик счетчиков проводились на пучке электронов с энергией I3.3 и 26.6 ГэВ. Точность измерения энергии ү-кванта, усредненная по всей площади, определялась формулой.

 $\sigma_{\rm E}/{\rm E} = 0.015 + 0.09/\sqrt{\rm E}[\Gamma_{\rm 9}B]$. (4) · Координата попадания ү-кванта в ГД измерялась в среднем с точностью σ≈II мм, что соответствует точности σ_д≈0,95 мрад в измерении направления у-кванта.

Запись событий на магнитную ленту проводилась в том случае, когда вырабатывался сигнал "Триггер", в который были включены:

- сигналы счетчиков пучкового телескопа S₁₊₄, пучковых счетчиков

8 Используется система координат: ось у направлена вдоль пучка, х горизонтальное направление, Z - вертикальное.

антисовпадений A_I и A₂ и счетчика B, которые выделяли взаимодействие пучковой частицы в мишени;

- сигналы правого (R) или левого (L) регистрирующего плеча установки, представлявшие собой совпадения сигналов от счетчиков $S_L(S_R)$ и сигналов плоских калориметров $W_L(W_R)$ (счетчики S_L и S_R были расположены волизи мишени и с запасом перекрывали телесный угол плоских спектрометров, динодные сигналы ФЭУ счетчиков плоских спектрометров суммировались и дискриминировались порогом, соответствующим энерговыделению \approx 50 МаВ);

- отсутствие сигнала цилиндрического спектрометра АJ^{/5/}, запрещавшего вылет частиц из мишени в область азимутальных углов, не регистрируемую боковыми спектрометрами;

- отсутствие сигнала с охранного счетчика A_{γ} , расположенного по пучку за мишенью и имевшего в центре отверстие 170×140 мм² (счетчик A_{γ} представлял собой сэндвич свинец-сцинтиллятор толщиной \approx 2 рад.ед. и служил для подавления событий с частицами, вылетающими под большими углами);

- сигнал с годоскопа H_{3Z}, который обеспечивал наличие рассеянной вперед заряженной частиць;

- сигнал П = C_I·C₂·D пороговых и дифференциального черенковских счетчиков, выделяющий п-мезоны в пучке.

Таким образом, сигнал "Триггер" представлял собой

"Триггер" = S_I·S₂·S₃·S₄·Ā_I·Ā₂·B·II·(L+R)·Ā_γ АJ·H_{3z}. (5) В сеансе 2 для того, чтобы увеличить аксептанс установки, плоскости 9+14, измеряющие направление рассеянной частицы в проекции ХҮ, были подвинуты ближе к мишени. Это привело к небольшому ухудшению точности измерения в проекции ХҮ направления трека рассеянной частицы (σ=0,40 мрад). В триггерном сигнале не требовалось срабатывание годоскопа H_{3Z} и дополнительно было включено требование энерговыделения > 30 ГэВ в ГД СІОЗ.

За время эксперимента через установку было пропущено ≈2,6x10⁹ π-мезонов, а на ленти записано ≈900 тис. событий. Работоспособность отдельных узлов и всей установки в целом контролировалась во время набора статистики с помощью ЭВМ.

В третьей главе описана реализованная автором Монте – Карло процедура расчета сечений процесса радиационного рассеяния и аксептанса установки. Приводятся формулы для расчета сечений, выраженные в использованных кинематических переменных, использованный в расчетах вид матричного элемента нерадиационного (упругого) процесса и описывается процедура розыгрыша переменных. Приведены результаты расчетов аксептанса установки.

Постановка эксперимента позволяла изучать данный процесс в определенной области энергий γ -кванта ω в лабораторной системе и в определенной области по переданному протону четырехимпульсу $t_p = (p_4 - p_2)^2$. Поскольку экспериментальные ограничения наиболее естественно выглядят в этих перементах, ω и t_p были выбраны для описания процесса (I) вместе с $m_{X\gamma}^2 = (p_3 + k)^2$, инвариантной массой системы ту в конечном состоянии и двумя угловыми переменными:

Ф_γ- азимутальный угол γ-кванта в СЦИ конечного π-мезона и γ-кванта;

 $\Phi_{\mathbf{p}}$ - азимутальный угол конечного протона в С Ц И.

Г Программа для расчета аксептанса содержала блок описания установки. в который закладивались размеры и координаты всех детекторов установки, а также критерии, использовавшиеся при анализе данных для отбора событий исследуемой реакции.

Интегральное значение аксептанса установки для событий радиационного рассеяния (I) составляло:

ε_{πрγ} = 12% для сеанса I,

 $\varepsilon_{\pi p \gamma}^{re}$ = II,5% для сеанса 2.

Заметим, что аксептанс установки по азимутальному углу составляет 21%. Его значение определено размерами спектрометра протонов отдачи.

Зависимость аксептанса установки от переменных ω , t_p и $m_{\pi\gamma}$ для сеансов I и 2 приведена на рис.3.

Рис.3. Зависимость аксептанса установки от переменных $\omega(a)$, $t_p(d)$ и $m_{\pi\gamma}(B)$ для сеансов I и 2.

<u>Четвертая глава</u> содержит описание системы обработки данных: <u>технического контроля</u> записанной в сеансах информации, процедуры геометрических привязок, реконструкции ообытий и калибровки аппаратуры. Приводятся данные по обработанной и записанной на выходные ленты статистике.

8

Процедура <u>геометрической привязки</u> элементов установки состояла из:

-геометрической привязки пучковых пропорциональных камер и пропорциональных камер магнитного спектрометра к оси установки, определенной положением пучковых годоскопов H_{T} и H_{2} , с помощью итерационной процедуры ZDTST (Zero Degree TeST); -привязки пропорциональных камер бокового спектрометра с помощью отобранных событий упругого π р- рассеяния и относительной привязки левого и правого плеча установки с помощью цилиндрической камеры ССН;

-привязки сцинтилляционного годоскопа H₃ и сцинтилляционного спектрометра W;

-привязки γ -детектора с помощью адронного каскада от π^- -мезонов в γ -детекторе /2/.

Энергетические калибровки

Калибровка <u>магнитного спектрометра</u> проводилась по данным из специальной экспозиции BMTEST (Beam Magnet TEST) установки без мишени с включенным магнитным полем (см. рис.4).

Счетчики <u>ү-детектора</u> калибровались на пучке электронов с импульсом 26,6 ГэВ.

Калибровка <u>сцинтилляционного</u> калориметра⁷⁵⁷ была проведена с помощью протонов отдачи в событиях упругого π p-рассеяния⁷⁴⁷.

Восстановление треков заряженных частиц проводилось по проекциям:

PCHI+8,HI,H2

PCH 9+14

I - XY-проекция пучкового трека

2 - ZY-проекция пучкового трека

3 – XY-проекция трека π –мезона до магнита

4 - ХҮ-проекция трека π -мезона после магнитаРСН 31+335 - ZҮ-проекция трека π -мезонаРСН 15+18, 346 - ҮХ-проекция трека протонаРСН 19+22(25+28), ССН7 - ZХ-проекция трека протонаРСН 23,24(29,30)

Во время геометрической реконструкции определялись значения эффективностей трековых систем:

 $\varepsilon_{\rm I}$ $\varepsilon_{\rm 2}$ = (88±1)% определялось из сравнения числа собитий с пучковым треком, восстановленным с помощью пропорциональных камер и пучковых годоскопов, а также из сравнения числа треков, восстановленных по срабатываниям в 4 и 3 плоскостях пропорциональных камер;

 $\varepsilon_3 = (94\pm 1)\%, \ \varepsilon_4 = (93\pm 1)\%, \ \varepsilon_5 = (92\pm 1)\%$ определялись из сравнения числа событий со всеми восстановленными проекциями трека π -мезона $N_{345} \approx \varepsilon_3 \cdot \varepsilon_4 \cdot \varepsilon_5$ и чисел событий с восстановленными только двумя проекциями $N_{34} \approx \varepsilon_3 \cdot \varepsilon_4 \cdot (1-\varepsilon_5), \ N_{35} \approx \varepsilon_3 \cdot (1-\varepsilon_4) \cdot \varepsilon_5, \ N_{45} \approx (1-\varepsilon_3) \cdot \varepsilon_4 \cdot \varepsilon_5;$

 $\varepsilon_6 = (78\pm1)$ %, $\varepsilon_7 = (82\pm1)$ % были определены из сравнения числа упругих событий с наличием обеих проекций и только одной из проекций трека протона отдачи. Значение ε_6 , кроме того, определялось способом⁴⁴, в котором для восстановления ХҮ-проекции вместе с координатами с пропорциональных камер использовалась Ү-координата трека, измеренная цилиндрической камерой ССН.

Определение координати у-квантов в у-детекторе установки проводилось с учетом поперечной формы электромагнитного ливня. Энергия у-кванта вычислялась с учетом координати^{/2/}. Программами геометрической реконструкции обрабатывалась вся статистика триггерных событий (330712 событий в сеансе I и 589395 событий в сеансе 2). На <u>выходные ленты (DST)</u> сеанса I записывались события:

- с I восстановленным треком пучковой частицы;

- с I треком рассеянной частицы, восстановленным во всех 3 измеряемых проекциях (Х до магнита, Х после магнита и Z).

Для сеанса 2 кроме собнтий этого класса записывались и собнтия, в которых восстановлена только X-проекция трека рассеянной частицы до магнита.

В ходе реконструкции событий проводилось плавное отслеживание и вычитание пьедесталов для всех каналов амплитудного анализа.

В диссертации приведен формат записанной на DST информации. Всего на DST-ленти было записано I33258 событий в сеансе I и 2I395I событие в сеансе 2.

<u>Пятая глава</u> содержит описание физического анализа данных с целью определения сечения радиационного рассеяния т-мезонов на протонах.

10

Обсуждаются критерии идентификации событий исследуемой реакции и фоновых процессов, программа кинематического фитирования, процедура нормировки на процесс упругого π р-рассеяния. Полученные данные сравниваются с теоретическими расчетами.

Отбор событий радиационного рассеяния

События радиационного рассеяния отбирались по критериям, приведенным в табл.2.

Табл.2. Критерии отбора событий

and the second	and the second
сеанс І	сеанс 2
наличие одного тр	река пучковой частицы
наличие одного трека, зарегио	стрированного боковым спектрометром
наличие одного трека рассеяни всеми системами камер магнитного спектрометра (π -мезон попадает в апертуру гамма-детектора)	ного π ⁻ -мезона, зарегистрированного: Гтолько в X-проекции до магнита [*]
В гамма-детекторе требовалоси малый сигнал ^{**} (<800 МэВ) в_счетчике, в который попал π - мезон, и отсутствие сигнала в области ЗхЗ вокруг этого счетчика	с: (π-мезон не попадает в апертуру гамма-детектора)
кроме сигнала от π -мезона в ГД зарегистрирован один кластер размером ≤2х2 ^{***} счетчика	наличие одного кластера размером ≤2x2 счетчика гамма-детектора

 -неизмеренные характеристики π-мезона определялись с помощью программы кинематического фитирования.

 ** -этим требованием отбирались события без развития адронного каскада в ГД. Они составляли (39±1)% от полного числа событий.
 *** -из поперечной формы электромагнитного ливня следует, что сигнал от одного ү-кванта укладывается в кластер 2x2 счетчика.

При изучении процесса радиационного рассеяния кинематическая область по квадрату переданного протону четырехимпульса ограничивалась снизу требованием энерговиделения в сцинтилляционном при тригтерном отооре. Переопределенность числе калориметре измеренных кинематических переменных в сеансе I определять позволила значение энергии протона помощью программы кинетической С кинематического фитирования и изучить процесс (I) также в области кинетических энергий протона больше максимально измеряемого сцинтилляционным спектрометром значения 220 МэВ (≈ 0.40 (ГеВ/с)² для $t_{\rm p}$).

Включенное в триггерном сигнале сеанса 2 требование энерговыделения в гамма-детекторе определяло область энергий у-квантов (ω) для изучения процесса (I).

Кинематические области	t _p [(ГэВ/с) ²]	ω [ΓэΒ]
сеанс І	> 0,2	>2
сеанс 2	0,16 ÷ 0,40	32 ÷ 40

Фоновые процессы

Основным источником фона являются события с π^{0} - и η^{0} -мезонами в конечном состоянии. Вклад фоновых событий с <u>несимметричными распадами</u> π^{0} - и η^{0} -мезонов, когда один из γ -квантов не регистрируется ГД (то есть его энергия меньше энергии обрезания ≈ 240 МэВ или γ -квант не попадает в апертуру ГД), оценивался из распределений событий по созе одного из γ -квантов в системе покоя π^{0} - и η^{0} -мезонов.

Кроме того, вклад фоновых собнтий с незарегистрированным γ -квантом от распада π^{0} - и η^{0} -мезонов оценивался также с помощью программы Монте-Карло, моделирующей распады π^{0} - и η^{0} - мезонов, в которую закладывались измеренные в нашем эксперименте угловое и энергетическое распределения π^{0} - и η^{0} -мезонов. Обе оценки фона совпадали в пределах точностей первого метода.

<u>Фон симметричных распадов π^0 -мезонов</u>. Для части π^0 -мезонов γ -кванты попадают в соседние счетчики ГД и образуют в ГД только один кластер. Часть таких собнтий образует кластер размером $\leq 2x^2$ счетчика ГД и является также источником фона.

Для подавления фона таких событий был найден количественный критерий для распределения энергии в кластере $^{/2/}$, который использует величины ε_x , ε_z – отношения энергии половины кластера (по соответствующей оси) к суммарной энергии кластера. Для кластеров с размером $\leq 2x2$ счетчика в ГД, образованных двумя γ -квантами от распада π^0 -мезона, характерно примерное равенство энергий в его двух половинах. То есть одно из отношений ε_x или ε_z имеет значение $\approx 1/2$. В том же случае, когда кластер возник от одного γ -кванта, $\varepsilon_x(\varepsilon_z) \approx 1/2$ означает, что γ -квант попал в узкую область посередине между счетчиками. Количественно эти рассуждения можно выразить с помощью величины

 $S = \varepsilon_x(I-\varepsilon_x) + \varepsilon_z(I-\varepsilon_z)$. (6) Выбором значения $S_{cut}=0, I4$ события были разделены на 2 группы. События со значением S≤0, I4 содержат

k_τ=(78±2)%

событий с одним ү-квантом. События же с S>0,14 содержат k₂=(81±2)%

событий с кластером, образованным π^0 -мезонами.

Процедура кинематического фитирования

Для определения неизмеренных в эксперименте величин и для уточнения измеренных использовалась программа кинематического фитирования.

Число $N_{\pi p \gamma}$ наблюдаемых в <u>сеансе I</u> событий процесса (I) определялось из приведенного на рис.5 распределения по значению χ^2 кинематического фита.

В случае <u>сеанса 2</u> из приведенных на рис.6 а, б и в распределений χ^2 кинематического фита определялись числа событий с S<0.14, S>0.14 и фоновых событий от распадов η^0 - и π^0 -мезонов с незарегистрированным γ -квантом: N_{S<0.14}, N_{S>0.14} и N_{$\pi\eta$}. Число событий процесса (I) N_{$\pi p \gamma$} связано с этими значениями и коэффициентами k_I и k₂:

$$N_{\pi p \gamma} = \frac{k_2 \cdot N_{s \le 0, I4} - (I - k_2) \cdot N_{s > 0, I4}}{k_1 + k_2 - 1} - N_{\pi \gamma} .$$
(7)

Определение сечения радиационного рассеяния

Выделение событий упругого π^{-} р-рассеяния в сеансе I и 2 позволило при вычислении сечения процесса радиационного рассеяния провести нормировку на сечение упругого рассеяния:

 σ_{πрγ} = N_{πργ}^{corr} coef,
 (8)

 где N_{πργ}^{corr} - число событий, поправленное с учетом аксептанса и коэффициентов, связанных с критериями отбора; соеf - нормировочный коэффициент, определенный из значений сечения, зарегистрированного в сеансах числа событий и аксептанса установки для упругого π р-рассеяния. Значения этого коэффициента составляли:

Рис. 6. Распределение χ^2 кинематического фита для событий со значением S<0.14 (a), S>0.14 (б) и для фоновых событий с потерей одного γ -кванта от распадов π^0 - и η^0 -мезонов (в) в сеансе 2. Для интегральных сечений процесса (I) были получены значения/I/: $\sigma_I = (I2.0 \pm I.I_{CTAT} \pm I.3_{CHCT})$ мкб для области передач протону 0.2 < $|t_p| < 0.8(\Gamma_{3B/c})^2$ и энергий γ -квантов $\omega > 2$ ГэВ; $\sigma_2 = (0.3I \pm 0.07_{CTAT} \pm 0.04_{CHCT})$ мкб для области

передач 0,16 < |t_p| < 0,4(ГэВ/с)² и энергий ү-квантов 32 < ω < 40 ГэВ.

Основной вклад в приведенные систематические ошибки вносит сечения процесса упругого ошибка в измерении систематическая π р-рассеяния в сеансе I^{/4/} - IO%. Рассматриваются и остальные возможные вклады в систематическую ошибку, они составляют не больше определены были процентов. Систематические ошиоки нескольких среднеквадратичным сложением приведенных вкладов.

do/dw, HK6 . F3B Рис. 7. Дифференциальное сечение 500 процесса радиационного тр------ тру рассеяния по ω, измеренное в кинематической области 0,2<|t_n|<0,4(ГэВ/с)² в сеансах I и 2. Кривые I,2,3 соответствуют 100 расчетам, выполненным с матричными 050 элементами (EED), (SPA), (HPT). 0,10 0.05 0,01 40 w,ГэВ 30 10 20

Сравнение результатов с расчетами

На рис.7 приведено измеренное дифференциальное по ω сечение процесса (I) в сходной для сеансов I и 2 кинематической области $0.2{<|t_p|}{<}0.4~{\rm (ГэВ/c)}^2$. Расчеты, проведенные с матричными элементами (SPA, HPT, EED), совпадают в области энергий $\omega{<}30$ ГэВ и в пределах экспериментальных ошибок (на рисунках приведены только статистические ошибки) описывают дифференциальные сечения по ω , t_p и $m_{\pi\gamma}$ (см. рис.7, 8 а ,б).

В области ω>30 ГэВ расчеты с разными матричными элементами пределах HPT-приближения описывают в различаются: SPAи дифференциальные распределения, всө экспериментальных OMNQOK полученные в эксперименте (см. рис.7, 8 в ,г), тогда как ЕЕДприближение не описывает дифференциальное сечение по т_{лу}-инвариантной массе у-кванта и конечного т-мезона.

Рис. 8. Дифференциальные (по t_p , $m_{\pi\gamma}$) сечения радиационного π^-p -рассеяния, измеренные в сеансе I (а, б) и в сеансе 2 (в, г). Кривые I,2,3 соответствуют расчетам, выполненным с матричными элементами (EED), (SPA), (HPT).

Из сравнения экспериментальных дифференциальных распределений с расчетами сечения процесса (I), выполненными с матричными элементами SPA-, HPT- и EED-приближений, можно сделать вывод о применимости SPA-приближения и его обобщенного вида – HPT-приближения для описания процесса радиационного рассеяния π -мезонов на протонах при высоких начальных энергиях в широком диапазоне энергий γ -квантов.

Результаты работы кратко суммируются в заключении.

ЛИТЕРАТУРА

- Антипов Ю.М., Батарин В.А., Беззубов В.А.,..., Лейтнер Р.,... "Исследование радиационного рассеяния π⁻+p → π⁻+p+γ при энергии 43 ГэВ". Препринт ОИЯИ PI-89-367, Дубна. I989.
- Горин Ю.П., Горнушкин Ю.А., Карташева В.Г., Котов И.В., лейтнер Р., Ольшевский А.Г., Петрухин А.И. "Обработка информации с гамма-детектора установки СИГМА-АЯКС". Препринт ОИЯИ РІ-89-206, Дубна, 1989.

- Антипов Ю.М., Батарин В.А., Беззубов В.А.,..., Лейтнер Р.,... "Установка СИГМА-АЯКС для исследования упругого π р- и К р-рассеяния". Препринт ОИЯИ PI-89-202, Дубна, 1989.
- Антипов Ю.М., Батарин В.А., Беззубов В.А.,..., Лейтнер Р.,... "Упругое рассеяние π⁻и К⁻-мезонов на протонах при импульсе 43 ГэВ/с". Препринт ОИЯИ PI-87-539, Дубна, 1987.

ЯФ, 1988, т.48, с.138.

 Антипов Ю.М., Буданов Н.П., Горин Ю.П., Лейтнер Р., Мицельмахер Г.В., Ноздрин А.А., Ольшевский А.Г., Петрухин А.И. "Широкоапертурные сцинтилляционные спектрометры полного поглощения установки СИГМА-АЯКС". Препринт ОИЯИ I3-87-344, Дубна, 1987. ПТЭ, 1988, #5, с.36.

Рукопись поступила в издательский отдел 30 июня 1989 года.