

Объединенный институт ядерных исследований дубна

Б289

1-89-28

1989

Б.В.Батюня, И.М.Граменицкий, Г.О.Кураташвили¹, Р.Ледницки, В.И.Рудь², Т.П.Топурия¹

ОТЛИЧИЕ НЕАННИГИЛЯЦИОННЫХ pp-взаимодействий при 22,4 Гэв/с от pp-взаимодействий при близкой энергии

Направлено в журнал "Nuclear Physics" и на конференцию "Эксперименты и методы при высоких энергиях", Бехин, ЧССР

¹Институт физики высоких энергий Тбилисского государственного университета

²Научно-исследовательский институт ядерной физики Московского государственного университета

1. ВВЕДЕНИЕ

Отличие процессов взаимодействия антипротонов с протонами и протонов с протонами продолжает оставаться интересной про~ блемой в физике элементарных частиц. Прежде всего это отличие связано с процессом аннигиляции барионного заряда в рр-столкновениях, исследование которого наиболее подробно проводилось до энергий ~ 12 ГэВ, поскольку достоверное выделение каналов аннигиляции возможно лишь при достаточно малой энергии. Практически все эксперименты осуществлялись с помощью пузырьковых камер /при 8.8 Гэв/с использовалась гибридная установка/. Результаты экспериментов показали. Что аннигиляционный процесс характеризуется повышенной средней множественностью вторичных мезонов, большим поперечным импульсом частиц и более жесткими распределениями частиц по продольной переменной х /переменной Фейнмана/. При более высокой знергии проведение кинематического анализа приводит к слишком большому числу неоднозначных гипотез, доля которых уже при 9.1 ГэB/c достигает 50% $^{/1/}$. В этом случае процесс аннигиляции обычно изучается разностным способом, т.е. из сравнения pp- и pp-взаимодействий при близких энергиях. Такой способ предполагает тождественность неаннигиляционной компоненты рр-соударений с взаимодействиями протонов с протонами. Вопрос о стелени справедливости такого предположения также неоднократно обсуждался в литературе /2/ и проверялся экспериментально наиболее подробно при импульсе 8.8 ГэВ/с^{/8/}. При этом было показано, что разности полных или неупругих сечений pp- и pp-взаимодействий в пределах ошибок совпадают с аннигиляционными, и энергетическая зависимость этих разностей достаточно хорощо описывается функцией σ^{Δ} \sim ~ Р_{лаб},61 в интервале энергий до ~100 ГэВ /Р_{лаб} - первичный импульс в л.с.к./*.

С другой стороны, показано, что уже топологические сечения аннигиляции при малых множественностях /n = 0 и n = 2/ резко

^{*}Значения σ^{Δ} , полученные при энергиях ISR^{/4/}, также не противоречат указанной зависимости.

отличаются от разностных сечений, что прежде всего связано с различием первоначальных суммарных электрических зарядов в pp- и pp-взаимодействиях, исключающим нейтральный канал в pp-соударениях. Например, при объединении 0-лучевых и 2-лучевых событий разница сечений pp- и pp-взаимодействий существенно приближается к аннигиляционному ^{/3/}. Кроме того, 2-лучевые события отличаются возможными изобарными состояниями, при этом большое сечение рождения изобарь Δ^{++} в pp-соударениях увеличивает общее сечение канала с двумя заряженными частицами по сравнению с pp-взаимодействиями ^{/26,5/}.

Очевидного различия следует также ожидать в распределениях по переменной Фейнмана х, рассмотренных отдельно для π^+ - и π^- мезонов. В pp-взаимодействиях вследствие CP-симметрии число π^+ - и π^- -мезонов одинаково, а их х-распределения асимметричны из-за различных зарядов взаимодействующих частиц. В pp-соударениях х-распределения как π^+ -, так и π^- -мезонов симметричны относительно точки x = 0, и число π^+ превышает число π^- , что связано с первоначальным суммарным зарядом реакции. Однако при рассмотрении отдельно, например, задней полусферы /в с.ц.м./ различие спектров для pp- /неаннигиляционных/ и pp-взаимодействующих частиц на противоположные /их вылету/ области фрагментации становится очень слабым. Более детально этот вопрос рассматривается в разделе 4.

В настоящей работе проводится сравнительный анализ спектров *п*[±]-мезонов и протонов, образующихся в pp-взаимодействиях при 22,4 ГзВ/с и pp-взаимодействиях при 24 ГзВ/с /т.е. при близких энергиях/. При этом отдельно рассматриваются заведомо неаннигиляционные pp-взаимодействия с выделенными вторичными протонами или антипротонами.

В разделе 2 описана методика эксперимента. Экспериментальные данные приведены в разделе 3. Полученные результаты обсуж даются в разделе 4 и окончательно формулируются в Заключении.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Для проведения анализа использовались результаты обработки фотографий, полученных при облучении сепарированными лучками антипротонов при 22,4 ГэВ/с и протонов при 24 ГэВ/с, соответственно, 2-метровой водородной камеры "Людмила" на ускорителе в Серпухове и 2-метровой водородной камеры в ЦЕРНе. Общее чис ло проанализированных событий составило ~80 К рр-взаимодействий и ~250 К рр-взаимодействий. Методические особенности, свя занные с обработкой фотографий, обсуждаются в работах ⁷⁸⁷. Отметим, что для проведения сравнительного анализа важным достоинством является близость экспериментальных условий в обоих случаях, что делает минимальными возможные систематические ошибки, связанные, например, с ошибочной идентификацией частиц по плотности ионизации.

Сравнение экспериментальных данных проводилось для неупругих взаимодействий разных множественностей (п) заряженных частиц. Упругие взаимодействия выделялись с помощью следующих критериев для 2-лучевых событий с идентифицированными по плотности ионизации медленным протоном:

 а/ недостающая масса к протону выбиралась из условия ММ ≤ ≤ 1,4 ГэВ для рр- и рр-взаимодействий;

б/ импульс быстрой частицы /в л.с.к./ превышал 19 ГэВ/с в pp- и 20 ГэВ/с в pp-взаимодействиях.

Как показал анализ, такие критерии достаточно хорошо выделяют упругую комлоненту в обоих типах взаимодействий. Для определения сечений числа событий каждой топологии нормировались на известные топологические сечения $^{/66,7/}$. Неаннигиляционные взаимодействия отбирались по наличию протона или антипротона. При этом протоны с импульсом Р \leq 1,2 ГэВ/с /в л.с.к/ идентифицировались по плотности ионизации, а в качестве антипротонов /быстрых протонов в рр-взаимодействиях/ брались быстрые отрицательные /положительные/ частицы с переменной Фейнмана Х \approx

= 2 $P_L^*/\sqrt{s} \gtrsim 0,66 /p_L^*$ - продольный импульс *m*-мезона в с.ц.м./. При таком отборе примесь *m*-мезонов /*m*⁺ в рр-взаимодействиях/ не превышала 3%^{*}/. Таким образом отбирались события с медленными или быстрыми /с $x \ge 0,6/$ протонами /антипротонами в ppвзаимодействиях/, выделенными идентичным образом в обоих типах взаимодействиях. Кроме того, в анализ включались только идентифицированные по плотности ионизации частицы с импульсом р $\leq 1,2$ ГэВ/с и вылетающие в заднюю полусферу /в с.ц.м./. Подчеркнем, что методика отбора событий и частиц позволяет сравнить pp- и pp-взаимодействия в одинаковых кинематических условиях**.

** Примесь π^- -мезонов $/\pi^+$ в pp-взаимодействиях/ можно опредеу лить на основании СР-симметричных слектров /р-симметричных в pp-взаимодействиях/ π^+ -мезонов, которые при x \leq -0,66 практически полностью идентифицируются по плотности ионизации.

Дополнительный анализ показал, что некоторая разница первич-, ных энергий сравниваемых pp- и pp-взаимодействий практически не влияет на форму распределений.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В таблице 1 приведена статистика для неупругих взаимодействий с разными множественностями в заряженных частиц, в том числе для событий с идентифицированными медленными протонами, и соответствующие сечения этих событий. Из табл.1 видно, что сечения pp- и pp-взаимодействий с идентифицированными протонами оказываются близкими, хотя из дальнейшего анализа будет видно, что соотношения между этими сечениями зависят от кинематической области отбираемых протонов.

Таблица 1

	Число событи		Число событий с медленными протонами_		⁰ л, мб событий с медленными протонами	
n	pp	pp	pp	pp	qq	pp
2	19593	58676	7483	26252	3,72±0,04	3,89±0,02
4	24123	86942	9481	37100	$5,48\pm0,06$	$5,36\pm0,03$
6	13251	45840	2471	12485	1,73±0,04	1,82±0,02
8	4881	13694	376	2174	0,309±0,016	0,345±0,007
10	1041	2273	34	205	0,040±0,007	0,036±0,002
все	62889	207425	19514	79371	11,28±0,08	11,45±0,04

Число pp- и pp-событий разных множественностей в и топологические сечения событий с медленным идентифицированным протоном

На рис.1 /а-д/ показаны х-распределения идентифицированных протонов для взаимодействий разных топологий. Из этих рисунков видно заметное отличие распределений для $\tilde{p}p$ - и pp-соударений, имеющее одинаковый качественный характер для всех значений n > 2. При больших значениях х большие величины имеют дифференциальные сечения для $\tilde{p}p$ -взаимодействий, при малых х ситуация становится обратной. Пересечение распределений происходит в интервале x = -0,7 - /-0,6/. Иначе говоря, х-распределения протонов в $\tilde{p}p$ -взаимодействиях несколько смещены в область фрагментации по сравнению с распределениями, полученными для pp-соударений. На рис.2а приведены отношения средних значений х для $\tilde{p}p$ и pp-взаимодействий разных топологий. Видно, что с ростом в наблюдается систематический рост этого отношения, которое

при n = 2 близко к единице. На рис.26 показана зависимость от n отношений средних значений квадратов поперечных импульсов протонов, откуда следует, что для малых n средний поперечный импульс несколько больше в рр-взаимодействиях. С ростом множественности средние поперечные импульсы становятся одинаковыми для обоих типов соударений. На рис.3-6 приведены рас-

5

Рис.4. $\mathbf{p}_{\mathbf{r}}^{*}$ -распределения π^{+} -мезонов для $\mathbf{p}_{\mathbf{r}}^{-}$ и ррвзаимодействий разных множественностей в с медленными протонами.

Рис.6. р²_т-распределения *п*-мезонов для рр- и рр-взаимодействий разных множественностей п с медленными протонами.

7

пределения по x и p_T^2 для π^+ - и π^- -мезонов, образующихся в рри pp-взаимодействиях с идентифицированными протонами и с разными n, нормированные соответственно на значения x = -0,05 и p_T^2 = 0,025 (Гэв/с)². Видно, что во всех случаях распределения π^+ -мезонов более жесткие для pp-взаимодействий. Для π^- -мезонов такого отличия практически не наблюдается. На рис.7 и 8 показаны x и p_T^2 -распределения π^- , π^+ -мезонов и π^\pm -мезонов вместе для суммы событий всех топологий. Можно отметить, что для π^+ -частиц /рис.7а, 8а/ наблюдаемая на рис.3 и 4 разница распределений сохраняется. Дифференциальные сечения для π^- -мезонов /рис.76 и 8б/ практически о цинаковы в обоих типах езаимодействий^{*}. В результате суммарные распределения для π^\pm -мезонов /рис.78 и 8в/ остаются более жесткими в pp-соударениях.

and the second s

["]Нужно отметить, что такое совладение этих сечений является случайным, поскольку их соотношение зависит от выбора кинематической области протонов, которая в данном случае определяется обрезанием импульса протонов р_{паб} 5 1,2 ГэВ/с.

Этот вывод подтверждают также отношения величин <x> и < $p_{\rm T}^2$ > , приведенные в табл.2.

Таблица 2

Отношение средних значений **x** и $p_T^2 \pi^{\pm}$ -мезонов, образующихся в неаннигиляционных pp- и ppвзаимодействиях /с медленными идентифицированными протонами/

π+	π-	π^{\pm}
1,12	1,00	1,07
±0,01	±0,01	±0,01
1,10	1,01	1,06
±0,02	±0,01	±0,01
	π^+ 1,12 $\pm 0,01$ 1,10 $\pm 0,02$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

На рис.9 /а-г/ показаны /крестиками/ зависимости от п отношений средних значений x и $p_T^2 \pi^+ \sim n \pi^-$ -мезонов, полученных для соответствующих распределений /рис.3-6/. Видно, что для π^+ -мезонов /рис.9а, Эв/ эти отношения больше единицы и растут с ростом n. Для π^- -мезонов /рис.9б и 9г/ такого роста практически не наблюдается.На рис.9 приведены также /кружками/ отношения величин <x > и < $p_T^2 > \pi^\pm$ -мезонов для событий с протонами, отбираемыми с импульсом р_{ляб} ≤ 0.8 ГэВ/с. Видно, что при меньшей границе обрезания импульсов протонов рост с п отноше-

Рис.9. Зависимости от множественности п отношений средних значений x и p_T^2 π^+ - и π^- -мезонов, сбразующихся в неаннигиляционных $\bar{p}p$ - и pp-взаимодействиях /c - импульс вторичных протонов $p_{ne0} \leq 0,8$ ГэВ/с, x - импульс вторичных протонов $p_{ne0} \leq 1,2$ ГэВ/с, • - вторичные протоны /антипротоны/ в pp / $\bar{p}p$ / с переменной x $\geq 0,6/$.

Рис.10. Зависимости от множественности в отноше-ний средних значений х и p_T^2 π^+ - и π^- мезонов, образующихся в $\bar{p}p$ - и ppвзаимодействиях /с - для событий с медленными протонами, х - для всех событий/.

ний средних значений х и р² для π⁺-мезонов становится более значительным /кружки на рисунках 9а и 9в/. Отметим, что для

л[−]-мезонов /кружки на рис. 9б и 9г/ ∵ кже появляется некоторое указание на подобный эффект.

Для выяснения влияния аннигиляционных процессов аналогичные зависимости для π^{\pm} -мезонов были получены для всей совокупности событий. При этом *п*-мезоны, как и в предыдущем случае, отбирались с импульсами P < 1,2 ГэВ/с /в л.с.к/ и X < 0. Полученные при таком отборе отношения <x> и n -мезонов показаны /крестиками/ на рис. 10 /а-г/ вместе с отношениями, ранее найденными для событий с медленными протонами /с импульсом р < 5 1,2 ГэВ/с/. Из рис.10 видно, что новые условия отбора частиц изменяют качественную картину лишь для *п*-мезонов /рис.106 и 10г/, для которых появляется заметный рост отношений <x> $u < p_T^2 > c$ увеличением n. Для π^+ -мезонов /рис.10а и 10в/ некоторое количественное отличие наблюдается для 4- и 6-лучевых событий. Необходимо отметит ... что новые условия включают дополнительно кроме аннигиляционной компоненты в Бр-взаимодействиях значительную долю событий, в которых в задней полусфере могут образоваться либо протоны, имеющие импульс p > 1,2 ГэВ/с, либо нейтроны. Для оценки влияния событий подобного типа были отобраны рр- и рр-взаимодействия, включающие, соответственно, быстрый антипротон или протон. Отбор производился по критерию, описанному в разделе 2. В этом случае в задней полусфере могут рождаться как протоны с любыми /кинематически допустимыми/ импульсами, так и нейтроны. Характеристики *-мезонов подобных событий показаны на рис.9а, 9в /сплошные кружки на рисунке/. Видно, что отношения <x > и <p $_{T}^{2}$ > π^{+} -мезонов, об-ближе к единице и практически не меняются с ростом n. Для тмезонов эти отношения /не показанные на рисунке/ совпадают с единицей. Таким образом, можно предполагать, что увеличение

отношений <x > и < p_T^2 >, наблюдаемое для совокупности всех событий /рис.10/, обусловлено вкладом аннигиляционных процессов. Интересно отметить, что эти отношения для 2-лучевых событий /для π^+ -мезонов/ больше соответствуют зависимостям, полученным при отборе событий с идентифицированным протоном, т.е. заведомо неаннигиляционным в $\bar{\rm pp}$ -взаимодействиях.Этот результат служит дополнительным указанием на малый вклад аннигиляции в 2-лучевые єзаимодействия ⁸.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Из результатов, приведенных в разделе 3, можно отметить следующие особенности отличия неаннигиляционных рр- и рр-взаимодействий.

Заметно отличаются характеристики только протонов и π⁺-мезонов, при этом для х-распределений это отличие носит одинаковый качественный характер /в рр-взаимодействиях распределения более жесткис/.

Отличие для π^+ -мезонов с умењышением импульса сопровождающих их протонов становится более выраженным.

Степень отличия растет с ростом множественности заряженных частиц.

Необходимо подчеркнуть, что все наблюдаемые особенности спектров проявляются лишь для событий с медленными протонами и становятся слабо заметными при включении в анализ других неаннигилиционных каналов. Такое условие проявления этих особенностей затрудняет их сравнение с данными других экспериментов, поскольку приводимые данные относятся ко всей совокулности событий. Кроме того, сравнение спектров самих протонов для <u>pp</u>и pp-взаимодействий при близких энергиях практически не делалось. Наиболее подробный сравнительный анализ <u>pp</u>- и pp-соударений был сделан при энергии 8,8 ГэВ/с в работе^{/3/}, где наблюдалось различие х-распределений в задней полусфере отдельно для π^+ и π^- -мезонов в <u>pp</u>-неаннигиляционных процессах и ppвзаимодействиях^{*}. При этом спектры различаются только в области х 2-0,5, в которой дифференциальные сечения π^+ -мезонов не-

^{*}Указанное различие распределений следует из реально наблюдаемых в работе^{/3/} для [±]-мезонов зависимостей от х отношений разностей дифференциальных сечений, полученных для ppвзаимодействий, и дифференциальных сечений, полученных для процесса pp-аннигиляции.

Рис.11. Кварковые диаграммы для pp- и неаннигиляционных pp-взаимодействий.

сколько выше в pp-взаимодействиях, а для π^- -мезонов картина обратная, что приводит к совпадению их суммарных X-распределений. Поведение x-распределений π^+ -мезонов, наблюдаемых в работ $te^{/3/}$, можно объяснить попаданием фрагментационных пионов в полусферы, противоположные полусферам соответствующих фраг-ментирующих первичных частиц. Поскольку в нашем случае подобная разница спектров для π^- -мезонов не наблюдает, то этот эффект либо становится слабым из-за роста энергии реакции, либо незаметен из-за обрезания импульсов мезонов, $p \leq 1, 2$ ГзВ/с. В таком случае разница спектров π^+ -мезонов, наблюдаемая на рис.3-4, имеет иную динамическую причину по сравнению с наблюдаемой в работе $^{/3/}$. Этот вывод подтверждает также разница p_{T}^2 -распределений для π^+ -мезонов и наблюдаемая корреляция меж-ду π^+ -мезонами.

Рассмотрим возможную интерпретацию наблюдаемых особенностей импульсных спектров частиц в рамках кварк-партонной модели. На рис.11 приведены кварковые диаграммы рр- и неаннигиляционных Бр-взаимодействий, которые обычно рассматриваются в схеме дуальной топологической унитаризации /ДТУ/^{99/}. Здесь кружками соединены валентные кварки /антикварки/, входящие в дикварки /антидикварки/, и пунктирные линии изображают кварк-глюонные струны. Диаграммы а, б, г, д изображают механизм с обменом помероном. При этом в случае а и г кварки /антикварки/ имеют близкие быстроты, и распределение рожденных адронов по быстроте практика:/и эквивалентно аналогичному распределению, которое получается из планарной диаграммы е /с аннигиляцией

12

медленных кварка и антикварка/. Все три диаграммы а, г, е отличаются от диаграмм б и д меньшей средней множественностью частиц и более жесткими дикварками /антидикварками/ на концах струн. В таком случае с увеличением множественности ^в вклад диаграмм б и д увеличивается, и импульсные спектры частиц в области фрагментации становятся все более мягкими. Однако такое смягчение спектров в бо-взаимодействиях должно происходить медленнее из-за влияния дополнительной диаграммы е. Кроме того, с увеличением множественности n увеличивается роль диаграмм в. ж. з с обменом несколькими померонами. При этом энергия отдельных кварков и дикварков уменьшается, и в рр-взаимодействиях повышается вероятность аннигиляционного процесса, который может обуславливаться, например, аннигиляцией цветового узла или переходом дикварков /антидикварков/ из триплетных по цвету в сикстетные конечные состояния /10/ . В результате среднее число померонных обменов в оставшихся процессах рр-неаннигиляции при увеличении множественности в будет меньше, чем в рр-взаимодействиях, что должно также приводить к более жестким спектрам частиц в рр-неаннигиляции из простых кинематических соображений. Поскольку с ростом в доля аннигиляции увеличивается, то этот эффект также должен становиться более сильным. Подобные рассуждения качественно объясняют различие х-распределений протонов в Бр- и рр-взаимодействиях, обсуждавшееся выше.

Однако ситуация с π^{\pm} -мезонами не столь определенная, поскольку в рамках рассмотренных механизмов /рис.11/ при отборе событий с медленными /в лабораторной системе/ протонами можно ожидать более заметного отличия спектров для π^- -мезонов. Это связано с большей вероятностью образования протонов при объединении (ид) -дикварка и ц-кварка из моря. Тем самым оставшийся морской и-антикварк образует в области фрагментации либо #, либо #°. Такая ситуация противоречит экспериментальным данным, которые указывают на основное отличие спектров "-мезонов. Как показано выше, это отличие возрастает при отборе более жестких /в с.ц.м./ протонов, т.е. между протонами и π^+ -мезонами существует некоторая динамическая корреляция. Отметим, что эта корреляция не может быть связана с рождением изобары Δ^{++} , поскольку эффект усиливается для событий с n ≥ 6, в которых сечение Δ^{++} мало. Кроме того, исключение из анализа событий, в которых эффективные массы p^{#+} -пар попадали в область /1,18--1,28/ ГэВ, показало, что наблюдаемые эффекты остаются и в этом случае. Таким образом, результаты, связанные с π^\pm -мезонами. требуют дальнейшего теоретического исследования.

Отметим далее, что планарные диаграммы процессов pp-аннигиляции^{/10/} приводят к более жестким спектрам /по сравнению с ppвзаимодействиями/ как π⁺-, так и π⁻мезонов, что действительно наблюдается на рис.10 /крестики/, где для $\bar{p}p$ -взаимодействий рассматривается сумма неаннигиляционных и аннигиляционных процессов. Зависимость наблюдаемого эффекта от множественности в этом случае качественно объясняется увеличением доли аннигиляционных процессов с ростом в. Количественные расчеты были выполнены $^{25,11/}$ только для инклюзивных х-распределений $\pi^{\pm}-$ и К $^{9}\bar{K}_{0}$ -мезонов.

5. ЗАКЛЮЧЕНИЕ

1. Наблюдаются следующие различия х и р_T-распределений протонов и ^{π+}-мезонов в неаннигиляционных pp- и pp-взаимодействиях при 22÷24 ГэВ/с:

 х-распределения протонов в рр-взаимодействиях более жесткие, при этом степень отличия растет с ростом множественности заряженных частиц;

2. В событиях малой множественности средний поперечный импульс протонов больше в рр-взаимодействиях;

3. Для событий с медленными протонами распределения по х и p_T^2 π^+ -мезонов имеют более жесткий характер в Бр-взаимодействиях;

 Степень отличия характеристик для π⁺-мезонов увеличивается при уменьшении импульса протонов /в лабораторной системе/ и увеличении множественности заряженных частиц;

5. Перечисленные особенности импульсных распределений "-мезонов имеют очень слабо выраженный характер для "-мезонов.

Наблюдаемые в данной работе особенности х-распределений протонов в pp- и pp-взаимодействиях можно понять теоретически на качественном уровне. Понимание особенностей спектров π^{\pm} -месонов требует дальнейших теоретических исследований.

Нам приятно поблагодарить Б.Г.Захарова и Б.З.Копелиовича за полезные обсуждения и предложения. Мы признательны сотрудничеству Бонн - Гамбург - Мюнхен за предоставление рр-данных при 24 ГэВ/с.

ЛИТЕРАТУРА

- 1. Gregory P.S. et al. Nucl. Phys., 1977, B119, p.60.
- 2. a) Rushbrooke J.G., Webber B.R. Phys.Rep., 1978, c44, p.1;
- b) Lednicky R. Czech. J. Phys., 1983, B33, p.1177.
- 3. Booth C.N. et al. Phys.Rev., 1983, D27, p.2018.
- 4. Amos N. et al. Phys.Lett., 1983, B120, p.460.

 Ward D.R. et al. - Nucl. Phys., 1980, B172, p.302.
 a) Abesalashvili L.N. et al. - Phys. Lett., 1974, B52, p.236; Boos E.G. et al. b) Blobel V. et al. - Nucl Phys., 1974, B69, p.454.
 Batyunya B.V. et al. - Sov. J. Nucl., 1982, 36, p.403.
 Boggild H. et al. - Nucl. Phys., 1973, B57, p.77.
 Chew G.F., Rosenzweing C. - Phys. Rep., 1978, C41, p.263; Capella A. et al. - Phys. Lett., 1979, B81, p.68; Kaidalov A.B. - Phys. Lett., 1982, B116, p.459;

Kaidalov A.B., Ter-Martirosýan K.A. - ITEP-161, Moscow, 1983.
0. Rossi G.C., Veneziano G. - Nucl.Phys., 1977, B123, p.507;

- Rossi G.C., Veneziano G. Nucl.Phys., 1977, B123, p.507 Phys. Rep., 1980, 63, p.149; Kopellovich Z., Zakharov B.C. - JINR, E2-82-548, Dubna, 1987; JINR, E2-88-85, Dubna, 1983.
- 1. Batyunya B.V. et al. Z.Phys., 1984, C25, p.213.

ł

. ANTONIA IN SURVICE

i

Рукопись поступила в издательский отдел 25 января 1989 года.