0-611

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

1 - 8733

БИЛЕНЬКАЯ София Исаевна

ЭЛЕКТРОМАГНИТНАЯ СТРУКТУРА НУКЛОНА

Специальность 01.04.01 - экспериментальная физика

А втореферат диссертации на соискание ученой степени кандидата физико-математических наук

(Диссертация написана на русском языке)

Работа выполнена в Даборатории ядерных проблем Объединенного института ядерных исследований. Дубна.

Научный руководитель:

доктор физико-математических наук Ю.М.Казаринов

Официальные оппоненты:

академик Б.М.Понтекорво,

кандидат физико-математических наук Ф.Г.Ткебучава. Ведущее научно-исследовательское учреждение -

Институт физики высоких энергий, Серпухов

Автореферат разослан " _____ 1975 г. Защита диссертации состоится " _____1975г.

в " часов на заседании ученого Совета Лаборатории ядерных проблем ОИЯИ.

С диссертацией можно ознакомиться в библиотеке Объединенного института ядерных исследований.

Ученый секретарь Совета кандидат физико-математических наук

Ю.А.Батусов

1 - 8733

БИЛЕНЬКАЯ София Исаевна

ЭЛЕКТРОМАГНИТНАЯ СТРУКТУРА НУКЛОНА

Специальность 01.04.01 - экспериментальная физика

А втореферат диссертации на соискание ученой степени кандидата физико-математических наук

(Диссертация написана на русском языке)

Объедлиенный системут смерных всследовский SHE MOTEHA

В 1955 г. Ховштадтером были выполнены первые опыты по изучению упругого рассеяния электронов протонами. С этого времени рассеяние электронов нуклонами изучается на различных электронных ускорителях при разных энергиях. В 1968 г. были начаты эксперименты по изучению глубоконеупругого рассеяния электронов протонами. Эти опыты сыграли исключительно важную роль в понимании структуры адронов. Была открыта масштабная инвариантность (*scaling*) и возник целый ряд новых направлений теоретических исследований; партонная модель, изучение особенностей коммутаторов токов на световом конусе, автомодельная асимптотика в локальной теории поля и др.

Диссертация посвящена изучению процесса упругого рассеяния лептонов нуклонами

 $l + N \to l + N \tag{1}$

и процесса глубоконеупругого рассеяния лептонов протонами

 $l + p \rightarrow l + \cdots$ (2)

В настоящее время накоплена общирная информация об этих процессах. Однако до сих пор не был проведен систематический анализ всех полученных данных. Такой анализ был выполнен в работах /1-10/. Метод обработки данных, развитый в ОИЯИ /11/ и использованный ранее для восстановления амплитуд нуклон-нуклонного и пион-нуклонного рассеяния, был впервые применен при анализе электромагнитных процессов (1) и (2).

Цель работы состоит:

1) в получении лиформации о формфакторах и структурных функциях нуклона;

2) в сравнении полученных результатов с теорией;

3) в предложении экспериментов, которые позволили бы ответить на актуальные вопросы теории фотон-адронных взаимодействий, и в выяснении таких кинематических областей, в которых следует проводить будущие измерения.

В работе не ставилась целью проверка какой-либо конкретной модели. Нас интересовали прежде всего общие закономерности в поведении формфакторов и структурных функций.

Диссертация состоит из трех глав, введения и заключения.

<u>В первой главе</u> (введение) подробно излагаются общие соотношения, которым удовлетворяют формфакторы и структурные функции нуклона. Эти соотношения используются при анализе результатов опнтов. В первой главе обсуждается также партонная интерпретация глубоконеупругого е-р-рассеяния.

Во второй главе изложени результати анализа опытов по упругому рассеянию электронов протонами и электронов дейтонами. Обычно формфакторы протона извлекаются из экспериментальных данных путем построения "прямой Розенблюта" (при фиксированном $q^{\mathscr{L}}$). Найденные таким способом значения формфакторов аппроксимируются теми или иными аналитическими выражениями.

В настоящей диссертации информация об электромагнитных формфакторах нуклона (структурных функциях протона) извлекается непосредственно из данных по дифференциальным сечениям. С самого начала принимается определенная зависимость формфакторов (структурных функций) от соответствующих переменных. Свободные параметры находятся из всех имеющихся экспериментальных данных путем минимизации функционала

 $\chi^{2} = \sum_{i} \sum_{\kappa} \frac{1}{\Delta_{i;\kappa}^{2}} \left(\sigma_{i;\kappa} - N_{\kappa} \sigma_{i}^{meop} \right)^{2}$ (3)

Здесь $\sigma_{i,\kappa}$ - сечение в i -той точке, измеренное в κ -ом эксперименте; $\Delta_{i,\kappa}$ ошибка величины $\sigma_{i,\kappa}$; $\sigma_{i}^{\text{теор}}$ - сечение в i-той точке, вычисленное по соответствующим теоретическим формулам. Множители N_{κ} являются варьируемыми параметрами и вводятся для учета возможных систематических ошибок κ -ого эксперимента. Минимизация функционала χ^2 проводится методом линеаризации, предложенным в работе $11/\gamma$ по программе FUMILI $12/\gamma$.

В течение долгого времени считалось, что данные по упругому е-р-рассеянию могут быть удовлетворительно описаны, если предположить, что формфакторы связаны масштабным соотношением

$$G_{M}(q^{2}) = \mu_{p} G_{E}(q^{2})$$
(4)

(μ_{ρ} - магнитный момент протона). и имеет место дипольная формула

$$\frac{1}{\mu_{p}}G_{H}(q^{2}) = \frac{1}{\left(1 + \frac{q^{2}}{0.7t}\right)^{2}} = G_{D}(q^{2})$$
(5)

В диссертации исследуется вопрос об областа применимости дипольной формули. Показано, что выражения (4) и (5) позволяют описать данные только при относительно малых q^2 ($q^2 \le 0.43$ (ГэВ/с)²).

Далее била получена такая параметризация формфакторов, с помощью которой можно описать данние по упругому е-р-рассеянию во всей области q^2 (0,012 $\leq q^2 \leq 25.03$ (ГэВ/с²). Для формфактора $G_{\mu}(q^2)$ било предложено выражение

$$\frac{\mathcal{L}}{\mathcal{P}} G_{\mathcal{H}}(q^{2}) = \frac{\beta_{3}}{1+\beta_{q}q^{2}} + \frac{1-\beta_{3}}{1+\beta_{2}q^{2}} = \frac{1-\beta_{q}q^{2}}{(1+\beta_{q}q^{2})(1+\beta_{2}q^{2})} (6)$$

$$\beta = \beta_{2}\beta_{3} + \beta_{1}(1-\beta_{3}),$$

которое является обобщением (5) и позволяет получить то же, что и (5), поведение в области больших q^{2} . Аналогичное выражение принималось для зарядового формфактора $G_{E}(q^{2})$. Таким выражениям отвечают плотность заряда и магнитного момента, представляющие собой сумму двух распределений Окавы.

Анализ показал, что с помощью (6) могут быть описаны все имеющиеся данные по упругому е-р-рассеянию.

Для параметров получены следующие значения (χ^2/χ^2 =416/339):

$$\begin{aligned} & b_{1} = (0,58\pm0,03) \ (\Gamma \ni B/c)^{-2}, \\ & b_{2} = (2,42\pm0,07) \ (\Gamma \ni B/c)^{-2}, \\ & b_{3} = -0,33\pm0,03. \end{aligned}$$
 (7)

Если в духе векторной доминантности интерпретировать параметри $\left(\frac{t}{B_{i}}\right)^{\prime 2} = m_{c}$ как эффективные "массы", то одна из найденных "масс" лежит в области ρ , ω -мезонов (m_{2} = (0,64±0,01) ГэВ), а другая - в области ρ' -мезона (m_{2} =(1,31±0,03) ГэВ). Для радлуса нуклона из (6) получаем

• При поиске параметризации формфакторов мы исходили из того, что хотя во всей области q^2 данные и не описываются дипольной формулой, отклонение формфакторов от значений, даваемых (5), невелико (не более 20%).

$$\sqrt{\langle 7^2 \rangle} = (0,832 \pm 0,003)F$$

что согласуется со значением радиуса, полученным в эксперименте^{/13/} по измерению е-р-рассеяния при малых q^2 . Из (6) следует, что $b = (-0.02\pm0.08)$ (ГэВ/с)⁻². (8)

Полученные результати не противоречат, следовательно, $\frac{1}{q_4}$ – поведению формфакторов при больших q^2 .

Поведение формфакторов в области больших q^2 представляет исключительный интерес для теории. В литературе неоднократно обсухдались тяжелые нейтральные векторные частицы (тяжелые фотоны, глюоны). Существование таких частиц несомненно сказалось бы на поведении формфакторов в области больших q^2 . Возникает вопрос, не является ли множитель (1- bq^2) результатом разложения по bq^2 выражения $\frac{1}{1+bq^2}$. В связи с этим данные по е-р-рассеянию были проанализированы в предположении, что формфактор $G_{\mu}(q^2)$ имеет вид

$$\frac{1}{\mu_{p}}G_{\mu}(q^{2}) = \frac{1}{(1+b_{1}'q^{2})(1+b_{2}'q^{2})(1+b_{2}'q^{2})}.$$
(9)

Для параметров найдены следующие значения ($x^2/\overline{x^2} = 384/320$)

Соответствующие "массы" равны

$$m_{1} = (1,28\pm0,03) \ \text{FsB};$$

$$m_{2} = (0,67\pm0,01) \ \text{FsB};$$

$$m_{2} = (5,00\pm0,22) \ \text{FsB}.$$
(11)

На рис.1 приведены графики функций

$$\frac{1}{\mu_{p}} = \frac{G_{\mu}(q^{2})}{G_{\mathfrak{B}}(q^{2})}$$

гнчисленных для случая параметризации (6) (кривая 1) и параметризации (9) (кривая П). Нанесены также экспериментальные точки работы 14 . Как видно из рис.1, параметризации (6) и (9) отличаются лишь при $q^2 > 20$ ГэВ/с². Таким образом, решение вопроса о влиянии на поведение электромагнитных формфакторов протона векторных частиц с массой $\gtrsim 5$ ГэВ требует проведения опытов по изучению рас-

Зависимость величины $\frac{1}{\mu_{\rho}} \frac{G_{H}}{G_{\infty}}$ от q^{2} . Кривые (с коридором ошибок) получены с помощью выражений (6)- (1) и (9) - (П). Точки – экспериментальные данные работы/14/.

сеяния лептонов протонами в области $q^2 > 20$ (ГэВ/с)². Имеющиеся данные не противоречат гипотезе о существовании таких частиц.

Следующая проблема - проверка масштабного соотношения (4). Если записать соотношение между магнитным и зарядовым формфакторами в виде

> $G_{\mu}(q^2) = S(q^2)\mu_p G_E(q^2)$, (12) условия нормировки следует, что S(0) = 1, а из условия р

то из условия нормировки следует, что S(0) = 1, а из условия равенства формфакторов на пороге реакции $e^+ + e^- \rightarrow p + \overline{p}$ получаем, что $S(-4M^2) = \frac{1}{\mu_p}$.

При параметризации функции $S(q^2)$ учитивались оба эти услоция, и предполагалось, что функция $S(q^2)$ представляет собой отношение полиномов по q^2 . Для случая полиномов первой степени получаем

$$S(q^{2}) = \frac{1 + \left[1 - \frac{1}{\mu_{p}}(1 - c)\right] \frac{L}{4\mu^{2}}}{1 + c \frac{q^{2}}{4\mu^{2}}}.$$
(13)

Из анализа мировых данных найдено, что С = 1,05±0,09 и функция

 $S(q^2)$ во всем исследованном на опыте интервале q^2 не отличается в пределах опибок от 1. Такой же результат был получен и придругих параметризациях функции $S(q^2)$.

Следующий параграф диссертации посвящен изучению поведения формфакторов в области больших q^2 . Из партонной модели следует, что при $q^2 > M^2$ зарядовый и магнитные формфакторы ведут себя одинаково

$$G_{\mathcal{M}}(q^2) \sim G_E(q^2).$$
 (14)

С другой стороны, если нуклон считается связанным состоянием частиц со спинами 0 и 1/2, то из такой модели следует, что в области больших q^2 ведут себя одинаково дираковский F и паулиевский F_2 формфакторы

$$(q^2) \sim F_2(q^2).$$

(15)

Анализ экспериментальных данных по сечению рассеяния неполяризованных электронов неполяризованными протонами в области $q \stackrel{>}{>} 6$ (ГэВ/с)² показал, что ни одно из этих соотношений не может быть исключено имеющимися данными. Если для магнитного формфактора протона принять выражение $G_{M}(q^{2}) = \alpha \frac{M^{4}}{q^{4}}$ (16)

и предположить, что формфактор G_E связан с формфактором G_M масштабным соотношением, то для параметра α получено значение ($\chi^2/\overline{\chi^2} = 7,4/7$)

 $a = 1,44 \pm 0,02$.

С другой стороны, если предположить, что в области больших 92 формфакторы F, и F, имеют вид

$$\overline{f_1} = g_1 \frac{H^4}{2q}$$
(17)

 $F_2 = g_2 \frac{r_1}{2\gamma}$ (это предположение означает, что при $q^2 \gg M^2 G_E \simeq \frac{1}{2}$), то для g_1 и g_2 получены следующие значения ($\chi^2 / \chi_2 = 8/6$)

Далее показано, что изучение процесса рассеяния продольно поляризованных лептонов на поляризованных протонах позволило бы ответить на вопрос о том, какое из двух обсуждавшихся соотношений между формфакторами ((14) или (15)) имеет место. Сечение рассеяния поляризованных частиц имеет вид (л.с.)

$$\left(\frac{d\sigma}{d\Omega}\right)_{\vec{P}} = \left(\frac{d\sigma}{d\Omega}\right)_{\vec{O}} \left(1 + \lambda \vec{P} \vec{A}\right)$$
(19)

(λ - степень продольной поляризации лептонов, P - вектор поляризации протонов). Вектор асимметрии А лежит в плоскости рассеяния и равен

 $\vec{A} = A_{\parallel}\vec{z} + A_{\perp}\vec{s}$

(\vec{x} - единичный вектор в направлении импульса лептона, \vec{s} - ортогональный ему вектор). Показано, что в случае, когда формфакторы $G_{_{_{_{_{_{_{}}}}}}$ и $G_{_{_{_{E}}}}$ ведут себя одинаково, $|\mathcal{A}_{_{_{_{_{}}}}}| \gg |\mathcal{A}_{_{_{_{}}}}|$ (при E = 20 ГэВ и $q^2 \ge 10$ (ГэВ/с)², $|\mathcal{A}_{_{_{_{_{}}}}}| \ge 60\%$, а $|\mathcal{A}_{_{_{_{_{}}}}}| \le 10\%$). Если имеет место соотношение (15), то $|\mathcal{A}_{_{_{_{_{}}}}}|$ и $|\mathcal{A}_{_{_{_{}}}}|$ одинакового порядка.

С целью получения информации о формфакторах нейтрона были проанализированы мировые данные по упругому рассеянию электронов дейтронами (интервал квадратов переданных импульсов от 0,3F⁻² до 34.1 F⁻²).

8

Использовалось предложенное в работе^{/15/} выражение для волновых функций дейтрона $(\mathcal{L}(\mathcal{Z})$ и $W(\mathcal{Z})$. Параметры, характеризующие эти функции, обязаны удовлетворять определенным условиям, вытекарщим из требования отсутствия сингулярности в точке $\mathcal{Z} = 0$. Приведенные в работе^{/15/} значения параметров удовлетворяют этим условиям лишь приближенно, с точностью, не достаточной при практическом определении формфакторов дейтона. В связи с этим в диссертации получены новые значения параметров, характеризующих волновые функции дейтона.

Масштабные соотношения между формфакторами нуклона имеют вид

$$G_{M}^{P}(q^{2}) = \mu_{P}G_{E}^{P}(q^{2}); \ G_{M}^{N}(q^{2}) = \mu_{N}G_{E}^{N}(q^{2}); \ G_{E}^{N}(q^{2}) = 0.$$
(20)

Из опытов по рассеянию тепловых нейтронов электронами следует, с другой стороны, что

$$\frac{d G_E}{d q^2} / q^2 = 0 = (0,0193\pm0,0004) F^2$$

Последнее из соотношений (20) обязано, следовательно, нарушаться. При анализе данных по упругому *е*-*d*-рассеянию были сделаны определенные предположения о нарушении масштабных соотношений (20). Предполагалось, что масштабные соотношения имеют место отдельно для изовекторных и изоскалярных формфакторов. Это означает, что

$$G_{E}^{N} = \frac{1}{\mu_{N}} \left[G_{\mu}^{P} - \mu_{P} G_{E}^{P} \right]$$

$$G_{\mu}^{N} = \mu_{N} G_{E}^{P} + \frac{\mu_{P}}{\mu_{N}} \left[G_{\mu}^{P} - \mu_{P} G_{E}^{P} \right].$$
(21)

Для формфакторов протона $G_{H,E}^{P}$ принимались выражения, полученные из анализа е-р данных (6). Варьировались только нормы. Описание удовлетворительное ($\chi^2 / \chi^2 = 106.6/89$). Производная $\frac{dG_{E}}{dG_{E}}$ положительна, ее значение (0,0 23) олизко к полученному

 dq^2 / q^{20} из n - e данных.

Во всей исследованной области 9² зарядовый формфактор мад (не превосходит 5.10⁻³).

Отметим, что точность данных по упругому e - d -рассеянию не позволяет подучить однозначной информации $O = G_E (q^2)$ данные описываются и в случае, если предположить, что имеют место соотношения (20)).

В третьей главе диссертации излагаются результати анализа опытов по глубоконеупругому рассеянию электронов протонами. Хорошо известно, что эти опыти открыли новую страницу в исследовании структуры нуклона. Совокупность данных по глубоконеупругому рассеянию электронов нуклонами и нейтрино нуклонами дает серьезные основания предполагать, что точечные партоны являются физическими объектами.

В первом параграфе на основе анализа мировых данных (SLAC /16/, DESY/17/) детально изучается вопрос об области масштабной инвариантности функции \mathcal{YW}_2 . Параметризация этой функции основана на асимптотическом условии

$$\mathcal{V} W_{\mathfrak{A}} \longrightarrow const$$
и пороговом соотношении

$$\mathcal{V} \bigvee_{\mathcal{Q}} \frac{\sim (1 - \frac{1}{\omega})^3}{\omega \rightarrow 1}$$

Показано, что все имехищеся данные по глубоконеупругому е-р-рассеянию могут быть описаны в области $W \ge 2,3$ Г₃В (W - полная масса конечной адронной системы), если предположить, что \mathcal{W}_{2} зависит только от переменной $\omega = \frac{2H_{2}}{g^{2}} (scaling)$ и имеет вид $\mathcal{W}_{2} = (1 - \frac{1}{\omega})^{3} \begin{bmatrix} \alpha_{0} + \alpha_{2} (1 - \frac{1}{\omega})^{2} \end{bmatrix}$. (22)

Для параметров a_0 и a_2 получены следующие значения ($\chi^2/\chi^2 = 142/150$)

$$\alpha_{s} = 1,63 \pm 0,02;$$

 $\alpha_{s} = 1,48 \pm 0,02.$

Показано также, что данные могут быть описаны при самых различных выражениях для отношения $\mathcal{R} = \frac{\sigma_s}{\sigma_T}$ (σ_s и σ_T – полные сечения поглощения виртуального фотона с продольной и поперечной поляризаниями нуклоном). Если предположить, что $\mathcal{R} = c_1 \frac{q_2}{M_2}$ (векторная доминантность), то $C_1 = 0,035 \pm 0,004$. Если принять, что $\mathcal{R} = c_0 \sigma_t$, то $\mathcal{R} = 0,27\pm0,03$. Данные в области $W \ge 2,5$ ГэВ могут быть описаны на также, если $\mathcal{R} = \frac{q_2}{M_2}$ (партонная модель, спин партонов равен 1/2). Таким образом, имеющиеся данные не позволяют сделать определенных заключений об \mathcal{R} и, следовательно, о масштабной и инвариантность функции \mathcal{Y}_2 от ω при различных параметризациях отношения \mathcal{R} .

 ∞ Определение функции νW_2 позволяет вычислить интеграл $\int \nu W_2 \frac{\Delta \omega}{\omega^2}$, значение которого совместно с данными по глубоконеупругому рассеянию электронов нейтронами и нейтрино нуклонами,

дает возможность определить средний заряд партонов в нуклоне. Получено

$$\int v W_{v} \frac{d\omega}{\omega^{2}} = 0,158 \pm 0,001.$$

Рассмотрена масштабная переменная

(24)

Сомотрена масштанан переменная $\omega' = \frac{2M\omega + \beta}{g^2}$. (23) Если предположить, что νW_2 является функцией ω' , то данные мо-гут быть описаны в более пирокой области переменной W ($W \ge 1,8$ ГэВ). Для параметра в получено

 $\beta = (0.85\pm0.07) (\Gamma_{2}B/c)^{2}$, что согласуется с теоретическим значением Блума – Гилмана.

Введение переменной ω' - одна из форм нарушения масштабной инвариантности по переменной ω . Важный для теории вопрос о возможном нарушении масштабной инвариантности рассмотрен во втором параграфе этой главы. Данные были проанализированы в предположении, что

$$vW_{2} = F_{2}(\omega) + d \frac{M^{2}}{q^{2}}$$

(в бьеркеновском пределе второй член исчезает).

Для параметра 🟑 находим

 $\alpha = 0.02 + 0.01$

Данные были проанализированы также в случае, когда к зависящему от ω члену в выражении для νW_2 добавляется член, логарифмически зависящий от q^2 . Такой вид нарушения масштабной инвариантности возникает в теории с аномальными размерностями. Показано, что имерщиеся данные не исключают наличия аномальных размерностей. Величина параметра, характеризующего вклад членов с аномальными размерностями, существенно зависит от \mathcal{R} и меняется от 0,07±0,04 до 0,47± ± 0,06. Добавление члена, обусловленного аномальными размерностями. улучшает, как правило, качество описания данных.

Последний параграф этой главы постящен проверке соотношения Дрелла – Яна. Если функцию νW_g в области значений переменной ω_j близких к единице, записать в виде

1	
$\mathcal{W} = \mathcal{L}(1 - \Box)'$	(25)
2	(00)

а магнитный формфактор протона в области больших 9 в виде

$$\frac{1}{\mu_{\rho}}G_{H} = \frac{1}{(Bq^{2})^{n}}, \qquad (26)$$

то, как было показано в работах/18/,

p = n + 1. . (27)

В диссертации проанализированы данные по упругому е-р-рассеянию при $q^2 > 5$ (ГэВ/с)² и данные по глубоконеупругому е-р-рассеянию при "ω≤ 1,45. Эти данные хорошо описываются, если для функций νW_2 и G_{μ} принять выражения (25) и (26). Для параметров р и п получены следующие значения

$$\mathcal{R} = 1,99 \pm 0,02,$$

 $\mathcal{D} = 2,98 \pm 0.31.$

Таким образом, имеющиеся данные подтверждают соотношение (27).

В четвертой главе изложены работы по проверке и-е-универсальности электромагнитного взаимодействия. Используемый метод весьма эффективен и позволяет сравнить μ - ρ -данные со всей совокупностью е-р-данных. При этом не приходится прибегать к обычной процедуре экстраполяции. Показано, что данные по μ - ρ -рассеянию (как упругому, так и глубоконеупругому) совместимы со всей совокупностью данных по е-р-рассеянию, если произвести соответствующую перенормировку сечений ($N_{=}^{y_{=}}0,92, N_{=}^{key_{=}}0,85$). Необходимость такой перенормировки, по-видимому, связана с систематическими ошибками, а не с нарушением и-е-универсальности.

Итак, в диссертации впервые проведен систематический анализ всех имеющихся данных по упругому рассеянию лептонов нуклонами и глубоконеупругому рассеянию лептонов протонами.

1) Известное дипольное рассеяние для формфакторов обобщено таким образом. что впервые розникла возможность описания данных по е-р-рассеянию во всем исследованном интервале q^{2} (0,012 $\leq q \leq 25.3$ $(\Gamma_{9B}/c)^2$).

2) Показано, что поведение формфактора $G_{\mu}(q^2)$ н области больших q^2 совместимо с $\frac{1}{2^{\prime}}$. Не исключено $\frac{1}{2^{\prime}6}$ – поведение, причем дополнительный множитель $\frac{1}{2^{\prime}}$ может быть связан с существованием векторных частиц с массой > 5 ГэВ (глюоны, тяхелые фотоны).

3) Показано, что во всем исследованном на опыте интервале q^{ϵ} данные согласуются с масштабным соотношением. При проверке масштабного соотношения учитывалось пороговое условие $G_{M}(-4M^{\sim}) = G_{C}(-4M^{\sim})$.

4) Данные по сечению е-р-рассеяния совместимы в области больших q^2 как с одинаковым поведением формфакторов G_{μ} и G_{F} , так и с одинаковым поведением формфакторов F_{τ} и F_{2} . Показано, что измерение продольной и поперечной асимметрии в рассеянии продольнополяризованных лептонов на поляризованных протонах позволило бы ответить на важный для составных теорий вопрос о том, какое из этих двух соотношений между формфакторами имеет место.

5) Показано. что мировые данные по упругому с-d-рассеянию могут быть описаны, если предположить, что масштабные соотношения имеют место отдельно для изоскалярных и изовекторных формфакторов.

6) Установлена область масштабной инвариантности (*W*≥2,3 ГэВ) структурной функции νW_2 . Найдена параметризация функции νW_2 в этой области (два параметра). Исследованы различные выражения для

R. Показано, что использование переменной ω позволяет описать данные в области $W \ge 1.8$ ГэВ.

 Показано, что допустимо логарифмическое нарушение масштабной инвариантности, отвечающее наличию аномальных размерностей в теории.

8) Показано, что соотношение Дрелла - Яна согласуется с имерщимися данными.

9) Показано, что мировые данные как по упругому, так и по глубоконеупругому рассеянию лептонов протонами совместимы с гипотезой µ-с-универсальности электромагнитных взаимодействий.

Результаты работ, вошедших в диссертацию, докладывались на ХУ Международной конференции по физике высоких энергий (Киев, 1970), П и Ш Международных сипозиумах по физике высоких энергий и элементарных частиц (Штроске Плесо ЧССР, 1972; Синая СРР, 1973), Международном семинаре по глубоконеупругим процессам (Дубна, 1972), сессиях Отделения ядерной физики АН СССР. зимних школах ЛИЯФ (1972,1973) и П национальной конференции молодых физиков Болгарии (1974).

	witcher?be
1.	С.И.Биленькая, Ю.М.Казаринов, Л.И.Лапидус. жЭТФ, <u>60</u> ,460(1971).
2.	С.И.Биленькая, И.М.Казаринов, Л.И.Лапидус.Коту, 61,2225(1971).
3.	С.И.Биленькая, С.М.Биленький, D.M.Казаринов. Письма в для, 15,420 (1972.
4.	S.I.Bilenkaya, Yu.M.Kazarinov, L.I.Lapidus, JINR,E1-6647,
	Dubna (1972).
5.	С.И.Биленькая, С.М.Биленький, Ю.М.Казаринов, Л.И.Лапидус. ХЭТФ,65,1756 (1973).
6.	С.И.Биленькая. С.М.Биленький, Ю.М.Казаринов, Л.И.Лапидус.
	Труды Ш-го Международного симпозиума по физике высоких энер-
	гий и элементарных частиц, Синая, СРР, 455 (1973).
7.	S.I.Bilenkava, E.H.Hristova, D.B.Stamenov, Nucl. Phys., B79,
	422 (1974).
8.	С.И.Биленькая. Ю.М.Казаринов, Л.И.Лапидус. Письма в ЖЭТФ,
	19, 80 (1974).
9	С.И.Биленькая. С.М.Биленький, Ю.М.Казаринов, Л.И.Лапидус.
	Письма в ЖЭТФ, 19, 613 (1974).
10.	S.I.Bilenkava. S.M.Bilenky, A.Frenkel, E.H.Hristova, JINR,
.01	E2-8678, Dubna (1975).
11.	. С.Н.Соколов, И.Н.Силин, ОИЯИ, Д-810, Дубна (1961).
12	. Библиотека программ на фортране, т.1,Д-520 (И.Н.Силин), Б-1-11-5144. Пубна (1970).
13	р. К. Акимов, К. Анлерт, Ю.М. Казаринов, В.И. Калинин, В.С. Кисе-
13	лев. Л.И. Лапилус и лр. ЖЭТФ. 62. 1231 (1972).
14	P.N. Kirk, M. Breidenbach, J.I. Friedman et al. Phys. Rev., D8.
	63 (1973).
15	T.J.McGee, Phys.Rev., 151, 772 (1966).
16	E.D. Bloom, D.H. Coward et al. Phys. Rev. Lett., 23, 930 (1969).
10	G. Willer, E.D. Bloom et al. Phys. Rev., D5, 528 (1972).
17	. W.Albrecht, F.W.Brasse et al. DESY 69/7 (1969).
	J.Moritz, K.H.Schmidt et al. DESY 71/61, (1971).
18	. S.Drell, T.M.Yan. Phys.Rev.Lett., <u>24</u> , 181 (1970).
	E.Bloom, F.Gilman. Phys.Rev.Lett., 25, 1140; Phys.Rev., D4,
	2901 (1971).
	25 Mapta 1975 r.

14