ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

A 838

1-87-640

АРМУТЛИЙСКИ Димитр Димчев

ИССЛЕДОВАНИЕ ПРОЦЕССОВ МНОЖЕСТВЕННОГО ОБРАЗОВАНИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ В рС-И рТа-ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСАХ НАЛЕТАЮЩЕГО ПРОТОНА 2÷10 ГэВ/с

Специальность: 01.04.01 - экспериментальная физика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Лаборатории высоких энергий Объединенного института ядерных исследований.

Научные руководители: доктор физико-математических наук профессор

доктор физических наук старший научный сотрудник

АХАБАБЯН

Официальные оппоненты:

доктор физико-математических наук старший научный сотрудник

кандидат физико-математических наук старший научный сотрудник Виктор Алексеевич КОПЫЛОВ-СВИРИДОВ Сергей Максимович

Валентин Григорьевич

ГРИШИН

Нашан Охан

ЕЛИСЕЕВ

Ведущее научно-исследовательское учреждение: Научно-исследовательский институт ядерной физики МГУ. Москва

Защита диссертации состоится "____ 1987 г. в ______иасов на заседании Специализированного совета Д-047.01.02 при Лаборатории высоких энергий Объединенного института ядерных исследований, г.Дубна Московской области, Лаборатория высоких энергий, конференц-зал.

С диссертацией можно ознакомиться в библиотеке ДВЭ ОИЯИ. Автореферат разослан "_____ І987 г.

Ученый секретарь Специализированного совета

Mi Auxant М.Ф.ЛИХАЧЕВ

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Релятивистская ядерная физика - новая область физики высоких знергий, которая развивается в последние годы. Интерес учёных к релятивистским ядерным взаимодействиям связан с тем, что эти исследования предоставляют возможность наблюдать новые явления.ранее неизвестные физике.Например, было показано, что при высоких энергиях в ядерных взаимодействиях проявляются многокварковые конфигурации. Появились теоретические модели, которые рассматривают и предсказывают ряд новых интересных явлений таких, как кумулятивный эффект, предельная фрагментация ядер, фазовые переходы ядерной материи. возможное существование кварк-глюонной плазмы и др., объяснить которые с помощью классических представлений о ядре как системы, состояшей только из нуклонов, невозможно. Изучение этих явлений имеет большое значение, так как позволяет получить новую информацию о свойствах и строении атомного ядра и также наблюдать новые формы материи. Возможности, которыми располагает в этом отношении релятивистская ядерная физика трудно переоценить, ибо наблюдать эти явления во взаимодействиях элементарных частиц невозможно.

Начиная с 1970 г., когда на дубненском синхрофазотроне были достигнуты рекордные в то время энергии ускорения ядер 5 ГэВ на нуклон, ЛВЭ СИЯИ занимает ведущее место в мире по исследованиям в области релятивистской ядерной физики.

Для понимания процессов, происходящих при столкновении релятивистских ядер, чрезвычайно информативным является изучение множественного образования частиц. Для выделения новых явлений необходимо в начале рассматривать ядро как систему, состоящую только из нуклонов. Этот подход позволяет выделить типично ядерные явления и тем самым определить границу применимости протон-нейтронной модели ядра.

Цель работы:

- исследовать процессы множественного образования заряженных частиц во взаимодействиях протонов с ядрами углерода (¹²С₆) и тантала (¹⁸¹Та₇₃) в интервале импульсов 2 ÷ 10 ГэВ/с в инклюзивном подходе в условиях 4Л - геометрии;

- определить размеры области испускания протонов в рТа-взаимодействиях при импульсе падающего протона IO ГзВ/с;

- изучить свойства четырехмерных протонных кластеров в различных адрон-ядерных и ядро-ядерных взаимодействиях в релятивистски-

инвариантном подходе в пространстве четырехмерных относительных скоростей.

<u>Новизна и научная значимость работы.</u> Впервые исследованы распределения событий по множественности протонов и П⁻- мезонов, образованных во взаимодействиях протонов с ядрами углерода и тантала в интервале импульсов налетающих протонов 2 + 10, ГэВ/с.

Впервые исследованы импульсные и угловые распределения π^- мезонов в pC- и pTa-взаимодействиях при импульсе протона IO ГэВ/с в инклюзивном подходе в условиях 4π - геометрии. Показано, что структурная функция от кинетической энергии (T) π^- - мезонов в этих взаимодействиях имеет экспоненциальный характер: $\exp(-T/T_o)$, а угловая зависимость параметра ($T_o=T_o(\Theta)$) хорошо аппроксимируется квадратичной или логарифмической функцией отс OS(Θ).

Впервые исследованы двухпротонные корреляции и определены размеры области испускания протонов в рТа-взаимодействиях при импульсе падающего протона IO ГэВ/с.

Экспериментально доказана универсальность свойств четырехмерных протонных кластеров в интервале импульсов 4 + 40 ГэВ/с на нуклон как в области классической ядерной физики, где ядро проявляет себя как систему, состоящую из нуклонов, так и переходной области, где начинают проявляться кварк-глюонные степени свободы (т.н. промежуточная область).

<u>Практическая ценность работы.</u> Полученные в диссертации результаты могут быть использованы в планировании новых экспериментов по исследованиям взаимодействий адронов и ядер с ядрами при высоких энергиях и для проверки теоретических моделей.

Апробация работы. Основные результаты диссертации представлялись на международных конференциях по физике высоких энергий и ядроядерным взаимодействиям в Токио (1978 г.), Ванкувере (1979 г.), Мичигане (1980), Лейпциге (1984 г.), Гейдельберге (1984 г.), а также докладывались на совещаниях Камерного комитета СИЯИ, на семинарах ЛВЭ ОИЯИ и на совещаниях Международного сотрудничества по исследованиям на двухметровой пропановой пузырьковой камере.

Публикации. Результаты, изложенные в диссертации, опубликованы в журналах "Ядерная физика" и "Болгарский физический журнал", в сборнике "Краткие сообщения СИЯИ", в препринтах СИЯИ и в материалах, представленных на вышеупомянутых международных конференциях /1-8/.

<u>Объём диссертации.</u> Диссертация состоит из введения, шести глав и заключения.

<u>Автор защищает:</u>

I. Проделанную работу по обработке и анализу взаимодействий протонов с ядрами углерода и тантала в интервале импульсов падающих протонов 2 + IO ГэВ/с - около 30 тыс.событий.

2. Анализ полученных данных по множественности протонов и π^- мезонов, образованных в pC- и pTa- взаимодействиях при импульсах налетающих протонов 2,3; 4,2; 5,4 и IO ГэВ/с.

3. Результаты, полученные при исследовании импульсных и угловых распределений П⁻- мезонов в pC- и pTa - взаимодействиях при импульсах протона-снаряда 4,2 ГзB/с и IO ГзB/с.

4. Исследования двухпротонных корреляций во взаимодействиях протонов с ядрами тантала при импульсе налетающих протонов IO ГэВ/с и определение размеров области их испускания.

5. Результаты релятивистски-инвариантного анализа свойств четырехмерных протонных кластеров в адрон-ядерных и ядро-ядерных взаимодействиях в интервале импульсов 4 ÷ 40 ГэВ/с на нуклон.

СОЛЕРЖАНИЕ ЛИССЕРТАЦИИ

Во введении отмечается актуальность исследований в области релятивистской ядерной физики, при которых основным источником информации являются процессы множественного образования частиц. Сформулирована основная цель работы. Приведено краткое содержание диссертации.

<u>В первой главе</u> диссертации описаны методические вопросы получения и обработки экспериментального материала.

Экспериментальные данные получены с помощью двухметровой пузырьковой пропановой камеры ТПК - 500 ЛВЭ СМЯИ с внутренними мишенями, состоящими из танталовых пластин.

Во время работы камера находилась в магнитном поле В≈1,5 Тл и экспонировалась в пучке протонов на синхрофазотроне ЛВЭ ОИЯМ с импульсами 2,3; 4,2; 5,4 и ІО ГэВ/с. В диссертации дано краткое описание установок: пропановой пузырьковой камеры, магнитного поля и системы фотографирования и системы вывода пучка протонов.

Просмотр стереофотографий производился на просмотровых столах типа EHC-I и EHC-2. Отобранные при просмотре события измерялись на полуавтоматах типа HYOC и CAMET, работарщих на линии связи с ЭВМ БЭСМ-4. Точность измерения координат на пленке составляет \approx IO мкм. Математическая обработка событий проводилась на ЭВМ СDC - 6500 с помощью программы геометрической реконструкции GEOFIT . После проверки качества измерения треков события записывались на ленту суммарных результатов (DST). Средние ошибки измерения параметров вторичных частиц составляют не больше чем $< \Delta P/P > = (12,7 \pm 0,4) %$,

 $<\Delta t g \propto > = 0,0125 \pm 0,0002$ и $<\Delta \beta > = (7,4 \pm 0,2)$ мрад, где р – импульс, α – глубинный угол, β – азимутальный угол вылета частицы.

Среди событий в тантале, отобранных при просмотре, существует примесь событий, происходящих в слое пропана толщиной ~I мм, прилегающем к танталовым пластинкам. Эта примесь, составляющая (I2 ± 2)%, исключалась при использовании экспериментальных данных, полученных в p(C₃H₈) - взаимодействиях.

Вводятся поправки на потерю частиц, вылетающих под углом около 90° к направлению первичного пучка протонов и останавливающихся в танталовой пластинке, а также на потерю частиц, вылетающих под большим углом к плоскости фотографирования.

Экспериментальный материал по рС-и рТа-взаимодействиям, полученный по описанной методике, послужил основой получения физических ревультатов, вошедших в данную работу.

Таблица I

Средние множественности и дисперсии распределений $\pi^--ме$ зонов в неупругих рС- и рТа-взаимодействиях

P., TaB/c	A	< n_>	D_	<n_>/ D²</n_>	Ν _{coð}
2,3	C	0,I3 <u>+</u> 0,OI	0,35 <u>+</u> 0,0I	I,03 <u>+</u> 0,II	1378
	Ta	0,I2 <u>+</u> 0,OI	0,34 <u>+</u> 0,0I	I,08 <u>+</u> 0,I3	1018
4,2	C	0,33 <u>+</u> 0,0I	0,54 <u>+</u> 0,0I	I,I4 <u>+</u> 0,05	2589
	Ta	0,43 <u>+</u> 0,02	0,6I <u>+</u> 0,02	I,I4 <u>+</u> 0,07	1284
5,4	C	0,57 <u>+</u> 0,02	0,69 <u>+</u> 0,0I	I,I9 <u>+</u> 0,05	1957
	Ta	0,6I <u>+</u> 0,02	0,74 <u>+</u> 0,02	I,II <u>+</u> 0,07	1515
IO	C	I,09 <u>+</u> 0,03	0,97 <u>+</u> 0,02	I,I7 <u>+</u> 0,06	1296
	Ta	I,34 <u>+</u> 0,02	I,09 <u>+</u> 0,02	I,I3 <u>+</u> 0,04	2750

Вторая глава диссертации посвящена множественности Л⁻- мезонов. и протонов, образованных во вваимодействиях протонов с ядрами углерода и тантала в интервале импульсов падающих протонов 2 + 10 ГэВ/с. Экспериментальный материал, использованный в этой главе, получен на основе данных визуальной идентификации треков частиц на фотографиях, полученных на камере ТПК-500.

В. табя. І представлены средние множественности и дисперсии вторичных отрицательных пионов. С увеличением импульса падающего протона растёт средния множественность вторичных Л⁻ – мезонов, а также дисперсия распределения по множественности, однако отножение < $n_>/ D_-^2$ не зависит ни от энергии взаимодействия, ни от атомного веса ядра-мишени.

Исследовано поведение коэффициента разыножения в зависимости от первичного импульса и показано, что начиная с $P_o \approx 4$ ГэВ/с наблюдается заметное повышение ($\approx 10\%$) числа π^- - мезонов, рожденных в протон-ядерных взаимодействиях, над числом этих частиц, рожденных в протон-нуклонных взаимодействиях/1/.

Распределение по множественности вторичных отрицательных пионов при $\rho_o \ge 4$ ГзВ/с отличается от пуассоновского распределения ^{/2/}.

Рис.І. Распределение (І) для вторичных: Π^- мезонов (а); релятивистских протонов (б) и медленных протонов (в). На (а) и (б) линия – функция (2). На (в) штриховая линия – функция (2), сплошная линия – функция (2), с параметром a = 0. Точки: $O \square \triangle \nabla - p^{\mathbb{C}}$ – взаимодействия; $\bullet \blacksquare \triangle \nabla$ – p^{Ta} – взаимодействия.

Установлено подобие распределений как для вторичных П⁻ - мезонов, так и для вторичных протонов в форме кодифицированного ЮЮ скейлинга:

$$\langle n - \alpha \rangle \frac{\delta_n}{\delta_m} = \Psi(z')$$
, (1)

где $Z' = (n - \alpha) / \langle n - \alpha \rangle$, в α - нараметр, характерный для типа вторичных частиц, который не зависит от нервичной энергии /3/. Так, усредненные с весами значения этого нараметра для π^- - исзонов - $\alpha_{\pi^-} = -0.7$; релятивистских протонов ($p_p > 700$ MoB/c) -- $\alpha_{pex} = -1.0$ и медленных протонов ($p_p < 700$ MoB/c) - $\alpha_{me\partial} =$ = + 1.3. На рис. I даны зависимости (1) для этих часлиц.Линияки на

рисунке показаны аппроксимации функции (Д) в виде

 $\Psi(z') = (az + b) \exp(-cz'^2 - dz'),$ (2)

которая даёт удовлетворительный χ^2 на одну степень свободы ($\chi^2_1 < 2$). Пока трудно интерпретировать параметр α , однако его близкие значения для π^- мезонов, образованных в адрон-адронных, протон-протонных, протон-ядерных и ядро-ядерных взаимодействиях, указывают на единую природу их рождения.

Изучены корреляции между средней множественностью π^- -мезонов $\langle n_- \rangle$ и числом протонов в заднюю полусферу в лабораторной системе координат n_p^b в рТа — взаимодействиях /4/. Установлено, что при импульсах налетающего протона $P_o \ge 5$ ГэВ/с наблюдается положитель ная корреляция. По-видимому, эта корреляция отсутствует при небольших первичных импульсах, так как происходит не более одного неупругого столкновения в ядре.

<u>В третьей главе</u> представлены результаты исследования инклюзивных характеристик π^- мезонов, рожденных в pC – и pTa – взаимодействиях при импульсах первичных протонов 4,2 ГэВ/с и IO ГэВ/с в условиях 4 π – геометрии /5/. Проведен сравнительный анализ распределений этих мезонов по множественности, углам вылета и импульсам в зависимости от атомного веса ядра-мишени (^{I2}C, ^{I8I}Ta) и импульса протонаснаряда. Распределения π^- мезонов, образованных во взаимодействиях протона с углеродом при IO ГэВ/с, сравниваются с расчётами по дубненской каскадно-испарительной модели (ДКМ).

Показано, что вклад вторичных процессов в образование π^- мезонов увеличивается с нарастанием энергии взаимодействия и массы ядра-мишени. Так, при импульсе налетающего протона 4,2 ГэВ/с для вторичных π^- -мезонов, рожденных во вторичных взаимодействиях в ядре углерода, составляет не более IO% из всех вторичных отрицательных пионов в pC - столкновениях при той же энергии, а при IO ГэВ/с эта доля составляет около 40%. В pTa - взаимодействиях при IO ГзВ/с уже 60% π^- мезонов рождаются во вторичных взаимодействиях.

Распределение моделированных по ДКМ рС - событий по множественности вторичных π^- - мезонов при IO,9 ГэВ/с существенно отличается от экспериментального и соответствующие ему значения $< n_>$ и D_- значительно превышают экспериментальные значения. В эксперименте не наблюдаются события с множественностью вторичных π^- - мезонов больше 5, в то время как ДКМ предсказывает на имеющейся статистике I3 событий. При импульсе 4,2 ГэВ/с расхождение эксперимента с этой моделью гораздо меньше.

На рис.2 показаны импульсные спектры Л- мезонов, образованных

в pC – и pTa – взаимодействиях при импульсе падающего протона IO ГэВ/с. Они описываются экспоненциальной зависимостью

Рис.2. Импульсные спектры вторичных отрицательных пионов в лаб. системе для рСи рТа- взаимодействий. Рис.3. Распределения вторичных П⁻- мезонов по продольной быстроте У^{*} в с.ц.м. нуклон-нуклон для рСи рТа - взаимодействий.

При 4,2 ГэВ/с в рС- столкновениях этот спектр описывается только одной экспонентой. Параметры наклона для рС-и рТа- взаимодействий в пределах омибок совпадают: $<p_4>^{Fa} = (0.38 \pm 0.04)$ ГэВ/с, $<p_4>^{Fa} = (0.42\pm0.15)$ ГэВ/с, $<p_2>^{Fa} = (1.00\pm0.17)$ ГэВ/с, $<p_2>^{Fa} = (1.00\pm0.17)$

Распределения вторичных отрицательных пионов по квадрату поперечного импульса (p_1^2) хорово аппроксимируются двумя экспонентами: $a_1 \exp(-p_1^2/\langle p_1^2 \rangle) + a_2 \exp(-p_1^2/\langle p_1^2 \rangle)$. С увеличением первичного импульса (4,2 ГаВ/с + IO ГаВ/с) значения параметра $\langle p_1^2 \rangle_1$ не меняются, а - $\langle p_1^2 \rangle_2$ увеличиваются. Это приводит к нарастанию и среднего поперечного импульса. Каскадная модель хорово описывает распределения π^- мезонов из рС-взимодействий по $p_1^2 \, \text{до~I} (\Gamma_3B/c)^2$, однако при больших поперечных импульсах расчётные точки по модели отклоняются от экспериментальных.

Исследованы распределения отрицательных пионов, рожденных в pC - u $pTa - столкновениях при <math>p_o = IO \ \Gamma \Im B/c$, по кумулятивной переменной

 $x_{\kappa} = (E - p_{\mu})/m_{N}, \qquad (4)$

где Е и $\rho_{\rm H}$ - полная энергия и продольный импульс вторичной частипы, а $m_{\rm N}$ - масса нуклона. Установлено, что эти распределения совпадают друг с другом в пределах ошибок. Распределение π^{-} мезонов, генерированных по каскадной модели, совпадает с экспериментальным лишь до $\chi_{\rm K} \approx 0.4$, а при бо́льших значениях $\chi_{\rm K}$ наблюдается заметное расхождение ДКМ с экспериментом. По всему интервалу $\chi_{\rm K}$ экспериментальные неинвариантные распределения π^{-} мезонов аппроксимируются одной экспонентой: $\partial_{\rm K} \exp(-\chi_{\rm K}/\langle \chi_{\rm K}\rangle)$. Наблюдается независимость параметра $\langle \chi_{\rm K} \rangle$ от первичной энергии в области (4 + 10) ГэВ, а также от массы снаряда и мишени, которая ранее была отмечена в:

(d,He,C)C-и (d,He,C)Ta- столкновениях при P_o = 4,2 ГэВ/с на нуклон. Во всех указанных выше взаимодействиях значения параметра <×_v >≈ 0.14.

На рис.3 показаны распределения π^{-} мезонов по продольной быстроте Υ^* в с.ц.м. нуклон-нуклон. Распределение для рТа-взаимодействий более узкое, чем для p^{C} - столкновений; ($D^2(\Upsilon^*)^{p^{Ta}} = 0.71 \pm 0.01$; $D^2(\Upsilon^*)^{p^{C}} = 0.84 \pm 0.01$), и сдвинуто в сторону меньших значений Υ^*

($\langle \Upsilon^* \rangle^{p^{Ta}} = -0,62 \pm 0,02$; $\langle \Upsilon^* \rangle^{p^C} = -0,28 \pm 0,02$). Каскадная модель описывает распределение π^- мезонов из pC-взаимодействий по Υ^* при IO ГэВ/с только в центральной области, а в областях фрагментации налетающего протона и ядра-мишени наблюдается расхождение с экспериментом.

Угловые распределения отрицательных пионов из pC-и pTaвзаимодействий при IO ГаВ/с в с.ц.м. нуклон-нуклон асимметричны относительно нуля и тем сильнее, чем тяжелее ядро-мишень

<COS $\Theta^* > P^{T_B} = -0,43 \pm 0,02; <$ COS $\Theta^* > P^{C} = -0,19 \pm 0,02.$ Доля Π^- мевонов, вылетающих назад в этой системе, значительно больше в pTa - столкновениях, что указывает на существенную роль вторичных процессов перерассеяния в тяжелом ядре. Модель (ДКМ) плохо воспроизводит эти распределения в области малых углов Θ^* .

<u>Четвертая глава</u> посвящена исследованию инвариантных инклюзивных распределений Л⁻ мезонов по кинетической энергии (Т) в рС-и рТа – взаимодействиях при импульсе протона-снаряда IO ГэВ/с в условиях 4 π – геометрии ^{/6/}. Проводились сравнительные исследования с событиями кумулятивного типа. Событие считалось кумулятивным, если во взаимодействии образовалась хотя бы одна частица, названная "триггерной", выходящая за кинематический предел нуклон-нуклонных взаимодействий. Рассматривались кумулятивные события с "триггерными" протонами (μ_{rp}) с $\chi_k \gtrsim I,3$, или с "триггерными" варяженными пионами (π_{rp}) с $\chi_k \gtrsim I,3$, или с "триггерными" варяженными пионами (π_{rp}) с $\chi_k \gtrsim 0,4$ (формула(4)). Указанные выше распределения сравнивались с аналогичными из π^- С – взаимодействий при импульсе налетающего π^- мезона 40 ГэВ/с.

Зависимость инклюзивных дифференциальных сечений от кинетической энергии вторичного π^- — мезона представлена в виде структурной функции, которая имеет экспоненциальный характер:

$$f(T) = \frac{E}{6} \frac{d^2 \delta}{d^3 p} = \frac{1}{2\pi \delta p} \frac{d^2 \delta}{dT d\cos \theta} = f_0 \exp(-T/T_0) .$$
 (5)

Параметр f_o имеет смысл инклюзивного сечения образования вторичных частиц с нулевой кинетической энергией, а параметр T_o (так называемая "температура") – это среднее значение кинетической энергии исследуемых вторичных частиц. Сечение O в (5) – это сечение данного процесса (например, $p+C \longrightarrow \pi+x$, $p+Ta \longrightarrow \pi+p_{\tau p} \times u \tau.д.$), р и Θ_{A} – импульс и угол вылета вторичной частицы в лабораторной системе координат.

Т,ГэВ

Рис.4. Энергетические спектры π^- мезонов, вылетающих: а) под малым углом ($\Theta_{s} < 26^{\circ}$); б) под углом, близким к 90°; под больким углом назад ($\Theta_{s} > 127^{\circ}$).

На рис.4 показаны энергетические спектры П⁻ – мезонов, испускаемые в разных угловых интервалах в диапазоне энергий 16 МэВ<Т<2 ГэВ.

: :

Из рисунка видно, что спектры этих частиц во всех рассматриваемых процессах имеют экспоненциальный характер. Аппроксимация структурной функции зависимостью (5) проводилась в интервале О,I ГэВ $\leq T \leq I$ ГэВ. Выбор этого интервала определяется тем, что при T < 0,I ГэВ низка эффективность регистрации π^- мезонов, а при T > I ГэВ для

 $\Theta_{A} > 45^{\circ}$ мала статистика событий. Установлено, что "температура" (T_{o}) П⁻ – мезонов, летящих вперед ($\Theta_{A} < 26^{\circ}$), зависит от типа взаимодействия. Так, T_{o} в pC – столкновениях приблизительно на IOO MэВ выше T_{o} в pTa – взаимодействиях при IO ГэВ/с, а T_{o} в П⁻С – соударениях при 40 ГэВ/с приблизительно на 200 МзВ выше, чем в pC – взаимодействиях при IO ГзВ/с. Разница между "температурами" П⁻-мезонов, летящих вперед из П⁻С – и pC – взаимодействий, вероятно, связана с различием во фрагментации первичных частиц, а различие в "температурах" этих мезонов из pC – и pTa – взаимодействий определяется каскадным размножением частиц в тяжелом ядре тантала, что приводит к уменьшению их средней энергии. Отрицательные пионы, излучаемые под углами, близкими к 90°, во всех исследованных процессах обладают приблизительно одинаковой кинетической энергией ($T_{o} \approx IOO$ МзВ) а для

 π^- - мезонов, вылетающих назад под большими углами (Θ >127⁰), эта энергия в указанных процессах ($T_o \approx 60$ МэВ) сравнима с ранее опубликованными данными по адрон-ядерным взаимодействиям.

Рис.5. Угловая зависимость параметра Т_о для pC — взаимодействий при p₂ = 10 ГзВ/с. Спловная линия - аппроксимация формулой (7).

Установлено, что параметр То является функцией угла вылета Θ_{\star} в лаб.системе и хорошо аппроксимируется зависимостями

$T_{o} = T_{o\perp} / (1 - \beta \cos \theta_{A} - \gamma \cos^{2} \theta_{A})$ (6)

 $T_{o} = T_{oL} / [1 + ln(1 - \beta \cos \theta_{A})].$ (7) Параметр $T_{o_{\perp}}$ имеет смысл кинетической энергии частиц, вылетающих под углом $\theta_{A} = 90^{\circ}$. Таким образом, он не зависит от выбора координатной системы и является мерой "температуры" области излучения π^{-} мезонов. Эта "температура" не зависит от типа и импульса налетающего адрона ($T_{o\perp} \approx 100$ МэВ в π^{-} С- я рС- взаимодействиях), но зависит от массы ядра-мишени ($T_{o\perp} \approx 70$ МзВ в рТа- взаимодействиях). Значения параметра β ($\beta \approx 0.5 \pm 0.6$) совпадают со значениями, полученными при изучении знергетических спектров вторичных протонов в глубоко неупругих адрон-ядерных взаимодействиях.

Показано, что характеристики вторичных Л⁻⁻ мезонов, в пределах экспериментальных ошибок, в исследованных адрон-ядерных реакциях, в пироком интервале энергий взаимодействия - IO + 40 ГэВ, не зависят от типа процесса (кумулятивного или некумулятивного).

В пятой главе исследованы двухчастичные корреляции протонов, испускаемых с близкими импульсами в рТа- взаимодействиях при импульсе падающего протона IO ГзВ/с /7/. Определены размеры области излучения протонов в этих взаимодействиях. Для оценки размеров корреляционные функции, полученные на основе экспериментальных данных, сравнивались с теоретическими функциями, в которых радиус области испускания (Го) и время жизни источника (То) входят как параметры.

В формулах, выражающих теоретические корреляционные функции, учтены как эффекты, связанные с квантовой статистикой протонов, так и с кулоновским и сильным взаимодействиями в конечном состоянии. В предположении, что распределение источников излучения имеет гауссовский характер, а протоны испускаются ими независимо, корреляционная функция представляется в виде

$$\begin{split} R(q,p) &= A_{c}^{(+)}(k^{*})[1+B_{o}(q,p;r_{o},\tau_{o}) + B_{i}(q,p;r_{o},\tau_{o})], \quad (8) \\ r_{A}eq &= P_{i} - P_{2} \quad n \quad p = \frac{1}{2}(P_{i} + P_{2}) - p a в ница и полусумма 4-импульсов пары$$
 $протонов, <math>k^{*} = \frac{1}{2}\sqrt{-q^{2}}$ - импульс одного из протонов этой пары в их с.ц.и. Члены $A_{i}^{*o}(k^{*}) \cdot B_{o}(q,p;r_{o},\tau_{o}), \quad B_{i}(q,p;r_{o},\tau_{o})$ описывают кулоновское отталкивание протонов, эффекты квантовой статистики и сильного взаимодействия в конечном состоянии, соответственно.

Мерой величины эффекта служило среднее значение корреляционной функции в области эффекта: $< R > = \int_{k}^{k_{1}} R(k^{*}) \rho(k^{*}) dk^{*}$, где $\rho(k^{*})$ плотность распределения протонных пар, нормированная на единицу в этой области, $k_{1}^{*} = IO$ MэB/c, $k_{2}^{*} = 60$ MeB/c). Экспериментальные распределения по k^{*} строились по формуле

По этой методике были определены размеры области испускания для медленных ($p_p \leq 0.3$ ГэВ/с) я быстрых ($p_p > 0.3$ ГаВ/с) протонов, в связи с предположением о разных механизмах их образования. Установлено, что размер области испускания медленных протонов сравним с размером ядра тантала. Для быстрых протонов размер области испускания не превышает размера ядра тантала, притом с увеличением среднего минимального импульса пары протонов уменьшается размер этой области (см. табл.2 и рис.7).

Рис.6. Зависимость среднего значения двухпротонной корреляционной функции < R > в интервале $10 < k^{2} < 60$ Мав/с от параметра Г_о. Штриховая кривая – расчёт без учёта экспериментальных погреиностей, сплошная кривая – расчёт с учётом этих погреиностей.

Рис.7. Зависимость среднеквадратичного радиуса<г^{2/2} от Р_{МИН} для разных множественностей испускаемых протонов. Была исследована зависимость размера области излучения протонов от минимального среднего поперечного импульса пары протонов. Установлено, что с увеличением поперечного импульса размер этой области уменьшается.

На рис.7 показана зависимость среднеквадратичного радиуса $<\Gamma^{2}$, $<(<\Gamma^{2}, \gamma^{2} = \sqrt{3} \Gamma_{o}$) от минимального среднего импульса пары протонов для событий с малой ($N_{p} < 6$) и большой ($N_{p} > 6$) множественностью. Видна тенденция увеличения размера области испускания с увеличением множественности протонов, которая усиливается с уменьшением минимального импульса. Поскольку ошибки определения $<\Gamma^{2}$, велики, прямое за-ключение о различии или равенстве этих радиусов сделать нельзя. Поэтому был использован метод испытания статистических гипотез по одностороннему критерию Фишера для объективного выявления этой тенденции. Было показано, что с доверительной вероятностью р = 99,9%,

 $<\Gamma^{2}>'^{2} = 5,4 \$ фм (при $N_{p} \ge 6$) значимо (неслучайно) больше $<\Gamma^{2}>'^{2} = 3,3 \$ фм (при $N_{p}<6$) (на рис.7 точки при $p_{MNH} = 0,25 \$ ГэВ/с).

Таблица 2

Зависимости среднего значения корреляционной функции < R > и среднеквадратичного радиуса области испус-кания протонов $< \Gamma^2 >^{4/2}$ от среднего минимального импульса пары протонов $p_{\text{мин}}$

	Р _{ыйн} ,ГэВ/с	р _{ынн} ,ГэВ/с	< R>	<r²>^{1∕2} ,∰₩</r²>
	0,2	0,255	I,05 <u>+</u> 0,07	5,0 ^{+I,7} -0,9
	0,3	0,334	I,24 <u>+</u> 0,II	3,5 ^{+0,7} -0,5
1	0,4	0,422	I,55 <u>+</u> 0,20	2,6 ^{+0,7} -0,5
	0,5	0,514	2 ,0 <u>+</u>0, 5	I,7 +0, 9 -0,5
	and the second second second			and the second

В шестой главе представлены результаты исследования в новом релятивистски-инвариантном подходе свойств протонных кластеров, образованных в различных адрон-ядерных и ядро-ядерных взаимодействиях: $(\pi, p, d, c) \subset u(p, d) Ta$, в широком интервале импульсов '4 + 40 ГаВ/с на нуклон '8/. Анализ этих свойств проводился в

12

пространстве четырехмерных относительных скоростей:

$$b_{i\kappa} = -(u_i - u_\kappa)^2 = 2[(u_i u_\kappa) - 1]$$
, (9)

где U_i= P_i/m_i, U_K= P_K/m_K; P_i, P_K - 4-импульсы частиц, а m_i, m_K - их массы. Индексы і и К могут принимать значения I,II, 1,2,3..., которые соответствуют обозначениям в реакции I + II - 1 + 2 + ... Анализ в этом пространстве, в отличие от инклюзивного подхода, позволяет провести чёткую классификацию ядерных взаимодействий.

Величина b_{ik} характеризует силу взаимодействия частиц і и k и, следовательно, определяет уровень (нуклонный или кварковый), на котором нужно рассматривать структуру взаимодействурщих объектов і и k. На основе этих свойств b_{ik} был предложен критерий, по которому адрон-ядерные и ядро-ядерные взаимодействия можно классифицировать на три характерные области: П е р в а я о б л а с т ь $(b_{ik} \sim 10^{-2})$ соответствует взаимодействир ядер как систем, состоящих из слабосвязанных нуклонов. Это область, где справедлива классическая протон-нейтронная модель ядра. В т о р а я о б л а с т ь $(0, I < b_{ik} < I)$ является промежуточной (переходной). В этой области кроме нуклонных степеней свободы начинают проявляться и кварковые степени свободы, и в результате происходит перестройка адронных систем. Т р е т ь я о б л а с т ь ($b_{ik} > I$) – это область, где адроны утрачивают значения частиц ядерной материи и взаимодействия происходят на кварк-глюонном уровне.

Анализ свойств протонных кластеров проводился в интервале 7 < b_{II} < 570. Центр кластера определялся как единичный вектор V = $\sum U_i / \sqrt{(\sum U_i)^2}$, при сумировании по всем входящим в него протонам (не менее'2). Изучение свойств протонных кластеров проводилось посредством исследования распределений по расстояниям в пространстве четырехмерных скоростей: а) протонов до центра кластера $-b_{\rm K} = -(V - U_{\rm K})^2$; б) кластеров до снаряда - $b_{\rm rc} = -(U_{\rm I} - V)^2$, или мишени $-b_{\rm R} = -(U_{\rm I} V)^2$; в) между кластерами, происходящими из разных ядер - $b_{\rm cc} = -(V_{\rm cc} - V_{\rm p})$.

Для изучения первой области отбирались непровзаимодействовавшие (спектаторные) протоны. На рис.8 показаны распределения этих протонов по величине b_{κ} в кластере. Видно, что в пределах онноок все они ложатся на одной универсальной кривой независимо от типа и импульса налетающего адрона (ядра). Для (π^- , p, d, C)C - взаимодействий < b_{κ} > = 0,03I ± 0,002 и < b_{π} > = 0,024 ± 0,002, а для (p, d)Ta взаимодействий< b_{κ} > = 0,048 ± 0,001 и < $b_{\pi c}$ > = 0,03I ± 0,003. С увеличением массы ядра-мищени величина < b_{κ} > растёт. Это может быть связано как с увеличением множественности протонов в кластерах, образурцихся на более тяжелом ядре, так и с потерей медленных протонов в танталовой пластинке. Таким образом, в адрон-ядерных и ядро-ядерных взаимодействиях протоны, являющиеся фрагментами ядер, образуют в пространстве четырехмерных относительных скоростей систему (кластер) с очень малыми размерами ($< b_k > \sim 10^{-2}$), которая для одного и того же фрагментирующего ядра характеризуется универсальными свойствами, не зависящими от типа налетающего адрона (ядра) в широком интервале

b_{тт} = 7 + 570. Расстояния этих кластеров до ядра-родителя

b_i b_k (b_{ii} b_k), b_k ≪ b_{iii}.
Для изучения закономерностей образования протонов в промежуточной (переходной) области также отбирались вторичные протоны, поскольку они могут выступать и как частицы в классических ядерных взаимодействиях, и как продукты фрагментации кварковых систем при взаимодействиях на кварк-глюонном уровне. Свойства протонных кластеров в этой области были исследованы в СС - взаимодействиях при р₀ = 4,2 ГэВ/с на нуклон. Разделение протонов на два кластера: один - происходящий из мишени, а другой из снаряда - проводжлось цутем минимизации суммарного вектора В=min∑(b_k^{cs} + b_k^{cp}), где С и β обозначают два различных кластера. Для нахождения В в каждом событии рассматривались все возможные разбиения совокупности вторичных протонов на две группы. Отби-рались события, в которых расстояния между кластерами b_{x,8} ≥ 1,

 $b_{\alpha,\beta} = -(v_{\alpha} - v_{\beta})^2$. В противном случае считалось, что эти кластеры неразделимы в пространстве 4-скоростей. Доля отобранных таким образом событий составила 86% из всех анализируемых СС – взаимодействий с множественностью протонов $N_p \ge 4$. Для найденных кластеров опредалялись масштабные переменные x_{1c} и x_{1nc} /8/, характеризующие долю 4-импульса снаряда или мишени, уносимую кластером СС или β . Считалось, что, если $x_{1c} > x_{1c}$, протонный кластер образовался в области фрагментации илиени. Средние размеры кластеров оказались:

 $<b_k>_I = 0,324 \pm 0,004, <b_k>_I = 0,343 \pm 0,004.$ Небольшое различие между этими оценками связано с методическими причинами/8/. Среднее расстояние между кластерами $<b_{\alpha\beta}>=2,31 \pm 0,03$. Таким образом, в промежуточной области средние размеры протонных кластеров в пространстве 4-скоростей намного меньше расстояния между ними: $<b_k> << <b_{\alpha\beta}>$. Этот результат показывает, что и в переходной области релятивистских ядерных столкновений чётко проявляется кластеризация протонов.

Интересно отметить, что в промежуточной области в СС- взаимодействиях образуются два типа кластеров: один "холодный" с "температурой" протонов < T₁> = (72<u>+</u>7) МаВ, а другой "горячий" с "температурой" < T₂> = (135<u>+</u>13) МаВ. Более "горячий" кластер находится дальше от ядра-родителя в пространстве 4-скоростей, чем более "холодный" (Hanp.: $< b_{IIC}^{(1)} >= 0, I4\pm0, 02$, а $< b_{IIC}^{(2)} >= 0, 5I\pm0, 05$). В среднем в 64% из всех событий образуются "холодные" кластеры и в 36% - "горя чие".

Рис.8. Распределения протонов-спектаторов по величине b_{κ} в кластерах, образующихся во взаимодействиях адронов и ядер при различных энергиях с ядрами: а) углерода, б) тантала.

Была исследована зависимость характеристик "холодных" протонных кластеров в зависимости от типа и энергии столкновения в промежуточной области для (π -, p, d, C)(- и (p, d) Ta- взаимодействий в интервале импульсов 4 + 40 Гэв/с на нуклон. Отбирались протоны с импульсами p= 300 + 800 Мэв/с (0,I < $b_{IIK} < 0,63$). Отобранные таким образом кластеры принадлежат к "холодному" типу. Установлено, что средние размеры < b_k > в пределах IO% одинаковы для всех протонных кластеров, образовавшихся из одного и того ядра, независимо от типа и энергии налетающего адрона (ядра). Показано, что расстояния протонных кластеров от ядра-родителя порядка их размеров (< b_{IIc} > >> < b_{K} >), в то время как расстояния до снаряда намного больше (< b_{IIc} > >> < b_{IIc} >). Расстояния
средние (ядра) в интервале 2 + 10 Гав/с на нуклон, а для π -с - вва-имодействий при 40 Гъв/с наблюдается отклонение приблизительно на 20%.

Установлено универсальное поведение инвариантных функций F(b_{пс}) для протонных кластеров. Незначительное отклонение наблюдается для П-С - взаимодействий при 40 ГэВ/с, где кварк-глюонные степени свободы, по-видимому, играют более существенную роль. <u>В ваключении</u> сформулированы основные результаты и выводы диссертационной работы:

І. Проведено исследование множественного образования заряженных частиц в pC – и pTa – взаимодействиях при импульсах налетающих протонов в интервале 2 + IO ГэВ/с на статистике 30 тыс.событий, в которое автор внес определяющий вклад.

2. Показано, что при импульсах первичных протонов $p_0 \gtrsim 4$ ГэВ/с множественность вторичных π^- мезонов во взаимодействиях протонов с ядрами углерода и тантала заметно увеличивается по сравнению с множественностью этих мезонов в протон-нуклонных взаимодействиях при импульсах $p_0 \gtrsim 4$ ГэВ/с. Распределения по множественности вторичных отрицательных пионов отличаются от пуассоновского распределения в исследованном интервале первичных импульсов 2 + 10 ГэВ/с, как в однонуклонных, так и в многонуклонных pC - u pTa - взаимодейст-виях.

3. Установлено подобие в распределениях по множественности вторичных заряженных частиц (π^- мезонов и протонов) в форме модифицированного КНО-скейлинга: $<n-\alpha > O_n/O_{in} = \Psi(Z')$,где $Z' = (n-\alpha)/(n-\alpha >$, а α - параметр, не зависящий от энергии первичного протона, но зависящий от сорта вторичных частиц. Впервые наблюдена корреляция по множественности между вторичным π^- - мезонами и протонами - назад в

рТа- взаимодействиях при импульсах падающего протона р_о≳5 ГаВ/с.

4. Впервые получены и исследованы импульсные и угловые характеристики вторичных П- мезонов при импульсе налетающего протона. IO ГЭВ/с в инклюзивном подходе и в условиях 4Л - геометрии. Показано, что П- мезоны, рожденные в рТа - взаимодействиях, имерт более мягкий импульсный спектр и более асимметричное угловое распределение, чем Л -- мезоны, рожденные в рС- взаимодействиях, что указывает на существенную роль вторичных процессов перерассеяния в тяжелом ядре тантала. Проведено сравнение экспериментальных распределений с рассчитанными по дуоненской каскадно-испарительной модели (ДКМ). Показано, что эта модель качественно описывает экспериментальный материал для отрицательных пионов, рожденных в протон-ядерных взаимодействиях при импульсе первичного протона 10 ГаВ/с. Наблюдается хорошее согласие предсказаний модели о экспериментом в импульсном спектре этих мезонов в области до р ≈6 ГэВ/с, в распределении по квадрату поперечного импульса до p₁² ≈ I (ГэВ/с)², а также в центральной области в распределении по быстроте. В то же время наблюдаются заметные отклонения от экспериментальных распределений при больших значениях исследованных

переменных. Существенно отличается от экспериментальной и средняя множественность вторичных π^- – мезонов, предсказываемая моделью.

5. Структурная функция в зависимости от кинетической энергии π^- - мезонов, рожденных в pC- и pTa - взаимодействиях при импульсе падающего протона IO ГзВ/с, имеет экспоненциальный характер: $\exp(-T/T_o)$, причем значения параметра T_o не зависят от присутствия или отсутствия в этих процессах частиц кумулятивного типа. Угловая зависимость параметра T_o хорошо анпроксимируется квадратичной или логарифмической зависимостью от сосси, где $\theta_{\rm A}$ - угол вылета π^- мезона в лабораторной системе координат. "Температура" кластера, излучающего π^- - мезоны, зависит от массы ядра-мишени, но не зависит от типа и импульса налетающего адрона.

6. Впервые исследованы двухпротонные корреляции и определены размеры области испускания протонов в рТа - столкновениях при импульсе первичного протона IO ГзВ/с. Размер области испускания медленных протонов ($p_p < 300$ МэВ/с) в этих взаимодействиях сравним с размером ядра тантала, а для быстрых ($p_p > 300$ МэВ/с) размер этой области не превышает размера ядра тантала. С увеличением импульса пары протонов уменьшается размер этой области. Наблюдена тенденция увеличения размеров области излучения протонов с ростом их множественности.

7. Впервые исследованы универсальные свойства протонных кластеров в пространстве квадратов относительных четырехмерных скоростей b_{ik}, образованных в адрон-ядерных и ядро-ядерных столкновениях П⁻С, рС, dC, CC, рТа, dTа в широком интервале импульсов: 4 + 40 ГзВ/с на нуклон. Показано, что универсальность свойств этих кластеров справедлива как в области классической ядерной физики, где ядро проявляет себя как система, состоящей из слабосвязанных нуклонов, так и в промежуточной области, где уже проявляются кварк-глюонные степени свободы. В промежуточной области релятивистских ядерных стол-кновениях впервые выделены два типа протонных кластеров: один "холод-ный" с "температурой" в системе покоя кластера < T₄ > = (72±7) МзВ и с расстоянием до ядра-мишени < b^{CD}_{IIC} > = 0, I4 ± 0, OI и другой "горячий" с "температурой" < T₄ > = (135 ± 13) МзВ и с расстоянием

 $<b_{\rm IIC}^{\rm C22}$ = 0,51 ± 0,05. Средний размер протонных кластеров порядка среднего расстояния до ядра-родителя ($<b_k> \sim <b_{\rm IIC}>$).

Основные результаты диссертации опубликованы в работах:

І. Ангелов Н.,..., Армутлийски Д. и др. Анализ поведения сечений и множественности П⁻ – мезонов при взаимодействии релятивистских ядер р, d, не, C с ядрами углерода и тантала.

ЯФ, 1981, т.33, с 1046-1056; Препринт ОИЯИ, РІ-80-473, Дубна, 1980.

2. Armutliiski D. Characteristics of the Multiplicity Distributions of the Secondary M⁻-Mesons Formed in Single Nucleon and Many Nucleon Proton Interactions With Carbon and Tantalum Nuclei at 2-10 GeV/c Momenta. Bulg.J.Phys., 1983, v.10, p.373-378.

- Армутлийски Д., Ахабабян Н., Грекова Л. Подобие распределений по множественности вторичных частиц, образованных в pC- и pTa - соударениях при импульсе 2 + 10 ГэВ/с. Болг.физ.к., 1980, т.7, с.592-600; Препринт ОИЯИ, PI-80-314, Дубна, 1980.
- Ангелов Н., Аношин А.И., Армутлийски Д. и др. Наблюдение корреляций между множественностями ∏- мезонов и протонов в неупругих взаимодействиях р, d, Не и С с ядрами тантала в интервале импульсов 2 - IO ГэВ/с на нуклон. ЯФ, 1980, т.32, с.1582-1589; Препринт ОИЯИ, РІ-80-168, Дубна, 1980.
- 5. Армутлийски Д., Ахабабян Н.О., Гришин В.Г., Ивановская И.А., Кладницкая Е.Н. Инклюзивные характеристики П⁻ – мезонов, образованных в рС – и рТа- взаимодействиях при импульсе протона ІО ГэВ/с. Препринт ОИЯИ, РІ-87-423, Дубна, 1987.
- 6. Агакишиев Г.Н., Ангелов Н.С., Армутлийски Д. и др. Инклозивные распределения *П*[−] мезонов, образованных в *П*[−] С взаимодействиях при р₀=40 ГэВ/с и в рС и рТа-взаимодействиях при р₀ = 9,9 ГъВ/с. ЯФ, 1987, т.45, с.423-430; Препринт ОИЯИ, РІ-85-944, Дубна, 1985.
- Агакишиев Г.Н., Армутлийски Д. и др. Двухпротонные корреляции и размеры области испускания протонов в рТа-взаимодействиях при импульсе IO ГэВ/с. Препринт ОИЯИ, PI-87-443, Дубна, 1987.
- Армутлийски Д., Балдин А.М., Гришин В.Г., Диденко Л.А., Кузнецов А.А., Метревели З.В. Универсальность свойств четырехмерных барионных кластеров в адрон-ядерных и ядро-ядерных взаимодействиях в интервале энергий 4 + 40 ГэВ - В сб.: Краткие сообщения ОИЯИ, № 4 - 87. Дубна: ОИЯИ, 1987, с.5.

Рукопись поступила в издательский отдел 17 августа 1987 года.