

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

1-84-788

И.М.Граменицкий, С.В.Левонян, К.С.Медведь, Н.П.Новокшанов, В.И.Рудь, Л.А.Тихонова²

методические вопросы dp-эксперимента при импульсе 12 ГэВ/с

¹ Физический институт им. П.Н.Лебедева АН СССР, Москва

2 Научно-исследовательский институт ядерной Физики, МГУ

ВВЕДЕНИЕ

Создание сепарированного пучка антидейтронов на канале №9 ускорителя ИФВЭ /Серпухов/ открыло возможность проведения широкой программы исследований dp-и dd-взаимодействий при импульсе 12 ГэВ/с на установке "Людмила".

В качестве первого этапа этих исследований было получено 100 тыс. стереофотографий с dp-взаимодействиями.

Настоящая работа посвящена методическим вопросам dp-эксперимента, в основном, проблеме надежного выделения неупругих пpвзаимодействий в присутствии адронного фона в пучке антидейтронов. Наличие быстрого антипротона-спектатора с характерным импульсным распределением позволило выделить достаточно чистый набор пp-взаимодействий с примесью менее 6%. Правильность выделения событий с антипротоном-спектатором подтверждена сравнением импульсных и угловых распределений спектаторов с расчетом в рамках импульсного приближения при использовании известных волновых функций дейтрона.

1. ХАРАКТЕРИСТИКИ ПУЧКА АНТИДЕЙТРОНОВ

Для получения dp-взаимодействий двухметровая жидководородная пузырьковая камера "Людмила" облучалась сепарированным пучком антидейтронов с импульсом 12,2 ГэВ/с. Поскольку выход антидейтронов при энергиях серпуховского ускорителя составляет ~ 10⁻⁶ от выхода *m*⁻-мезонов ^{/1/}, была применена двухступенчатая схема ВЧ-сепарации ^{/2/}, позволившая на два порядка повысить коэффициент подавления фоновых частиц, который в стандартной схеме не превышает 10⁴.

В рамках настоящего эксперимента для сравнения с dp-данными было получено также 12 тыс. стереофотографий_с_dp-взаимодействиями при той же энергии. Параметры пучка d(d) определялись с помощью программы HYGEOMB ^{/3/} путем геометрической реконструкции пучковых треков длиной более 100 см. Характеристики пучка для различных экспозиций приведены в табл.1 вместе с соответствующей статистикой. Средние значения <P >, <\u03b3 e>, <\u03c4 e>, <\u03c4 e>, «
с поиловых закладывались затем в качестве титульных значений в программу кинематического анализа.

Основная методическая сложность данного эксперимента заключается в наличии достаточно высокой примеси адронов (π , \overline{p}) в

I BEAN JORZBER

Таблица 1

Характеристики пучка антидейтронов /дейтронов/ и статистика, полученные в различных экспозициях настоящего эксперимента

Экспо-	Hyyok	Число кадров	(<u>AD</u>),%	< P > (ГэВ/с)	d(d) II Ragp I	іримесь (%)	Число взаям.	Инеупр. (Кр/кр)
305	đ	50 000	± 1,0	12,28	0,7±0,I	32,7±3,3	11000	3000
306	đ	25 000	± 1,0	12,19	0,4±0,I	44 ± 6	5000	1100
307	đ	25 000	± 1,0	12,32	0,3±0,1	53 ± 11	4000	750
Σ	đ	100 000	± 1,0	12,26	0,5±0,I	39 ± 3	20000	4850
408	d	12 000	±0,25	12,2	3,2±0,2	< 3	8000	3000

Рис.1. а – Распределение по импульсу самой быстрой отрицательной частицы в лабораторной системе для dp –событий /сплошная линия/ и pp-событий /пунктир/. Стрелками указана область нормировки. Заштрихованное распределение – события $dp \rightarrow p_8$ + + (np)_{неупр}, выделенные описанным в тексте методом. 6 – Распреде-

ление по импульсу самой бораторной системе для

быстрой положительной частицы в лаd p-событий.

пучке антидейтронов. Оценка доли фоновых взаимодействий среди всех первичных звезд проводилась на основании сравнения с нашими dp-данными, практически не содержащими примеси /см. табл.1/, а также с данными рр при 12 ГэВ/с*.

На рис.1а приведено распределение по величине лабораторного импульса самой быстрой отрицательной частицы в событии. Характерный максимум в районе $P_{\rm B}/2$ дают антипротоны-спектаторы. В случае d.p -данных /рис.16/, в которых отсутствует примесь фоновых взаимодействий, видно, что существует область больших $P_{\rm na6}$, в которую события практически не попадают. Выбирая границы этой области /8,4-10,0 ГэВ/с/ так, чтобы вклад со стороны малых импульсов от протонов-спектаторов и со стороны больших импульсов от когерентных процессов был мал / \leq 1%/, можно считать, что все события, попавшие в эту область, являются фоновыми. Нормируя распределение частиц из $\overline{p}p$ -взаимодействий при 12 ГэВ/с на наши $\overline{d}p$ -данные в выбранной таким образом области, мы получили долю фоновых взаимодействий в предположении, что примесь от антипротонов и π -мезонов ведет себя в этом отношении примерно одинаково. Результаты приведены в табл.1.

Дополнительной проверкой правильности оценки фона может служить доля событий с антипротоном-спектатором среди всех неупругих dp -взаимодействий. С учетом определенного нами значения примеси в пучке получаем $N(\bar{p}_s) / N_{in} (dp) = 0,41+0,04$, что согласуется с величиной 0,40+0,03, следующей из ~20% доли перерассеяний в pd-взаимодействиях

2. ОБРАБОТКА СОБЫТИЙ

Схема обработки dp-взаимодействий приведена на рис.2. На первом этапе проводились два независимых просмотра, разногласия между которыми устранялись при сверке. Эффективность двукратного просмотра составила в среднем /99,1+0,2/%.

Найденные при просмотре события измерялись на автомате НРД и полуавтоматических приборах ПУОС, после чего обсчитывались по адаптированной версии созданных в ЦЕРНе программ ГИДРА ГЕОМЕТРИЯ и ГИДРА КИНЕМАТИКА - HGEOKIN⁷³⁷. В программу были заложены три

Рис.2. Схема обработки данных dp-эксперимента при 12 ГэВ/с. R1÷ R3 - забракованные события, поступающие на перемер.

^{*} Эти данные были любезно предоставлены в наше распоряжение сотрудничеством Амстердам-Ливерпуль-Стокгольм-Хельсинки.

ту недостающей массы в dp событиях: а - для 4С-событий. б – для 1С-событий $dp \rightarrow \pi^{\circ} + X$, в - для 1С-событий dp → n + X /сплошная линия/ и dp → n + X

Рис.4. а - Распределение по квадрату переданного протону мишени четырехимпульса в событиях упругого рассеяния. б -Распределение по азимутальному углу вылета протонов отдачи в событиях упругого рассеяния. Сплошная линия - после коррекции, пунктир - до коррекции. в - Зависимость среднего веса WA от квадрата переданного протону мишени четырехимпульса t .

массовые гипотезы для пучковой частицы: d, р и т. Для вторичных заряженных частиц проверялись массы π^{\pm} , p^{\pm} и d, т.е. не учитывалось возможное образование заряженных К-мезонов.

При фитировании событий в кинематической части программы использовались следующие ограничения для вероятностей: P(4C) > 0,1%, P(1C) > 0,5%. После идентификации медленных частиц /Р_{лаб} < 1,4 ГэВ/с/ по ионизации отобранные гипотезы записывались на ленту суммарных результатов /ЛСР/. При этом все неоднозначности типа (4С, 1С)/0С решались в пользу /4С, 1С/-гипотез. На рис.3 приведены распределения по квадрату недостающей массы MM^2 для 4C-событий /а/ и 1C-событий dp + n(n) + X/в/и dp + π° + + Х/б/Средние значения для этих групп событий равны соответственно $(MM^2)_{4c} = -0,0060+0,0011 / ГэВ/с 2/2 и (MM^2)_{-}^{1/2} = /0,937+$ $+0,005 / \Gamma_{3B/c}^{2}, (MM^{2})^{1/2} = /0,966+0,014 / \Gamma_{3B/c}^{2}, (MM^{2})^{1/2} = /0,144+0,017 / \Gamma_{3B/c}^{2n}.$

События, забракованные на какой-либо стадии обработки, перемерялись до двух раз, после чего оставшиеся невосстановленными взаимодействия исключались из дальнейшего анализа и вводился весовой коэффициент, учитывающий эти потери.

Основным видом потерь являлись потери упругих событий с малыми переданными импульсами. Это хорошо видно на рис.4а, где приводится распределение по квадрату переданного протону мишени четырехимпульса. При малых [t] эти потери чувствительны к азимутальному углу вылета в протонов отдачи /рис.46/. Требуя изотропности распределений по θ для всех t. мы получили вес wa(t), учитывающий потери упругих событий с короткими крутыми треками отдачи /рис.4в/.

В распределении do/dt для упругих событий четко видны два сильно различающихся наклона, что объясняется присутствием фона в пучке антидейтронов*. Аппроксимируя дифференциальное сечение упругого рассеяния выражением

$$\frac{d\sigma}{dt} = \sigma_1 b_1 (1-a) e^{b_1 t} + \sigma_2 b_2 a e^{b_2 t},$$

мы получили для b_1 и b_2 значения $b_1 = /36 + 7 / / ГэВ/с/^2$ и $b_2 = = /6,5+1,3 / / ГэВ/с/^2$, которые в пределах ошибок согласуются с известными параметрами наклона для упругих pd-/при 5,5 ГэВ/с/^{/5/} и тр - /при 12 ГэВ/с/^{/6/} взаимодействий соответственно. Это позволяет заключить, что примесь в пучке состоит, в основном, из π^- мезонов. Используя значения $\sigma_p(\pi^-p) = = /4, 3\pm 0, 1/$ мб /7/ и $\sigma_p(\bar{d}p) = \sigma_p(\bar{p}d) = /20, 4\pm 4, 5/$ мб /5/ можно оценить величину этой примеси: $a = /34\pm 8/$ %, что не противоречит оценкам, приведенным в табл.1. Поскольку статистика в области малых |t| недостаточна, при определении а мы фиксировали значе-ние b₁ = 30,5 /ГэВ/с/^{-2 /5/}.

3. ВЫДЕЛЕНИЕ НЕУПРУГИХ пр-ВЗАИМОДЕЙСТВИЙ

Главной целью данного эксперимента является изучение npвзаимодействий. Несмотря на значительную примесь в пучке, события этого класса можно достаточно чисто выделить по наличию антипротона-спектатора среди вторичных частии. Однако в инклюзивном подходе кроме наличия примеси от пучкового фона возможна некоторая примесь в ОС-каналах от событий с антинейтроном-спектатоpom: $dp \rightarrow \overline{n}_{a} + X$.

^{*}Как и ожидалось, кинематический анализ не позволяет разделить гипотезы с различными пучковыми частицами для упругих событий. т.к. первичный импульс достаточно велик.

Рис.5. а - Распределение самой медленной в системе покоя антидейтрона отрицательной частицы. Сплошная линия - d р -данные, пунктир - pp-данные при 12 ГэВ/с. б - Отношение числа событий с p -спектатором к пол-

ному числу событий в зависимос-

ти от импульса "спектатора". Кривая - аппроксимация выражением /2/.

Таблица 2

/1/

Результаты аппроксимации данных выражением /2/ и примесь от пучкового фона в пр -взаимодействиях после введения веса w____

Экоп		P _o (ГэВ/с)	ß	\$/ND	Ipmec p<0,I	b or ny	P-0,25	фона. р<0,3
305	I.0 +0.0	0,34±0,02	3,6±0,3	10/13	0,29	I,8	3,I	4,6
306	,9991±,0006	0,28±0,03	3,8±0,4	9/8	0,79	5,0	8,3	12,4
307	,9989±,0009	0,23±0,03	4,0±0,5	8/6	1,04	5,4	9,1	13,5
Σ	1,0 +0.0	0,31±0,02	3,75±0,22	11/15	0,44	2,78	4,6	6,9

Стандартным критерием правильности выделения событий $\overline{d}p \rightarrow \overline{p}_s + X$

является согласие импульсных и угловых распределений спектатора с рассчитанными в рамках импульсного приближения, в котором предполагается, что нуклон-спектатор никак не влияет на процесс взаимодействия.

Для выделения антипротонов-спектаторов в 0С-каналах отбирались события, у которых самая близкая к $P_{\rm g}/2$ частица в лабораторной системе /что соответствует самой медленной в системе покоя d / была отрицательно заряженной. Затем эти частицы с массой p переводились в систему покоя антидейтрона. Та же процедура проводилась и для pp-данных при 12 ГэВ/с. Сопоставление соответствующих спектров на рис.5а показывает, что примесь от пучкового фона сосредоточена в области больших P_{ana6} На рис.5б приведены значения отношений $N(\overline{d}p \rightarrow "\overline{p}_{a}"+X)/N_{tot}$, аппроксимированные в области $P_{ana6} \equiv P_{s} = /0, -0, 3/ГэВ/с эмпирическим выра$ жением

$$w_{np}(p_s) = w_0 \cdot e^{-(p_s/p_0)^{\beta}}$$
. /2/

Результаты аппроксимации приведены в табл.2. В дальнейшем каждому событию реакции /1/ приписывался вес /2/. В табл.2 приведены также значения величины примеси в реакцию /1/ в зависимости от границы обрезания на импульс, "спектатора". Для анализа мы отбирали только события с $P_s \le 0,2$ ГэВ/с; при этом примесь от пучкового фона не превышает 3%.

Упругие пр-взаимодействия надежно выделялись в программе кинематики как события из канала dp - ppn.

Доля фитированных событий среди отобранных таким образом неупругих пр-взаимодействий составила: 7% (4C) и 34% (1C).

В качестве сечения неупругих пр-взаимодействий мы использовали полное неупругое сечение СР-симметричной реакции pn: $\sigma_{in}(\bar{n}p) = \sigma_{in}(\bar{p}n) = \sigma_{T}(\bar{p}n) - \sigma_{e\ell}(\bar{p}n) = /58,7+1,0/-/15,0+2,1/=$ =/43,7+2,3/ мб. Значения $\sigma_{T}(\bar{p}n)$ и $\sigma_{e\ell}(\bar{p}n)$ брались из экстраполяции $\bar{p}n$ -данных .

Оценка примеси событий с антинейтроном-спектатором, т.е. ppвзаимодействий при 6 ГэВ/с, приведена в следующем разделе.

4. ИМПУЛЬСНЫЕ И УГЛОВЫЕ РАСПРЕДЕЛЕНИЯ р-СПЕКТАТОРОВ

Для проверки качества выделения пр-взаимодействий мы приводим импульсные и угловые распределения антипротонов-спектаторов, отобранных по описанной выше процедуре. Импульсные распределения сравниваются с рассчитанными при использовании волновой функции Гартенхауза-Моравчика ^{/9/}, а также релятивистской волновой функции Хюльтена ^{/10/}:

$$\psi_{\rm HM}(\vec{p}) = \sqrt{\frac{2}{\pi}} C_{\rm HM} \cdot \sum_{i=1}^{8} \frac{(-1)^{i+1}}{(a_i^2 + p^2)},$$
 /3a/

$$\psi_{\rm RH}({\rm x},{\rm p}_{\rm T}^2) = C_{\rm R} \left[\frac{{\rm p}_{\rm T}^2 + {\rm m}^2}{{\rm x}(1-{\rm x})} - a_{\rm R}\right]^{-1} \cdot \left[\frac{{\rm p}_{\rm T}^2 + {\rm m}^2}{{\rm x}(1-{\rm x})} - \beta_{\rm R}\right]^{-1}.$$
 (36/

Здесь x = (E + P₁)^{8p}/(E + P₁)^d – переменная светового фронта, $a_{R} = \frac{M_{\overline{d}}}{m} (2m^{2} - a_{NR}^{2}); \beta_{R} = \frac{M_{\overline{d}}}{m} (2m^{2} - \beta_{NR}^{2});$ значения $a_{NR} = 0,046$ ГэВ/с и $\beta_{NR} = 0,26$ ГэВ/с взяты из^{/11/}. Значения же параметров a_{i} , C_{HM} в /За/ приведены в^{/9/}.

Из рис.ба,б видно, что релятивистская функция несколько лучше описывает данные в области до 0,2 ГэВ/с. На рис.бв приведено распределение по величине $x_{sp}^{LAB} = (E + P_{\parallel})^{sp} / [(E + P_{\parallel})^{\vec{d}} + m]$, которая связана с переменной светового фронта соотношением $x = x_{sp}^{LAB} (1 + \frac{m}{(E + P_{\parallel})^{\vec{d}}})$.

7

.Рис.6. а - Распределение по импульсу р -спектров в системе покоя d. 6 - Распределение по поперечному импульсу р-спектаторов. Сплошные линии - расчет с использованием волновой функции /За/, пунктир - /Зб/. в - Распределение по величине x LAB Кривая - расчет с использованием волновой функции /Зб/. г -ж -Угловые распределения р-спектаторов для различных областей Р_{sp}. Линии - расчет по формуле /4/ с использованием /За/.

Максимум в x sp -распределении хорошо совпадает с расчетным значением для импульса антидейтрона 12,2 ГэВ/с:

$$x_{sp}^{max} = [2(1 + \frac{m}{(E + P_{s})^{d}})]^{-1} = 0,481.$$

Угловые распределения спектаторов в системе покоя антидейтрона для различных интервалов импульсов Р_{вр} приведены на рис.6г-ж. В рамках импульсного приближения эти распределения должны быть изотропны. Учет влияния фактора потока и зависимости сечений от энергии может приводить к некоторому отличию от изотропии /11/:

$$\frac{\mathrm{dN}}{\mathrm{d}\cos\theta_{\mathrm{sp}}} = \int_{p_{1}}^{p_{2}} |\psi(\vec{p})|^{2} \cdot F(p_{a}, p, \cos\theta_{\mathrm{sp}}) \cdot q_{np}(s_{\mathrm{NN}}) \mathrm{d}\vec{p} , \qquad /4/$$

Видно, что расчетное поведение /4/ в целом хорошо согласуется с данными. Некоторое превышение над кривой в области малых $\cos \theta_{\rm sp}$ для интервала 0,05 < P_{sp} < 0,10 ГэВ/с объясняется примесью событий, в которых спектатором является невыделенный кинематикой антинейтрон. Этот факт проявляется и в импульсных распределениях. Из рис.6ж можно оценить величину этой примеси: /2,7<u>+</u> +0,4/%.

Таким образом, принятая процедура выделения пр-взаимодействий позволяет получить неупругие пр-события с примесью pp-взаимодействий менее 3%.

ЗАКЛЮЧЕНИЕ

В настоящей работе рассмотрены методические вопросы, связанные со спецификой dp -эксперимента при импульсе 12 ГэВ/с.

Определен качественный и количественный состав пучка.

Разработанная процедура выделения неупругих $\bar{n}p$ -взаимодействий, несмотря на значительную примесь π -мезонов в пучке, позволяет выделить достаточно чистый образец событий с общей примесью менее 6%: примесь от пучкового фона составляет /2,8+0,02/%, а примесь от 0С-событий с антинейтроном-спектатором - /2,7+ +0,4/%.

В работе проведено сравнение импульсных и угловых распределений антипротонов-спектаторов с расчетом при использовании известных волновых функций антидейтрона.

В заключение авторы выражают благодарность коллаборации Амстердам-Ливерпуль-Стокгольм-Хельсинки за предоставленную воз-можность работать с pp-данными при 12 ГэВ/с, физикам сотрудничества "Людмила" за полезные обсуждения, сотрудникам ЛВТА В.Г.Иванову и А.Дирнеру за консультации, В.И.Молоствовой за содействие в работе с программами обработки данных, а также группе измерителей ЛВТА.

ЛИТЕРАТУРА

- 1. Антипов Ю.М. и др. ЯФ, 1971, 13, с. 135.
- 2. Васильев В.В. и др. Препринт ИФВЭ, 80-66, ОП, Серпухов, 1980.
- 3. Дирнер А. ОИЯИ, Р10-81-631, Дубна, 1981.

8

- 4. Braun H, et al, Proc. of the IV Europ. Antiproton Symp., 1979, p. 331,
- 5. Braun H. et al, Nucl. Phys., 1973, B54, p. 61,
- 6. Burg et al. Phys.Lett,, 1982, 109B, p. 124,
- 7. Complication of $\pi^{\pm}p$ cross-sections, CENR-HERA, 83-01, 1983.
- 8. Compilation of $p^{\pm}p$ cross-sections, CERN-HERA, 84-03, 1984.
- 9. Moravcsik M. Nucl. Phys., 1958, 7, p. 113.
- 10. Аладашвили Б.С. и др. ЯФ, 1981, 33, с. 1275.
- 11. Fridman A. Fort, der Phys., 1975, 23, p. 243.

СООБЩЕНИЯ, КРАТКИЕ СООБЩЕНИЯ, ПРЕПРИНТЫ И СБОРНИКИ ТРУДОВ КОНФЕРЕНЦИЙ, ИЗДАВАЕМЫЕ ОБЪЕДИНЕННЫМ ИНСТИТУТОМ ЯДЕРНЫХ ИССЛЕ-ДОВАНИЙ, ЯВЛЯЮТСЯ ОФИЦИАЛЬНЫМИ ПУБЛИКАЦИЯМИ.

Ссылки на СООБЩЕНИЯ и ПРЕПРИНТЫ ОИЯИ должны содержать следующие элементы:

- фамилии и инициалы авторов,
- сокращенное название Института /ОИЯИ/ и индекс публикации.
- место издания /Дубна/,
- год издания,
- номер страницы /при необходимости/.

Пример:

1. Переушин В.Н. и др. ОИЯИ, Р2-84-649, Дубна, 1984.

Ссылки на конкретную СТАТЬЮ, помещенную в сборнике, должные содержать:

- фамилии и инициалы авторов,
- заглавие сборника, перед которым приводятся сокращенные слова: "В кн."
- сокращенное название Института /ОИЯИ/ и индекс издания,
- место издания /Дубна/,
- год издания,
- номер страницы.

Пример:

Колпаков И.Ф. В кн. X1 Международний симпозиум по ядерной электронике, ОИЯИ, Д13-84-53, Дубна, 1984, с.26.

Савин И.А., Смирнов Г.И. В сб. "Краткие сообщения ОИЯИ", № 2-84, Дубна, 1984, с.3.

Рукопись поступила в издательский отдел 12 декабря 1984 года.

Принимается подписка на препринты и сообщения Объединенного института ядерных исследований.

Установлена следующая стоимость подписки на 12 месяцев на издания ОИЯИ, включая пересылку, по отдельным тематическим категориям:

индекс	ТЕМАТИКА	Цена подписки на год	
1. 1	Экспериментальная физика высоких энергий	10 р. 80 кол.	
2.	Теоретическая физика высоких энергий	17 р. 80 коп.	
3.	Экспериментальная нейтронная физика	4 р. 80 коп.	
4.	Теоретическая физика низких энергий	8 р. 80 кол.	
5.	Математика	4 р. 80 кол.	
6.	Ядерная спектроскопия и радиохимия	4 р. 80 кол.	
7.	Физика тяжелых ионов	2 р. 85 коп.	
8.	Криогеника	2 р. 85 коп.	
9.	Ускорители	7 р. 80 кол.	
10.	Автонатизация обработки экспериментальных данных	х 7 р. 80 коп.	
11.	Вычислительная математика и техника	6 р. 80 кол.	1
12.	Химия	1 р. 70 коп.	
13.	Техника физического эксперимента	8 р. 80 кол.	•
14.	Исследования твердых тёл и жидкостей Ядерными методами	1 р. 70 коп.	
15.	Экспериментальная физика ядерных реакций при низких энергиях	1 р. 50 коп.	
16.	Дозинетрия и физика защиты	1 р. 90 коп.	
17.	Теория конденсированного состояния	6 р. 80 кол.	
18.	Использование результатов и методов Фундаментальных физических исследований в смежных областях науки и техники	2 р. 35 коп.	
19.	Биофизика	1 р. 20 кол.	

Подписка может быть оформлена с любого месяца текущего года.

По всем вопросам оформления подписки следует обращаться в издательский отдел ОИЯИ по адресу: 101000 Москва, Главпочтампт, п/я 79.

Граменицкий И.М. и др. 1-84-788 Методические вопросы dp -эксперимента при импульсе 12 ГэВ/с

Описана методика обработки dp -событий, полученных на установке "Людмила" с целью изучения пp -взаимодействия пpи импульсе 6 ГэВ/с. Определен качественный и количественный состав пучка. Приводятся распределения по квадрату недостающей массы и по вероятности для различных каналов реакции dpвзаимодействия. В качестве критерия чистоты выделения пpвзаимодействия. В качестве критерия чистоты выделения пpвзаимодействий используются импульсные и угловые распределения антипротонов-спектаторов в событиях d + p → p_{sp} + (пp)_{неупр}. которые сравниваются с расчетом в рамках импульсного приближения с использованием известных волновых функций дейтрона. Показано, что выделенные события неупругого пp -взаимодействия содержат менее 6% примеси от других взаимодействий.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

Gramenitskij I.M. et al. Methodical Study of dp-Experiment at 12 GeV/c

Methods of studying np-interactions at 6 GeV/c in dpexperiment on "Ludmila" HBC is considered. Qualitative and quantitative composition of the beam are determined. Momentum and angular distributions of \bar{p} -spectators in the $\bar{d} + p \rightarrow$ $\rightarrow \bar{p}_s + (\bar{n}p)_{inelast}$ are presented. These are compared with the distributions obtained from the spectator model calculations. It is shown that the selected events of inelastic $\bar{n}p$ -interaction contain less than 6% admixture due to other interactions.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984