

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

1-84-778

В.П.Кондратьев*, Л.В.Краснов*, Ю.Лукстиньш, В.Ф.Литвин*, И.В.Степанов*, И.Г.Яцышин*

ИЗУЧЕНИЕ ЭНЕРГЕТИЧЕСКИХ СПЕКТРОВ ЧАСТИЦ С Z = 1, 2, ВОЗНИКАЮЩИХПРИ ВЗАИМОДЕЙСТВИИ ДЕЙТРОНОВ С ЯДРАМИ 58 Ni и 64 Ni

Научно-исследовательский институт
физики Ленинградского государственного
университета

ВВЕДЕНИЕ

Наряду с исследованиями зависимости механизма реакций расщепления и фрагментации от свойств ядра-мишени и фрагмента. большой интерес вызывает изучение зависимости спектров фрагментов от массового числа А налетающей частицы, так как существуют противоречивые утверждения относительно А-зависимости изотопных отношений выходов легких фрагментов и их энергетических спектров. Например, в работе берклиевской группы /1/, изучавшей расщепление ядер U релятивистскими ядрами с энергией 2,1 ГэВ/нуклон, показано, что спектры фрагментов с Z = 2,3 имеют одинаковую форму при бомбардировке U протонами и дейтронами, но оказываются более жесткими в случае бомбардировки **а -частицами.** Аналогичные результаты получены при фрагментации ядер Sn^{/2/}. Однако в ^{/3/} делается вывод о независимости спектров фрагментов от типа налетающей частицы при бомбардировке ядер АдВг протонами, дейтронами и а-частицами с энергией 3,6 ГэВ/нуклон. Интересным оказывается обнаруженный в 121 экспериментальный факт постоянства изотопных отношений выходов фрагментов из изотопов ¹¹²Sn и ¹²⁴Sn, облученных релятивистскими протонами /6,7 ГэВ/, дейтронами /3,1 ГэВ/ и а-частицами /15,3 ГэВ/, хотя в области промежуточных энергий налетающей частицы такого постоянства не наблюдается /4/. Таким образом, вопрос о причинах возможной стабильности изотопных отношений и формы спектров фрагментов остается неразрешенным и требует дальнейших исследований.

В настоящей работе изучались энергетические спектры и выходы легких ядер ^{1,2,3}Н и ^{3,4}Не, образующихся при бомбардировке изотопов ⁵⁸Ni и ⁶⁴Ni дейтронами с энергией 6,7 ГэВ.

1. МЕТОДИКА ЭКСПЕРИМЕНТА

Работа выполнена на дейтронном пучке синхрофазотрона Лаборатории высоких энергий ОИЯИ и является продолжением цикла экспериментов по расщеплению ядер ⁵⁸Ni и ⁶⁴Ni релятивистскими протонами⁷⁵⁷. Вторичные продукты ядерных взаимодействий регистрировались многоканальным $\Delta E = E$ -спектрометром, содержащим 4 теллескопа полупроводниковых детекторов ⁷⁶⁷. Таким образом, в каждой экспозиции набор спектров осуществлялся одновременно под 4 углами. Толщины ΔE -детекторов составляли 50, 100, 138 и 176 мкм, а соответствующие толщины E-детекторов – 800, 1150, 1230 и 1850 мкм, что позволяло перекрыть энергетический диат пазон от 3 до 20 МэВ для фрагментов с Z = 1 и от 12 до 50 МэВ для фрагментов с Z = 2.

В качестве мишеней использовались металлические фольги с разделенными изотопами толщиной 8,1 мг/см² для изотопа ⁵⁸Ni и 9,7 мг/см² для изотопа ⁶⁴Ni.

Мониторирование пучка дейтронов производилось отдельным телескопом, состоящим из двух полупроводниковых детекторов толщиной 60 мкм каждый. В качестве мониторной мишени выбрана фольга из олова толщиной 40 мкм. Калибровка монитора осуществлялась по реакции ¹²C(d,p2n)¹¹C, сечение которой известно лишь для энергии дейтронов, равной 2,33 Гэв.^{77,87}. В связи с этим сечение данной реакции для дейтронов с энергией 6,7 ГэВ было определено нами экспериментальным путем и составило 46+6 мб. Найденное значение было использовано для абсолютной калибровки монитора. Максимальная ошибка, с которой вычислены абсолютные сечения выхода изучаемых фрагментов, не превышает 20%.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Дифференциальные энергетические спектры ^{1,2,3}Н и ^{3,4}Не были измерены под углами 30, 60, 90, 120 и 150°. На рис.1 приведены спектры фрагментов, полученные под углом 90° для двух изотопов Ni.Видно, что спектры имеют близкую к максвелловской форму с наличием характерного кулоновского максимума для частиц с Z = 1. Следует отметить, что спектры фрагментов, образующихся при взаимодействии дейтронов с ядрами ⁶⁴Ni,оказываются более жесткими, чем спектры, соответствующие изотопу ⁵⁸Ni.

На рис.2 показаны угловые распределения выходов фрагментов для изотопа ⁵⁸Ni.Сечение выхода фрагмента под данным углом определялось нами интегрированием двойных дифференциальных сечений по соответствующему энергетическому диапазону. Как видно, для ^{1,2,8}H и ³He угловое распределение оказывается почти изотропным с легкой анизотропией в области малых углов. Исключением

Рис.1. Энергетические спектры фрагментов под углом 90° в реакциях расщепления изотопов никеля дейтронами с энергией 6.7 ГэВ.

Рис.2. Угловая зависимость выходов фрагментов из ядер ⁵⁸Ni.

является угловое распределение выходов «-частиц, для которых степень анизотропии, определенная как отношение числа фрагментов, вылетающих в переднюю полусферу, к числу их вылетов назад, составляет 1,75.

В табл.1 приведены отношения выходов фрагментов из ядер ⁵⁸Ni к выходам из ⁶⁴Ni, полученные для пяти значений углов. Как видно, изотопные отношения не зависят от угла вылета фрагментов. Для выходов протонов и тритонов наблюдается отчетливый изотопический эффект, для дейтронов и ядер гелия изотопные отношения близки к единице.

В табл.2 усредненные по углу изотопные отношения сравниваются с аналогичными отношениями, определенными для реакций, инициированных протонами с энергией 0,66 ГэВ^{/9/} и 7,5 ГэВ^{/10,11/}. Как

Таблица 1

Экспериментальные изотопные отношения выходов фрагментов в реакциях расщепления ядер ⁵⁸Ni и ⁶⁴Ni дейтронами с энергией 6,7 ГэВ

	54 (58Ni)/54 (64Ni)					
8	*H	° H	*H	³ He	"He	
30 ⁰	I,49±0,07	0,90 <u>+</u> 0,05	0,59 <u>+</u> 0,03	I,I2±0,06	0, 91 <u>+</u> 0,05	
60 ⁰	I,49±0,07	0,90±0,05	0,56±0,03	I,12±0,06	0,90±0,05	
90°	I,49±0,07	0,91 <u>+</u> 0,05	0,58 <u>+</u> 0,03	I,15±0,06	0,93±0,05	
120 ⁰	I,49±0,07	0,90 <u>+</u> 0,05	0,55 <u>+</u> 0,03	I,I3 <u>+</u> 0,06	0,9I±0,05	
150 ⁰	I,48±0,07	0,92+0,05	0,57±0,03	I,10±0,06	0,90±0,05	

Таблица 2

Изотопные эффекты для выходов фрагментов из ядер ⁵⁸Ni и ⁶⁴Ni в реакциях с релятивистскими протонами и дейтронами

	$\sigma_{f}(s^{e}Ni)/\sigma_{f}(s^{4}Ni)$				
фрагмент	Ed =6,7 [38	Ep =0,66 ГэВ	Ep =7,5 Fab		
IH	I,49±0,07	2,00 <u>+</u> 0,10	I,60±0,10		
2 _H	0,90 <u>+</u> 0,05	0,95 <u>+</u> 0,04	I,10±0,03		
3 _H	0,57±0,03	0,54+0,03	0,82±0,02		
3 _{He}	I,12±0,06	1,27±0,06	I,30±0,05		
⁴ He	0,91±0,05	1,03±0,03	I,I3±0,07		

2

Видно, независимость изотопных отношений от массы налетающей частицы не наблюдается. Если отношения выходов ^{2,3}H, ^{3,4}He в реакциях расщепления изотопов Ni под действием дейтронов с энергией 6,7 ГэВ и протонов с энергией 0,66 ГэВ расходятся не более чем на 10%, несмотря на то, что кинетические энергии частиц-снарядов отличаются почти на порядок, то в реакциях под действием протонов с энергией 7,5 ГэВ аналогичные отношения оказываются на 15-20% больше, чем соответствующие им дейтронные значения. Для выходов ¹H изотопный эффект заметно уменьшается с ростом энергии налетающей частицы независимо от ее массового числа.

ЗАКЛЮЧЕНИЕ

Измерены энергетические, угловые и изотопные распределения для ядер ^{1,2,3} Н и ^{3,4} Не, образующихся при бомбардировке изотопов ⁵⁸Ni и ⁶⁴Ni дейтронами с энергией 6,7 ГэВ. Полученные результаты представляют большой интерес в связи с возможностью сравнить их с аналогичными распределениями в реакциях под действием протонов. Такое сравнение, а также расчеты, выполненные по каскадно-испарительной модели, помогут выявить степень влияния свойств бомбардирующей частицы на механизм реакций расщепления при высоких энергиях.

ЛИТЕРАТУРА

- Zebelman A.M. et al. Phys.Rev., 1975, vol.11C, No 4, p. 1280-1286.
- 2. Богатин В.И. и др. ЯФ, 1982, т. 36, вып.1/7/, с. 33-43.
- 3. Богатин В.И., и др. Препринт РИ-133, Л., 1980.
- 4. Яковлев Ю.П. ЭЧАЯ, 1983, т. 14, вып.6, с. 1285-1335.
- 5. Краснов Л.В. и др. Вестник ЛГУ, сер.физ.-хим., 1978, №10, с. 61-68.
- 6. Кондратьев В.П. и др. В сб.: "Прикладная ядерная спектроскопия", 1981, вып.10, с. 14-22.
- 7. Banaigs J. et al. NIM, 1971, 95, ;3, p. 307-311.
- 8. Geaga J.V. et al. Nucl. Phys., 1982, A386, No 3, p. 589-598.
- 9. Богатин В.И. и др. ЯФ, 1973, т. 17, вып.1, с. 9-12.
- Краснов Л.В. и др. Тезисы докладов 34 Совещания по ядерной спектроскопии и структуре атомного ядра. Алма-Ата, 1984. "Наука", Л., 1984, с. 324.
- 11. Bogatin V.I. et al. Nucl. Phys., 1976, A206, No 2, p.446-460.

Рукопись поступила в издательский отдел 6 декабря 1984 года.

Кондратьев В.П. и др. 1-84-778Изучение энергетических спектров частиц с Z = 1, 2, 58Ni, 64Ni

Приведены экспериментальные энергетические, угловые и изотопные распределения ядер водорода и гелия, образующихся при взаимодействии дейтронов с энергией 6,7 ГэВ с изотопами ⁵⁸Ni и ⁶⁴Ni. Данные получены с помощью многоканального $\Delta E - E$ -спектрометра для энергетического диапазона 3 ÷ 50 МэВ. Полученные энергетические спектры близки к распределению Максвелла, угловые распределения изотропны, изотопные отношения не зависят от угла вылета фрагментов, но зависят от массы налетающей частицы.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

Kondratyev V.P. et al. 1-84-778Investigation of Energy Spectra of Z = 1 and 2 Particles from Deuteron Reactions on Nuclei ${}^{58}Ni$, ${}^{64}Ni$

The experimental energetic, angular and isotopic distributions for hydrogen and helium nuclei produced in 6.7 GeV deuteron interactions with ⁵⁸Ni and ⁶⁴Ni isotopes are presented. The data are obtained by using multichannel $\Delta E - E$ semiconductor spectrometer in the 3-50 MeV energy range. Energetic spectra are very close to Maxwell distribution, angular distribution are isotropic, isotopic ratii do not depend on emission angle of fragments but depend on a projectile mass.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984

4