

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

C3439 4474/84

1-84-455

1984

В.С.Бутцев, Г.Л.Бутцева, В.Я.Костин, В.Я.Мигаленя*

ИЗМЕРЕНИЕ ВЫХОДОВ ОСТАТОЧНЫХ ЯДЕР ПРИ ВЗАИМОДЕЙСТВИИ α-ЧАСТИЦ С ИМПУЛЬСОМ 17,9 ГэВ/с С ЯДРАМИ ¹⁵⁹ ТЬ, ¹⁸¹ Та И ^{207,2} РЬ

Харьковский физико-технический институт

ERCENCEN MACANERS

Property and and

1. ВВЕДЕНИЕ

В последние годы выполнено большое количество экспериментальных и теоретических работ по изучению реакций, вызванных частицами высоких энергий.

При энергиях бомбардирующих частиц и ядер выше 1 ГэВ процесс неупругого взаимодействия имеет многостадийный характер /1/.

Взаимодействие начинается с быстрой "каскадной стадии", в результате которой образуется большое число новых вторичных частиц. Ядро при этом остается в сильно возбужденном состоянии. Девозбуждение ядра происходит путем конкурирующих процессов испарения нуклонов и деления в случае достаточно тяжелых ядер-мишеней.

Первые экспериментальные исследования взаимодействия протонов и a-частиц с энергией 300-800 ИзВ с ядрами Cu, Ag, Au и U^{2/} показали, что в таких реакциях образуются остаточные легкие ядрапродукты ²⁴ Na, ²⁸ Mg, имеющие достаточно большую энергию и асиметрию вылета вперед-назад. Полученные результаты рассматривались авторами как первые указания на существование фрагментации ядер-мишеней под действием высокоэнергетичных частиц.

В дальнейших исследованиях взаимодействия частиц и ядер в широком диапазоне энергий /протонов с энергией до 400 ГэВ/3,4/, ионов ¹²С с энергией до 25,2 ГэВ/^{3-7/}, ионов ¹⁴ N с энергией 3,9 ГэВ/⁸, ионов ²⁰ Ne с энергией до 8 ГэВ/^{7,9,10/} и ионов ⁴⁰ Ar с энергией 80 ГэВ /^{11/}/ с ядрами-мишенями от Сu до U было установлено существование большого числа механизмов реакции, начиная от прямого выбивания нуклонов до полного развала составной системы.

Изучение выходов остаточных ядер в интервале от A > 20 до полной массы составной системы выполнено только при энергии а-частиц меньше 1 ГэВ /2, 12/.

В данной работе представлены результаты измерения выходов остаточных ядер продуктов при взаимодействии «-частиц с импульсом 17,9 ГэВ/с с мишенями из ТЪ, Та и РЪ.

2. ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

Облучение мишеней из ¹⁵⁹ Tb, ¹⁸¹Ta и ^{207,2} Pb производилось на выведенном пучке а-частиц с импульсом 17,9 ГэВ/с на синхрофазотроне Лаборатории высоких энергий ОИЯИ^{/13/}. Мишень тербия изготовлена из Tb₂O₃, запрессованного в капсулу из оргстекла. Толщина мишени по Tb составляла 1 г/см². Мишени Ta и Pb изготовлены в виде дисков диаметром 30 мм, толщиной 2 г/см²и 1,3 г/см² соответственно.

Спектры у-лучей образовавшихся остаточных ядер измерялись спектрометром с Ge(Li)-детектором объемом 41 см³ и разрешением 3 кзВ для $E_{\gamma} = 1332,5$ кзВ ⁶⁰Со, эффективность регистрации - 2,6×10⁻⁴.

Мониторирование пучка α -частиц проводилось по реакции ${}^{27}\mathrm{Al}(a, x){}^{24}\mathrm{Na}{}^{14}$. Средняя интенсивность α -частиц составляла 3,7x10⁹ с⁻¹. Сечение мониторной реакции для энергии выше 1 ГэВ не установлено, поэтому в данной работе оно было получено путем экстраполяции функции возбуждения на основе экспериментальных значений сечений образования ${}^{24}\mathrm{Na}$ в реакциях с энергией налетающих α -частиц 100-1000 МэВ. Сечение реакции ${}^{27}\mathrm{Al}(\alpha, x){}^{24}\mathrm{Na}$ при энергии α -частиц 18,3 ГэВ было принято равным 22 мб. Эта процедура вносит существенную неопределенность в оценку интенсивности пучка частиц и может привести к систематической ошибке при получении экспериментальных значений образования остаточных ядер. Поэтому в данной работе определялись значения относительного выхода ядер-продуктов, а не величины сечений.

Время облучения мишеней составляло 3 ч для ¹⁵⁹ Tb, 1 ч для ¹⁸¹ Ta и 2 ч для ^{207,2} Pb. Измерение спектров у-лучей радиоактивных изотопов, образовавшихся в мишени из Tb проводилось сериями по 1 ч спустя 1 ч после облучения. Циклы измерений для мишеней из Ta составляли 40 мин спустя 10 мин после облучения и 2 ч через 103 мин после облучения для мишени Pb. Обработка полученных спектров у-лучей проводилась на ЭВМ БЭСМ-6 ЦВК ОИЯИ по программам SIMPEC /¹⁵/и SAMPO /¹⁶/.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ И ОБСУЖДЕНИЕ

Идентификация ядер-продуктов проводилась по наиболее интенсивным у-линиям с учетом их относительных интенсивностей /17/. На рисунке для иллюстрации приведен спектр у-лучей изотопов, образующихся в реакции (¹⁵⁹Tb + *a*). Энергии у-линий даны согласно /17/.

В табл.1-3 даны экспериментальные значения энергий идентифицированных у-линий и относительных выходов радиоактивных нуклидов. При определении последних учитывалось самопоглощение у -излучения в мишенях.

В реакции (Tb+a) определены относительные выходы радиоактивных нуклидов в широком диапазоне массовых чисел $A = 24 \div 157$ с периодами полураспада от 20 мин /см. ^{84m} Rb / до 21 ч /см. ²⁸Mg /. В ряде случаев значения выходов не удалось определить, потому что отдельные *у*-линии содержали вклады от распада нескольких нуклидов. Так, например, *у*-линия 871,5 кэВ ^{94m} Tc содержит вклад от распада ⁹⁴ Tc, а *у*-линия 1523,4 кэВ содержит вклад от распада ⁹³ Tc.

Спектр у-лучей изотопов, образующихся при взаимодействии а-частиц с импульсом 17,9 ГэВ/с с ядрами ¹⁵⁹ Ть.

В случае реакции (**Та** + α) определены относительные выходы радиоактивных нуклидов в диапазоне **A** = 24÷178, данные о которых приведены в табл.2. Значения выходов ^{94m} Tc, ^{104m} Ag и ^{117m} In не удалось определить по указанным выше причинам.

Анализ спектров у-лучей изотопов, образующихся в реакциях $(^{207,2} Pb + a)$ позволил определить относительные выходы радиоактивных нуклидов в интервале $A = 24 \pm 204$. Не удалось установить выходы 94m Tc, 104m Ag, 117m In и 117 In, 202 Bi, 204m Pb. 82m Rb, 90m Y, 93m Mo, 94 Tc, 106m In, 110 In, 39c1 , 42 K, 52 Mn, 66 Ge, 139m Rb, 90m Y, 93m Mo, 94 Tc, 106m In, 110 In, 116m Sb, 133 Ce, 138m Pr, 139m Nd, 152m Eu, 171 Er, 178m Ta, 198m TI и 204m Pb, приведенные в табл.1-3, являются независимыми, выходы всех остальных нуклидов являются кумулятивными.

Для ряда изотопов определены изомерные отношения /отношения независимых выходов метастабильных состояний/. Метод определения изомерных отношений описан в /18/.

В табл.4 приведены экспериментальные значения изомерных отношений, полученные при взаимодействии *а*-частиц с энергией 18,3 ГэВ с ядрами ТЪ, Та и РЪ и ионов ¹² С с энергией 25,2 ГэВ с ядрами РЪ, Ві и U^{/6/}.

Отметим, что выход изомерной пары 93g,m Tc является кумулятивным, так как 93g Tc (9/2⁺) образуется при β -распаде 93 Ru (9/2⁺), а 93m Tc (1/2⁻) – при распаде 93 Ru (1/2⁻), периоды полураспада которых равны $T_{1/2} = 59,7$ с и $T_{1/2} = 10,8$ с соответственно. Ясно, что независимый выход метастабильных состояний 93 Tc можно определить только в прямых экспериментах на пучке.

Дополнительный вклад в независимый выход 93 Tc (9/2⁺) будет пропорционален независимому выходу 93 Ru (9/2⁺), а выход 93 Tc (1/2⁻) пропорционален независимому выходу 93 Ru (1/2⁻), поэтому изомерное отношение для кумулятивных выходов изомерной пары 93 B, Tc можно рассматривать как относительную вероятность возбуждения состояний 9/2⁺ и 1/2⁻ в изобарном мультиплете A = 93.

Относительные выходы ¹³³ Се (9/2⁺) и ¹⁹⁸ T1 (7⁺) являются независимыми, а выходы ¹³³ Се (1/2⁻) и ¹⁹⁸ T1 (2⁻) являются кумулятивными. Поэтому приведенные в табл.4 изомерные отношения для этих пар следует рассматривать как нижние пределы соответствующих величин.

Оценки выходов родительских ядер ⁹³ Ru, ¹³³ Pr и ¹⁹⁸ Pb по формуле Рудстама ^{/19/} составляют величины порядка 0,06; 0,27 и 0,4 от выходов дочерних ядер ⁹³ Tc, ¹³³ Се и ¹⁹⁸ Tl соответственно.

Таким образом, вклад от распада родительских ядер не может привести к существенному изменению величин изомерных отношений для изомерных пар, приведенных в табл.⁴. Как видно из таблицы, для изомерных пар $^{98}\,{\rm Tc}$ (9/2⁺ и 1/2⁻) и $^{198}\,{\rm Tl}$ (7⁺ и 2⁻) получены достаточно низкие изомерные отношения от 0,2 до 0,4 для реакций (a + Tb, Ta, Pb) и ~0,7 для реакции (a + Pb).Эти результаты на-ходятся в согласии со значениями изомерных отношений для мета-стабильных состояний $^{186}\,{\rm Ir}$ (6⁻ и 2⁻), $^{196}\,{\rm Au}$ (12⁻ и 2⁻) и $^{198}\,{\rm Au}$ (12⁻ и 2⁻), полученных в реакциях ($^{12}{\rm C}$ + Pb, Bi и U) $^{/6'}$.

Наряду с этим получены и достаточно высокие изомерные отношения; в частности, для ¹³³ Се (9/2 ⁺ и 1/2 ⁻) в реакции (α + Tb) и для ¹⁹⁸ Tl (7⁺ и 2⁻) в реакции (12 C + Pb), $\sigma_m/\sigma_g = /3, 25\pm1, 48/$ и $\sigma_m/\sigma_g = /1, 4\pm0, 2/$ соответственно.

Согласно /17 при переходе в релятивистскую область энергий частиц и ядер следует ожидать значительного роста углового момента возбужденных остаточных ядер после ядерного каскада и соответственно преимущественного заселения высокоспиновых состояний.

Однако сравнивая значения изомерных отношений остаточных ядер-продуктов, полученных в реакциях с *а*-частицами при энер-гии 18,3 ГэВ и ионами ¹²С при энергии 25,2 ГэВ, с изомерными отношениями для пар ¹⁷⁴ Lu (6-и 1-) - $\sigma_m/\sigma_g = /0,65\pm0,07/$ и ¹⁷⁷Lu (23/2-и 7/2-) - $\sigma_m/\sigma_g = /0,08\pm0,03/$, полученными в реакции (p + ¹⁸¹Ta) при $E_p = 500$ МэВ ^{/20/},нельзя сделать однозначного вывода о преимущественном заселении высокоспиновых состояний остаточных ядер в реакциях при релятивистских энергиях.

Для адекватного анализа угловых моментов остаточных ядер требуется проведение абсолютных измерений сечений образования радиоактивных нуклидов и привлечение дополнительных данных о величинах изомерных отношений в широком диапазоне энергий бомбардирующих частиц и ядер.

Авторы искренне благодарны М.Г.Мещерякову, А.М.Балдину и И.Н.Семенюшкину за интерес к работе и поддержку, К.Д.Толстову за полезные обсуждения. Относительные выходы радиоактивных нуклидов, образовавшихся при взаимодействии *а*-частиц с импульсом 17,9 ГэВ/с ¹⁵⁹ Tb

1111	Нуклид	T 1/2	Е∂ . кэВ	У отн.
I	2	3	4	5
I.	24 Na	15 ч	1368,65 [±] 0,17 2753,6 [±] 0,6	100± 10
2.	28 Mg	20,9 ч	1780,3 ± 0,7	36 ± 9
3.	³⁸ cl	37,3 мин	1643,6 ± 0,6 2169,5 ± 0,5	20 ± 3
4.	41 Ar	I,83 ч	1293,6 ± 0,2	60 ± 20
5.	⁵⁶ Mn	2,58 q	864,8 ± 0,3 1812,3 ± 0,7 2114,3 ± 0,8	18 ± 4
6.	⁶⁶ Ge	2,27 ч	I08,2 ± 0,2 I83,7 ± 0,7 I9I,3 ± 0,3	70 ± 20
7.	⁷⁷ G-e	II,3 ч	263,6 ± 0,4 418,2 ± 0,7	-
8.	81 RB	4,58 ч	191,3 ± 0,3	70 ± 16
9.	⁸² m RB	6,2 u	$553, I \pm 0.5$ $6I8, 7 \pm 0.4$ $695, 5 \pm 0.7$ $777, 4 \pm 0.3$ $828, 3 \pm 0.4$ $I044, 8 \pm 0.3$	26 ± 5
10.	⁸⁴ 200 R6	3,19 ч	$2I7,0 \pm 1,0$ $248,7 \pm 0,3$ $465,0 \pm 0,2$	74 ± 20
II.	85 m Kr	4,48 ч	151,0 ± 0,3 303,1 ± 0,7	IO ± 4
12.	90 m Y	З,І9 ч	204,5 ± 0,3	32 ± 7
13.	90 NG	I4,6 ч	1128,98 ± 0,23 2188,0 ± 2,0 2319,4 ± 0,6	54 ± 8
I4.	93 m Mo	6,95 ч	263,6 ± 0,4	20 ± 6
15.	93 Te	2,75 ч	I362,9 ± 0,3 I477,0 ± 0,3 I523,4 ± 0,5	22 ± 5
I6.	93 mTe	43,5 мин	389,I ± 0,7	80 ± 20

4

	2	3	4	5	-	I	2	3	4	5
17.	94 Te	293 мин	703,I ± 0,3 849,9 ± 0,2 87I,5 ± 0,2	24 ± 5	3.	2.	¹³¹ La	61 мин	$108,2 \pm 0,2$ $287,2 \pm 0,3$ $365,9 \pm 0,3$ $418,2 \pm 0,7$	I40 ± 50
I8.	94 m Te	53 мин	871,5 ± 0,2 1523,4 ± 0,5		ŀ		700		455,7 ± 0,9 526,5 ± 0,3	
19.	100 Rh	20 ч	540,4 ± 1,2 822,1 ± 1,6 2379,6 ± 0,9	58 ± 15	3	3.	132 La	4,8ч	465,0 ± 0,2 567,6 ± 0,3 1031,0 ± 1,0	78 - 11
20.	104 Ag	69,2 мин	556,0 ± 0,2 758,2 ± 1,0 767,5 ± 0,3	54 ± 13	3	4.	¹³³ Ce	5 ,4 ч	$58,3 \pm 0,4$ I3I,4 $\pm 0,4$ 478,3 $\pm 0,2$	52 ± 15
			925,2 ± 0,9		3	5.	133 Ce	97 MRH	97,3 ± 0,9	16 ± 6
21.	104 - Ag	33,5 мин	$942,2 \pm 0,4$ 556,0 $\pm 0,2$	-	3	16.	^{I35} ce	17,8ч	266,2 ± 0,7 297,1 ± 1,3	90 ± 20
22. 23.	108 In 108 m In	40 MRH 58 MRH	$633, 6 \pm 0, 3$ 244, 3 ± 0, 3 326, 9 ± 0, 2	- 20 [±] 4	3	87.	¹³⁸ Pr	2,02 प	303,I ± 0,7 789,O ± 0,2 1038,O ± 1,0	I4 ± 3
			633,6 ± 0,3 875,3 ± 0,3 1298,0 ± 1,1		3	8.	139 m N d	5 , 5 ч	II4,9 ± 1,5 708,4 ± 0,3 738,0 ± 0,4	20 ± 17
24. 25.	110 In 110 In	69 мин 4,9 ч	658,3 ± 0,8 644,4 ± 0,3 658,3 ± 0,8	- 20 ± 4					828,3 ± 0,4 909,3 ± 0,6 982,8 ± 0,6 IIO6,I ± I,6	
	115		884,9 ± 0,3 937,8 ± 0,3	co † 20	3	19.	152 m Eu	9,3 ч	$123,6 \pm 1,6$ $244,3 \pm 0,3$	780 ± 370
26.	115 56	31,8 MMHH	497,7 = 0,9	00 + 5					964.3 ± 0.2	
27.	110 11 28	60,4 MMH	973.I ± 0.7	20 - 0	4	0.	152 MaE 4	96 MRH	90,96 ± 0,82	-
			1072,4 ± 0,8		4	Ι.	ISS Dy	10.2 4	227.8 ± 0.2	60 ± 12
			1293,6 ± 0,2		4	2.	157 Dy	8.I 4	326,8 ± 0,3	120 ± 40
28.	117 In	4.2 MRH	160,3 ± 0,9 552,8 ± 0,2	90 ± 30						Таблица 2
29.	II7mIn	І,94 ч	160,3 ± 0,9	÷.		От	поситель	LIA BLIVOILL	COLICORENDER DAVANDO	P. OFRISORISEMUXOR
30,	II7 Te	6I MMH.	719,9 ± 0,2	66 ± 15	ή.	01	носитель	в в	реакции ¹⁸¹ Та + а	в,ооразовавшихся
			997,2 ± 0,4			101 101	Нуклад	T 1/2	E, KaB	Y отн.
			1716,6 ± 0,3 2301,8 ± 0,8			I.	24 Na	I5 4	I368,8 ± 0,4 2754,I ± 0,5	I00 ± I0
31	121 7	2,12 4	214,1 ± 1,3	90 ± 30		2.	28 Mg	20,9 ч	1779,4 ± 0,7	3I ± 10

ä

I	2	3	4	5
3.	38 cl	37,3 MRH	I643,I ± 0,6 2I68,0 ± I,0	I5 ± 5
4.	³⁹ el	56,2 MRH	1266,8 ± 0,8 1518,5 ± 0,6	20 ± 4
5.	4I AR	I,83 y	1293,5 ± 0,5	57 ± 28
6.	56 Mm	2,58 ч	846,5 ± 0,7 1810,6 ± 0,9 2114,0 ± 1,1	25 + 5
7.	90 m Mo	I4,6 ч	1129,3 ± 0,5 2319,8 ± 0,9	33 ± 10
8.	93 TC	6,95 y	684,4 ± 0,5 I477,3 ± 0,4	27 ± 3
9.	93mTc.	2,75 ч	I363,4 ± 0,4 I477,3 ± 0,4 I520,7 ± 1,3	IO ± 4
το.	93 m Te	43,5 MMH	389,I ± 0,5	36 ± 13
Ι.	⁹⁴ Te	293 мин	702,7 ± 1,6 850,3 ± 1,2 871,3 ± 0,6	17 ± 3
2.	94 m Te	52,5 MRH	871,3 ± 0,6	-
3.	¹⁰⁴ Ag	69,2 мин	556,0 ± 1,0 767,4 ± 0,4	27 ± 6
4.	104m Ag	33,5 мин	556,0 ± I,0	-
5.	¹⁰⁵ Col	56 мин	$606,3 \pm 0,4$ 960,5 \pm 1,6 1302.0 \pm 0,4	45 ± 15
[6.	II6 56	60,4 MMH	931,4 ± 0,4 1293,5 ± 0,5 2229,2 ± 0,8	22 ± IO
[7.	II7 In	42 MONTH	159,2 ± 0,6 552,9 ± 0,3	27 ± 7
.8.	II7m In	I,94 ч	159,2 ± 0,6	-
[9.	II7 Te	6I MWH	719,4 ± 0,6 924,0 ± 1,6 996,2 ± 0,9 1090,9 ± 0,8 1716,1 ± 0,6 2300,0 ± 1,0	24 [±] 4
20.	^{I3I} La	61 мин	108,2 ± 0,7 286,1 ± 0,3 365,7 ± 0,6	67 ± 10

I	2	3	4	5
			417,5 ± 0,8 454,2 ± 0,5 526,2 ± 0,3	
21.	¹⁵⁹ Hø	33 мин	120,4 ± 0,6 131,5 ± 0,8	90 ± 10
22.	IGI Er	3,24 प	593,2 ± 1,0 826,4 ± 0,6	90 ± 10
3.	171 Er	7,52 ч	296,2 ± 0,8 309,4 ± 0,6	110 ± 30
4.	174 Ta	І,2 ч	206,7 ± 0,4 1206,1 ± 0,7	130 ± 20
5.	176 _{Ta}	8 , I ч	I99,7 ± I,I 7I0,9 ± 0,4 II59,I ± 0,2 I224,4 ± 0,6 I341,7 ± I,6 I584,9 ± 0,4 I695,0 ± 0,9 I824,3 ± I,0 I863,6 ± 0,7 2920,0 ± I,6	290 ± 30
26.	178 m Ta	2,4 प	$213,4 \pm 0,2 325,3 \pm 0,3 331,4 \pm 0,2 426,3 \pm 0,2 $	200 ± 20

Таблица З

Относительные выходы радиоактивных нуклидов, образовавшихся в реакции ^{207,2} Pb + *a*

· MMé 1111	Нуклид	T 1/2	E _{∂,} K∋B	Y OTH.
I	2	3	4	5
Ι.	²⁴ Na.	15 ч	I368,2 ± 0,8 2754,0 ± 0,5	100 ± 10
2.	28 Mg	20,9ч	1780,4 ± 0,7	46 ± 13
з.	³⁸ ce	37,3 мин	1644,0 ± 1,0 2166,0 ± 1,0	56 ± 17
4.	4I AR	I,83 ч	1293,0 ± 0,5	50 ± 13
5.	42 K	I2,4 ч	1524,0 ± 1,0	54 ± 27

8

9

1	2	3	4.	5
6.	⁵² Mn	5,6 сут	743,0 ± I,0 935,5 ± I,5 I434,9 ± 0,9	70 ± 40
7.	52 m Mn	21,2 мин	1434,9 ± 0,9	-
8.	⁵⁶ Mn	2,58 ч	847,8 ± 0,8 1811,0 ± 1,0 2113,0 ± 1,5	29 ± 4
9.	87 m Y	І4 ч	382,I ± 0,7	4I ± 7
10.	90 NB	14,6ч	1129,8 ± 0,7 2186,3 ± 0,8 2319,4 ± 0,8	38 ± 6
II.	93 m Mo	6,95 ч	685,5 ± 0,7 1476,5 ± 0,5	2I ± 4
12.	93 TC	2,75 ч	I363,4 ± 0,7 I5I9,0 ± I,0	22 ± 3
13.	93 Tc.	43,5 MMH	39I,4 ± 0,4	55 <u>+</u> 26
14.	⁹⁴ Te	293 мин	$702,5 \pm 0,5$ $849,0 \pm 0,9$ 870.5 ± 0.4	16 ± 4
15.	94 m Tc	59 мин	870,5 ± 0,4	-
16.	¹⁰⁰ Rh	20 ч	540,2 ± 0,4 821,1 ± 0,9	62 ± 20
17.	104 Ag	69,2 мин	557,0 ± 0,7 767,1 ± 0,8	51 ± 12
18.	104 m Ag	33,5 MMH	557,0 ± 0,7	-
19.	IZI J	2,12 ч	2I3,9 ± 0,8	75 ± 34
20.	132 La	4,8 ч	464,9 ± 0,8	30 ± 6
21.	IGI Er	3,24 ч	209,8 ± 1,5 827,0 ± 0,7	80 ± 20
22.	¹⁶⁷ Ho	3,Іч	319,3 ± 1,0 346,9 ± 0,4	100 ± 30
23.	¹⁸⁴ Ir	3,Іч	118,9 ± 1,1 265,0 ± 0,4	150 ± 50
24.	¹⁹⁰ Au	42 MEH	297,4 ± 0,7 302,7 ± 0,9 595,9 ± 1,6	175 ± 53
25.	¹⁹⁸ tl	5,3 ч	412,5 ± 0,5 636,4 ± 0,6 674,9 ± 0,5	200 ± 42

I	2	3	4	5
26.	198 m T C	I,87 ч	$281,7 \pm 0,5 \\ 412,5 \pm 0,5 \\ 587,3 \pm 0,5 \\ 636,4 \pm 0,6 \\ \end{cases}$	125 ± 30
27.	¹⁹⁹ P&	90 mm	354,0 ± 1,0 367,8 ± 0,9 719,9 ± 0;5 1657,7 ± 0,8	125 ± 28
28.	200 TE	26,I प	367,8 ± 0,9 579,2 ± 0,4 1205,8 ± 1,4	340 ± 100
29.	²⁰¹ P B	9,4 ч	332,3 ± 0,4 362,0 ± 1,0	I60 ± 40
30.	202 m pg	3,62 ч	$423, I \pm 0, 5$ $458, 4 \pm 0, 7$ $490, I \pm 0, 8$ $657, 8 \pm 0, 8$ $756, 7 \pm 0, 5$ $960, 9 \pm 0, 4$	IIO [±] I4
3I.	²⁰² Bi	I,67 ч	423,I ± 0,5 657,8 ± 0,6 960,9 ± 0,4	-
32.	204 m pb	66,9 мин	375,8 [±] 0,6 900,0 [±] 1,0 9II,0 [±] 1,0	
33.	204 _{Bi}	II,2 ч	375,8 ± 0,6 900,0 ± 1,0 911,0 ± 1,0 983,5 ± 0,9	94 ± 16

Таблица 4	+ •	Изомерные	отношени	Я	в реакц	хки	в	релятивистскими
		альфа-	частицами	И	ионами	¹² C		

Реакция	Изомерные отношения (настоящая работа)	Реакция	Изомерные отношения (работа /6/)
18,3 ГэB+Тв	$\mathcal{G}_{g}(^{93}_{\text{Tc}}(9/2^{+}))_{=0,2I\pm0,04}$ 25	,2 ToB ^{I2} C+	$\vec{G}_{m}(186 Ir(6^{-})) = 0,09^{\pm}$
	$\mathcal{G}_{m}(^{93}_{\text{Tc}}(1/2^{-}))$	+ U	$\vec{G}_{m}(186 m Ir(2^{-})) = 0,03^{\pm}$
	€ ₁ (^{I33} Ce(9/2 ⁺))=3,25±1,48 25	,2 F9B ¹² C+	<u>сі ¹⁹⁶Ам(12⁻))</u>
	6 _* (^{I33} Ce(I/2 ⁻))	+ Bi	сі (¹⁹⁶ Ам(2 ⁻))
18,3 TəB+Ta	$6_{8}(93_{Tc}(9/2^{+}))=0,33\pm0,15$ $6_{m}(93_{Tc}(1/2^{-}))$		6.(198Au(12)) 6.3.(""Au(2"))

 $\sigma_{m(198_{T\ell(7^+)})} = 0, 6\pm 0, 2$ $\sigma_{m(198_{T\ell(2^+)})}$

I8,3
$$\Gamma \ni B_+ P_B = \frac{G_1(9^{3}T_C(9/2^+))}{G_m(9^{3}T_C(1/2^-))} = 0,4\pm0,2$$
 25,2 $\Gamma \ni B = I^2_{C+P_B}$

 $\mathbf{5}_{1}(198_{T}(7^{+}))=1,4\pm0,2$ $\mathbf{5}_{1}(198_{T}(2^{-}))$

ЛИТЕРАТУРА

- Барашенков В.С., Тонеев В.Д. Взаимодействие высокоэнергетических частиц и атомных ядер с ядрами. Атомиздат, М., 1972.
- Grespo V.P., Alexander J.M., Hyde E.K. Phys.Rev., 1963, 131, p.1765.
- 3. Cole G.D., Porile N.T. Phys.Rev., 1982, C25, p.244.
- Porile N.T., Cole G.D., Rudy C.R. Phys.Rev., 1979, C19, No.6, p.2288.
- 5. Rudy C.R., Porile N.T. Phys.Lett., 1975, 598, p.240.
- 6. Loveland W. et al. Phys.Lett., 1977, 69B, p.284.
- 7. Kaufman S.B. et al. Phys.Rev., 1980, 22C, p.1897.
- Cumming J.B., Haustein P.E., Stoenner R.W. Phys.Rev., 1974, 10C, p.739.
- 9. Morrisey R.J. et al. Phys.Rev., 1980, 21C, p.1783.
- 10. Hicks K.H. et al. Phys.Rev., 1982, 26C, p.2016.
- 11. Cumming J.B. et al. Phys.Rev., 1978, 17C, p.1632.
- 12. Korteling R.G., Hyde E.K. Phys.Rev., 1964, 136B, p.B425.
- Семенюшкин И.Н. В сб.: Труды совещания по исследованиям в области релятивистской ядерной физики. ОИЯИ, Д2-82-568, Дубна, 1982, с.14.
- 14. Karol P.J. Phys.Rev., 1974, C10, p.150.
- Аврамов С.Р., Сосновская Е.В., Цупко-Ситников В.М. ОИЯИ, P10-9741, Дубна, 1976.
- 16. Routti J.T. Preprint UCRL-19452, 1969.
- Lederer C.M., Shirley V.S. Table of Isotopes, VII ed. John Wiley and Sons Inc., New York, 1978.
- Бутцев В.С., Ильинов А.С., Чигринов С.Е. ЭЧАЯ, 1980, т.11, вып.4, с.900.
- 19. Rudstam G.Zs. Naturforsch., 1966, 21a, p.1027.
- 20. Orth C.J. et al. Preprint LA-UR-78-2686, Los Alamos, 1978.

Рукопись поступила в издательский отдел 29 июня 1984 года.

Бутцев В.С. и др. 1-84-455 Измерение выходов остаточных ядер при взаимодействии а -частиц с импульсом 17,9 ГэВ/с с ядрами 159 Тb., ¹⁸¹Та и ^{207,2} Pb

Приведены результаты исследования взаимодействия a - 4ac-тиц с импульсом 17,9 ГэВ/с с ядрами тербия, тантала и свинца. Выполнены измерения относительных выходов остаточных ядер в широком дианазоне массовых чисел $24 \le A \le 157$ для реакции (a + Tb). $24 \le A \le 178$ для реакции (a + Ta) и $24 \le A \le 204$ для реакции (a + Pb). Для изотопов 98 Tc. 133 Ce и 196 Tl определены изомерные отношения σ_m / σ_g , которые сравниваются с изомерными отношениями в реакциях с протонами при $E_p = 500$ МэВ и ионами 1^2 C при энергии 25,2 ГэВ.

Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

7

Butsev V.S. et al. 1-84-455Measurement of the Yields of Residual Nuclei in Reactions of 17.9 GeV/c α -Particles with ¹⁵⁹Tb, ¹⁸¹Ta and ^{207,2}Pb

The results of investigations of a -particle interactions with 17.9 GeV/c Tb, Ta and Pb nuclei are presented. Measurements have been carried out of the relative yields of residual nuclei for the (a + Tb), (a + Ta) and (a + Pb) reactions in the $24 \le A \le 157$, $24 \le A \le 178$ and $24 \le A \le 204$ mass range, respectively. For the isotopes 93 Tc, 133 Ce and 198 Tl the iromeric ratios are determined, that are compared with the isomeric ratios measured in reactions induced by 500 MeV protons and by 25.2 GeV 12 C ions.

The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984