

Объединенный институт ядерных исследований дубна

1-84-312

А.П.Гаспарян, А.Н.Соломин*, А.П.Чеплаков

КОРРЕЛИРОВАННОЕ ИСПУСКАНИЕ я-МЕЗОНОВ ВО ВЗАИМОДЕЙСТВИЯХ ЯДЕР УГЛЕРОДА С ЯДРАМИ УГЛЕРОДА И ТАНТАЛА ПРИ ИМПУЛЬСЕ 4,2 ГэВ/с на нуклон

Направлено в журнал "Ядерная физика"

* ниияф мгу

1984

ВВЕДЕНИЕ

Ранее отмечалось /1/, что столкновения ядер при высоких энергиях создают принципиальные предпосылки для наблюдения новых, необычных явлений. Во многих теоретических моделях рассматриваётся проявление механизмов коллективного типа в характеристиках вторичных частиц. Это стимулирует интерес к анализу корреляционных эффектов в ядро-ядерных соударениях.

Так, в работе^{/2/} исследуется возможный механизм когерентного рождения пионов во взаимодействиях тяжелых ионов. При энергиях в несколько ГэВ значительную часть неупругого нуклон-нуклонного сечения составляют процессы возбуждения Δ -изобар^{/3/}. Предполагается, что в центральных взаимодействиях тяжелых ионов может образоваться область сильного сжатия ядерной материи ($\rho \ge 2,5 \rho_0$), где изобары рождаются в реакциях NN $\rightarrow N\Delta u \ N\Delta \rightarrow \Delta\Delta$. Если процессы возбуждения изобар идут быстрее процессов их распада $\Delta \rightarrow N\pi$, то в области сжатия число Δ -изобар может, в принципе, превысить число нуклонов. Таким образом, возникает неравновесное мультиизобарное состояние, распад которого приводит к когерентному испусканию большого числа π -мезонов.

Экспериментальное изучение многопионных корреляций проводилось ранее в адрон-адронных взаимодействиях /4/ в системах тождественных пионов в терминах R_- , $C-\phi$ ункций/5,6/, а также с использованием переменных $\Delta q^{7/}$ -разностей 4-импульсов пар частиц. Наблюдались корреляции между направлениями вылета мезонов одного знака^{/8/}, что связано с проявлением бозе-статистики в многомезонных системах. Одним из результатов работ /5,8/ был вывод о том, что корреляции в системах трех и четырех пионов обусловлены хорошо изученными двухчастичными корреляциями.

Двухпионные корреляции в ядро-ядерных соударениях при высоких энергиях анализировались ранее в^{/9,10/}, где были получены размеры области излучения пионов.

В настоящей работе приводятся результаты исследования многопионных корреляций в центральных углерод-углеродных столкновениях и в неупругих взаимодействиях ядер углерода с ядрами тантала при импульсе Р₀ = 4,2 ГэВ/с на нуклон. Предварительные данные ранее опубликованы в /11/.

МЕТОДИКА

Экспериментальный материал получен с помощью 2-метровой пропановой пузырьковой камеры ЛВЭ ОИЯИ, в рабочем объеме которой

BUS MACTERA

1

размещена мишень, состоящая из трех танталовых пластин толщиной 1 мм. Камера облучалась на дубненском синхрофазотроне ядрами углерода при импульсе 4,2 ГэВ/с на нуклон. Было обработано около 1600 неупругих СТа -взаимодействий и 1400 центральных СС столкновений. Центральные СС -соударения удовлетворяли следующим критериям /12/: 1/ отсутствие спектаторных фрагментов налетающего ядра с зарядом $Z_{\Phi} \ge 2$: 2/ количество однозарядных спектаторных фрагментов $n_S \le 2$; 3/ полный заряд вторичных частиц Q > 7. В событии, как правило, измерялись все треки, за исключением СТа -взаимодействий, где не измерялись протоны с импульсом $P_P \le 700$ МзВ/с. Все отрицательные частицы в событии, кроме идентифицированных электронов, считались π -мезонами /примесь электронов не превышала 5% /13//. Область надежной идентификации π^+ -мезонов ограничена сверху импульсом - 600 МзВ/с.

Полное число взаимодействующих нуклонов < ν_N > налетающего ядра и мишени можно оценить /12/, основываясь на величинах средних множественностей π^- -мезонов < n_- >NC, < n_- >NTa, < n_- >CC и < n_- >_{CTa} в нуклон-ядерных и в отобранных для анализа много-пионных корреляций ядро-ядерных столкновениях /с числом π -мет

зонов $n_{\pi} \ge 2/$. Среднее полное число нуклонов $\langle \nu_N \rangle \approx 2 \cdot \frac{\langle n_- \rangle_{AA}}{\langle n_- \rangle_{NA}}$.

Оценка дает <vn>CC[~] 20 и <vn>CTa ~ 25. Таким образом, мы исследуем корреляции в существенно многонуклонных взаимодействиях ядер при высокой энергии.

многопионные корреляции

Были проанализированы спектры эффективных масс $M_{n\pi}$ групп, состоящих из n пионов одного знака / n = 2,3,4/. Величина одного интервала для построения распределения по $M_{n\pi}$ выбиралась равной среднему значению экспериментального разрешения в области малых масс. Полученное разрешение/11/ составляло /20, 40 и 60/ МэВ для n = 2,3,4 соответственно.

Экспериментальное распределение по эффективной массе М_в группы из в пионов сравнивалось с фоновым распределением. Существенное различие экспериментального и фонового распределений в области малых масс свидетельствовало бы о наличии корреляций между направлениями испускания пионов с близкими импульсами.

Фоновые распределения получались путем комбинирования *т* -мезонов, взятых случайным образом из разных событий. Применение такой процедуры приводит, вообще говоря, к формальному нарушению законов сохранения энергии-импульса, что влечет за собой искажение фонового распределения и ложное указание на присутствие корреляций /11/. Импульсные и угловые характеристики *т* -мезонов зависят от числа пионов в событии /11/ поэтому для уменьшения искажений фоновых распределений случайные выборки осуцествлялись только из событий с одинаковым числом n_{π} рожденных *m* -мезонов. Для каждого класса событий с определенным значением n_{π} наигрывалось 50000 случайных комбинаций, которые затем суммировались с весом, пропорциональным вкладу этого класса событий в экспериментальное распределение. Фоновые распределения нормировались на число комбинаций в экспериментальных, начиная с некоторого граничного значения массы $M_{\pi\pi}$, т.е. по "хвосту" распределения. Экспериментальные и фоновые распределения в этой области масс оказались подобными. На рис.1,2 представлены /открытые кружки/ величины отношений экспериментальных распределений по эффективной массе $M_{\pi\pi}$ к фоновым:

$$R_n = M_n^{3KC\Pi} / M_n^{\Phi OH}$$
 (1/

для систем в тождественных пионов в зависимости от массы системы $M_{n\pi}$ /в единицах массы пиона $m_{\pi} = 139$ MэB/. Горизонтальные линии указывают на объединение нескольких интервалов.

Рис.2. Отношение R для "+-

мезонов.

Рис.1. Отношения R_n экспериментальных распределений по эффективной массе $M_{n\pi}$ к фоновым для систем n / n = 2,3,4/ отрицательных пионов в зависимости от массы системы для двух вариантов фона /о - все п пионов берутся из разных событий, Δ -(n - 1) π^- -мезон взят из одного события, а один пион - из другого/.

3

Видно, что экспериментальные распределения превышают фоновые в области малых эффективных масс M_в, причем эффект становится более заметным с ростом в. Превышение экспериментальных распределений над фоновыми указывает на наличие корреляций в испускании двух, трех и четырех пионов, рожденных в неупругих CTa и центральных СС -взаимодействиях при первичном импульсе 4,2 ГэВ/с на нуклон.

Так как при этих энергиях в нуклон-нуклонных столкновениях сечение рождения двух и более *п*-мезонов не превышает 3% неупругого сечения /14/, наблюдаемый эффект отражает особенности процесса многонуклонных взаимодействий релятивистских ядер с ядрами.

Черные треугольники на рис.1,2 представляют экспериментальные значения отношения $R_n / n = 3,4/$ для фона, когда (n-1)пион был взят из одного события, а один пион – из другого. Заметное отличие R_n от единицы в области малых масс $M_{n\pi}$ для такой процедуры построения фона говорит о существовании в группах из трех и четырех пионов корреляций, которые нельзя объяснить соответственно двух- и трехпионными корреляциями.

Ранее $^{7/}$, при анализе интерференционных эффектов в системах тождественных частиц в рамках модели независимых осцилляторов уже было показано, что с ростом числа частиц в системе $n\pi$ высота интерференционного максимума в точке $\vec{p}_1 = \vec{p}_2 = \ldots = \vec{p}_n$ / \vec{p}_i - импульс частицы/ увеличивается. Там же утверждалось, что парные корреляции не могут симулировать весь интерференционный максимум в системе, а только лишь $1/[2 \cdot (n-2)!]$ часть его высоты. Как видно, наши выводы согласуются с результатами $^{7/}$.

Рис.3. Отношение R_n для ^{π+-мезонов в} СС -центральных соударениях, сгенерированных по каскадной модели. С целью проверки корректности способа выявления многочастичных корреляций были выполнены расчеты отношения R_n /1/ в СС центральных соударениях, сгенерированных по каскадной модели /15/. Результаты, полученные для π^+ мезонов, представлены на рис.3 /обозначения аналогичны рис.1/. Существенного отклонения величины отношения R_n / n = 2,3,4/ от единицы не наблюдается. Это свидетельствует о правильности выбора процедуры построения фоновых распределений.

Для дальнейшего анализа использовались π^+ , и π^- -мезоны, давшие вклад в "область корреляции", т.е. вошедшие хотя бы в одну из групп в π с малым значе-

нием массы $M_{n\pi}$ из области масс, где имеется превышение экспериментальных распределений над фоновыми ($R_n(M_{n\pi}) > 1$). Всего

в данный набор в СС-центральных взаимодействиях вошло 1076 отрицательных пионов, что составляет около 30% общего числа $\pi^$ мезонов в событиях с $n_{-} \ge 2$. Для надежно идентифицированных π^+ -мезонов /с импульсом $p_{\pi^+} \le 600$ M3B/с/ соответствующие величины равны: 874 π^+ -мезона, или 40%.

Следует отметить, что пионы, давшие вклад в область корреляции, имеют малые поперечные импульсы /11/. Распределение по квадрату поперечного импульса таких π^- -мезонов в неупругих СТа – взаимодействиях удовлетворительно аппроксимируется одной экспонентой с наклоном /45+3/ /ГэВ/с/-2, в то время как в распределении для всех π^- -мезонов из СТа -соударений хорошо виден вклад двух экспонент:

$$\frac{\Delta N}{\Delta p_{\perp}^2} = 0.85 \cdot e^{-44 p_{\perp}^2} + 0.15 \cdot e^{-8.5 p_{\perp}^2}, \qquad (2/$$

где p_{L}^{2} измеряется в /ГэВ/с/². Существенный вклад экспоненты с большим наклоном свидетельствует, по-видимому, о преимущественно изобарном механизме рождения π -мезонов при наших энер-гиях /3/.

ОБРАЗОВАНИЕ А -ИЗОБАР В СС-ЦЕНТРАЛЬНЫХ ВЗАИМОДЕЙСТВИЯХ

Для определения вклада ∆-изобар в рождение пионов в ССцентральных соударениях изучались спектры эффективных масс М_{лр}. При этом из анализа были исключены протоны - спектаторные фрагменты налетающего ядра и испарительные протоны, а также π⁺мезоны с импульсом р_π+>600 МэВ/с.

Учет периферического механизма возбуждения изобар позволяет существенно уменьшить относительный вклад ложных комбинаций в распределение по эффективной массе $M_{\pi p}$. Для этого пары (π, p) в событии подбирались таким образом, чтобы угол разлета пиона и протона в азимутальной плоскости, перпендикулярной пучку, был наибольшим. При этом каждому π -мезону ставился в соответствие только один протон и не проводилось разделения между π^+ -и π^- -мезонами.

На рис.4 в виде гистограммы приведено распределение по эффективной массе М_{тр} подобранных таким образом пион-протонных пар в СС -центральных соударениях. Кружками представлены два варианта фонового распределения. В одном случае /закрытые кружки/ описанная выше процедура подбора пар (*π*, **p**) применялась к центральным СС -взаимодействиям, сгенерированным по каскадной модели, и полученное распределение нормировалось на число комбинаций в экспериментальном. В другом варианте /открытые кружки/ - многократно, случайным образом, *π*-мезоны и протоны выбирались из разных событий, после чего так же подбирались

Рис.4. Распределение по эффективной массе $M_{\pi p}$ пар частиц – π^{\pm} -мезон, протон – в СС -центральных взаимодействиях /гистограмма/. Заштрихованная область представляет вклад от пионов, испущенных из области корреляции. Кружки – фоновые распределения / • – каскадная модель, о – частицы берутся из разных событий/.

пары (л,р) и производилась нормировка. В обоих случаях фоновые распределения неплохо описывают эксперимент.

Заштрихованной областью на рис.4 представлен вклад в экспе-

риментальное распределение по $M_{\pi p}$ пар, содержащих пионы, попавшие в область корреляции. Спектр эффективных масс $M_{\pi p}$ для таких пионов существенно отличается от фоновых распределений и от соответствующего спектра для всех пионов: он уже и сдвинут в область малых масс $M_{\pi p}$. Отметим, что положение пика спектра соответствует массе изобары Δ /1232/.

Чтобы вычислить вклад ∆ -изобары, необходимо знать функцию разрешения М_{пр}. Для этого в разных интервалах М_{пр} строились распределения отклонений от экспериментальной величины эффективной массы значений масс, получающихся при "размазке" величин импульсов и углов вылета частиц в пределах их экспериментальных ошибок. Предполагалось, что ошибки подчиняются статистическому гауссовому распределению. Полученные значения ошибок в определении величины эффективной массы аппроксимируются функцией

 $\sigma(M_{\pi p}) = 0.113 \cdot M_{\pi p} - 0.115, \qquad (3)$

где М_{ир} выражено в ГэВ. Затем, с учетом экспериментального разрешения, можно вычислить резонансную функцию:

$$F_{BW}(M) = \int_{m_{\pi} + m_{\pi}}^{\infty} \widetilde{F}_{BW}(m) \frac{1}{\sqrt{2 \pi \sigma^2(m)}} \exp\{-\frac{(m-M)^2}{2 \sigma^2(m)}\}, \qquad (4/$$

где $\vec{F}_{BW}(m)$ - модифицированная резонансная функция Брейта-Вигнера. В настоящей работе использовался следующий вид резонансной функции /16/:

$$\vec{F}_{BW}(M) = \frac{M}{q} \frac{\Gamma}{(M^2 - M_{\Delta}^2)^2 + M_{\Delta}^2 \Gamma^2}, \quad \Gamma = \Gamma_{\Delta} \cdot (\frac{q}{q_{\Delta}})^3 \frac{\rho(M)}{\rho(M_{\Delta})}, \quad \rho(M) = [(M + m_p)^2 - m_{\pi}^2],$$

Здесь $M_{\Delta} = 1232$ МэВ и $\Gamma_{\Delta} = 120$ МэВ - масса и ширина резонанса, q - импульс одной из двух частиц пары (π , p) в собственной системе отсчета пары с массой M, q $_{\Delta}$ - импульс одной из двух частиц в собственной системе при M = M $_{\Delta}$.

Экспериментальное распределение по эффективной массе М π_p для пионов, давших вклад в область корреляции, аппроксимировалось с помощью метода наименьших квадратов зависимостью

$$\frac{\Delta N}{\Delta M} = b \cdot F_{\phi OH} (M) \cdot (1 + a F_{BW} (M)), \qquad (6/$$

где $F_{\oplus OH}(M)$ - фоновое распределение, а и b - подгоночные параметры. Тогда вклад Δ -изобары определяется $^{/17/}$ величиной отношения

$$a \int F_{\phi OH} (M) \cdot F_{BW} (M) dM / \int \frac{dN}{dM} dM$$
. (71)

Чтобы достичь наилучшего описания, было использовано несколько вариантов распределений ^{/18}/ $F_{\rm фон}$ (М), форм записи резонансной функции Брейта-Вигнера $\tilde{F}_{\rm B}$ (М) и видов аппроксимирующей зависимости /6/. Так, использование в качестве фонового распределения, полученного при "смешивании" пионов и протонов из разных событий /открытые кружки на рис.4/, дает величину вклада /7/, равную 0,39+0,20 / $\chi^2_{\rm CT.CB.}$ = 1,6/. Наименьшее значение $\chi^2_{\rm CT.CB.}$ было достигнуто, когда фоновым служило распределение по $M_{\pi p}$, полученное в событиях, сгенерированных по каскадной модели для пионов, давших вклад в область корреляции. Ограничения на величины малых масс $M_{\rm m}\pi$ для отбора таких пионов в каскадной модели выбирались такими же, как и в эксперименте.

На рис.5 в виде гистограммы представлено распределение по эффективной массе М _{пр} для пионов, давших вклад в область корреляции в СС -центральных взаимодействиях. Сплошная линия аппроксимирующая кривая /6/.

В результате аппроксимации экспериментального распределения для отношения /7/ получено значение $0,24\pm0,04$ / $\chi^2_{CT.CB.}$ = = 0,86/. Процедура подбора пар (π , p) такова, что пион берется в распределение только один раз. Поэтому величина отношения /7/, определяющего вклад Δ -изобар, равна фактически доле пионов, испущенных в распадах Δ^{++} -и Δ° -изобар относительно всех π^{\pm} -мезонов, взятых в распределение по М π_{p} .

151

Рис.5. Распределение по эффективной массе М_{пр} для пионов, дающих вклад в область корреляции. Сплошная линия – аппроксимирующая кривая /6/ с учетом резонансной функции Брейта-Вигнера /5/. Штриховая линия – фоновое распределение /каскадная модель/.

Как уже говорилось, для аппроксимации применялся также иной вид функции /6/:

$$\frac{\Delta N}{\Delta M} = a \cdot F_{BW} (M) + (1 - a) F_{\phi OH} (M)$$
(8)

/для этого случая вклад фона отмечен на рис.5 штриховой линией/ и другие формы записи резонансной функции Брейта-Вигнера /19/

$$\tilde{F}_{BW}(M) = \frac{M_{\Delta} \cdot M \cdot \Gamma}{(M^2 - M_{\Delta}^2)^2 + M_{\Delta}^2 \Gamma^2}$$
 /9/

или

$$\tilde{F}_{BW}(M) = \frac{M_{\Delta} \cdot \Gamma}{(M^2 - M_{\Delta}^2)^2 + M_{\Delta}^2 \Gamma^2}.$$
 /10/

Для ширины резонанса использовалось также выражение

$$\Gamma = \Gamma_{\Delta} \cdot \left(\frac{\mathbf{q}}{\mathbf{q}_{\Delta}}\right)^3. \tag{11}$$

Доля пионов от распадов Δ -изобар во всех случаях менялась в пределах /24÷33/% при $\chi^2_{\text{ст.св.}} = /0,8 \div 1,5/.$

Образование изобар в ядро-ядерных соударениях наблюдается впервые.

Анализ спектров поперечных импульсов пионов в СС-центральных взаимодействиях $^{/12/}$ свидетельствует о том, что полученная величина является нижней оценкой полного вклада /~70%/ Δ^{++} и Δ° -изобар в рождение, соответственно, π^{+} и π^{-} -мезонов.

Отметим, что возможность дополнительной проверки правильности примененных алгоритмов отбора пар (π, p) дает естественное предположение об изотопической однородности взаимодействующих ядер. В этом случае отношение числа наблюдаемых распадов $\Delta^{+} + \pi^{+} p$ к числу распадов $\Delta^{\circ} \to \pi^{-} p$ должно быть равно 3. Если теперь в измеренных событиях одинаковым образом ограничить импульсы $\pi^+ - \mu \pi^-$ мезонов /в области р $_{\pi^\pm} \leq 600$ МэВ/с у них приблизительно одинаковые условия идентификации/, то, хотя малая статистика не позволяет осуществить аппроксимацию, получается качественное согласие: отношение числа комбинаций в области массы изобары /1230+60/ МэВ N $_{\pi^+}/N_{\pi^-\pi^-}$ 2.

Анализ многочастичных корреляций, сравнение с теоретическими расчетами, выполненными, например, по каскадной модели, учитывающей, наряду с ограничением доступного фазового объема, также искажения, вносимые процедурами различных выборок, может быть полезным для изучения динамики множественных процессов. При этом для дальнейших исследований необходимо, в частности, учитывать в теоретических моделях эффекты интерференции тождественных частиц, взаимодействия в конечном состоянии.

выводы

В неупругих СТа и центральных СС-столкновениях при импульсе 4,2 ГэВ/с на нуклон наблюдается коррелированное испускание пионов. Экспериментальные распределения по эффективной массе групп из двух, трех и четырех тождественных π^+ - и π^- -мезонов, превышают фоновые распределения в области малых масс.

Корреляции в системах 3π и 4π не удается объяснить двухи трехчастичными корреляциями.

Пионы, давшие вклад в область корреляции, имеют, в основном, малые поперечные импульсы, что указывает на преимущественно изобарный механизм рождения π^{\pm} -мезонов.

Анализ совокупности экспериментальных данных свидетельствует об образовании мультиизобарных систем в многонуклонных ($\nu_N \sim 20$) ядро-ядерных взаимодействиях.

Авторы признательны М.И.Подгорецкому за полезные дискуссии и замечания, а также участникам сотрудничества по обработке фильмовой информации за помощь в получении экспериментального материала.

ЛИТЕРАТУРА

- 1. Балдин А.М. ЭЧАЯ, 1977, 8, с.429.
- 2. Wakamatsu M. Nuovo Cim., 1980, 56A, p.336.
- 3. Flaminio V. et al. CERN-HERA, 79-03, Geneva, 1979.
- 4. Ангелов Н. и др. ЯФ, 1980, 31, с.640.
- 5. Бумажнов В.А. и др. ЯФ, 1980, 32, с.1020.
- 6. Бацкович С. и др. ЯФ, 1980, 31, с.1234.
- 7. Копылов Г.И. ОИЯИ, P2-7211, Дубна, 1973; Kopylov G.I. et al. JINR, E2-9249, Dubna, 1975.

B

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники

19. Биофизика

Гаспарян А.П., Соломин А.Н., Чеплаков А.П. 1-84-312 Коррелированное испускание *ж*-мезонов во взаимодействиях ядер углерода с ядрами углерода и тантала при импульсе 4,2 ГэВ/с на нуклон

В неупругих СТа и центральных СС-взаимодействиях наблюдалось коррелированное испускание *п* -мезонов, имеющих малые поперечные импульсы. Корреляции в системах трех и четырех тождественных пионов не удается объяснить соответственно двухи трехчастичными корреляциями. Полученные данные сопоставлены с результатами расчетов, выполненных в рамках каскадной модели. Показано, что заметная доля скоррелированных пионов образуется в распадах $\Delta/1232/$ изобар.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

Gasparian A.P., Solomin A.N., Cheplakov A.P. 1-84-312The Correlated Emission of π -Mesons in C - Ta and C-C Collisions at 4.2 GeV/c per Nucleon

The correlated emission of charged pions has been studied in inelastic C-Ta and central C-C collisions. The correlations of three and four identical pions cannot be reduced to 2π and 3π correlations, respectively. Low P_T -mesons are observed to be correlated. A comparison with cascade model calculations has been made. It is shown that a significant part of pions is produced in Δ 's decays.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1984