

L346,6g

2461 84

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

1-84-103 27

Г.Н.Агакишиев¹, А.П.Гаспарян, Р.А.Кватадзе²

ПОИСК УЗКИХ ОСОБЕННОСТЕЙ В СПЕКТРАХ ЭФФЕКТИВНЫХ МАСС ДВУХ И ТРЕХ ПРОТОНОВ МЕТОДИКОЙ 2-МЕТРОВОЙ ПРОПАНОВОЙ КАМЕРЫ

 Институт физики АН АзССР, Баку
Институт физики высоких энергий ТГУ, Тбилиси

1. ВВЕДЕНИЕ

1

Поиск узких дибарионных резонансов имеет принципиальное значение для подтверждения гипотезы о существовании мультикварковых состояний. Обнаружение таких состояний также окажет влияние на понимание механизма кумулятивного эффекта ^{/1/}, где они могут косвенно проявляться в поведении структурных функций вторичных частиц, рожденных в глубоконеупругих ядерных взаимодействиях. В настоящее время широко обсуждаются возможные кандидаты на дибарионные состояния со странностью S = 0 в системе двух нуклонов с массами 2140 $\leq M_{NN} \leq 2450$ МэВ и ширинами /50-200/ МэВ и со странностью S =-1 в системе Λ -гиперон – нуклон с массами 2120 $\leq M_{\Lambda P} \leq 2360$ и ширинами /3-60/ МэВ.

Обзор экспериментальной и теоретической ситуации по А-нуклон системам подробно представлен в $^{/2/}$. Мы остановимся на дибарионах со странностью S = 0. Экспериментальные данные по этой проблеме были получены при исследовании NN-рассеяния $^{/3-7/}$, фоторасщепления дейтрона $^{/8-10/}$, пион-дейтронных взаимодействий $^{/11-13/}$. Имеются также экспериментальные данные по "низколежащим" резонансам, полученые методикой пузыръковых канер при исследовании взаимодействия гелия-4 с протонами при P_{He} = 8,6 ГэВ/с $^{/14/}$, π^- -мезонов с ядрами углерода при P_π = 5 ГэВ/с $^{/15/}$ и поглощению π^+ -мезонов ядрами фреона при T_{π} = 60 МэВ $^{/16/}$. В этих работах получены указания на существование узких дипротонных состояний с массами: M₁ = 2035 + 15 МэВ $^{/14/}$, M₂ = 2137 + 15 МэВ $^{/14/}$, M₃ = 1961 + 2 МэВ $^{/15/}$, M₄ = 2016 + 3 МэВ $^{/15/}$, M₅ = 2025 + 3 МэВ $^{/16/}$ и соответствующими ширинами: Γ_1 = 30 + 23 МэВ, Γ_2 = 59+20 МэВ, Γ_3 = 11 + 4 МэВ, Γ_4 = 30 + 14 МэВ; $\Gamma_5 \leq 5$ МэВ.

Недавно появилась работа /17/, выполненная методикой водородной пузырьковой камеры, в которой при исследовании различных реакций нейтрон-протонных взаимодействий при энергиях нейтронов /1- 5/ ГэВ в спектрах эффективных масс двух протонов наблюдались узкие особенности с массами /1936 + 2/ МэВ и /1962 + 3/ МэВ и ширинами, не превышающими 10 МэВ. Из данных ^{/14}-^{17/} следует, что существуют, по-видимому, только четыре кандидата в узкие дибарионные состояния с массами в области /1,93; 1,96; 2,03; 2,14/ ГэВ.

Существование дибарионных резонансов предсказывается различными моделями: мультикварковых объединений /18-22/, соединенных струн /23,24/, возбуждения ротационных степеней свободы двухнуклонной системы /25/, описания экспериментальных данных по пиондейтронным рассеяниям в области низких энергий /26/. Более подробную информацию обзорного типа можно найти в /27/.

© Объединенный институт ядерных исследований Дубна, 1984.

: 1

1

2. МЕТОДИКА

Исследование проводилось с помощью 2-метровой пропановой камеры ЛВЭ ОИЯИ. Использовались данные, накопленные международным сотрудничеством на лентах суммарных результатов для взаимодействий *т*-мезонов с ядрами углерода при 40 ГэВ/с и протонов, дейтронов, ядер гелия-4 и углерода с углеродом при 4,2 ГэВ/с на нуклон пучкового ядра. Всего было проанализировано ~17 тыс. *т*¹² С -взаимодействий и ~10 тыс. А¹² С-взаимодействий.

Для поиска узких дипротонных резонансов необходимо иметь высокое разрешение по эффективной массе. Если исследование спектров эффективных масс методикой пропановой камеры проводить для протонов в интервале импульсов $500 \ge P_p \ge 200$ МэВ/с, то разрешение по эффективной массе двух и трех протонов составит несколько МэВ. Это связано с тем, что протоны из этого интервала импульсов имеют пробеги в пропане $1 \le R \le 25$ см, т.е. практиче-ски все останавливаются в объеме камеры. Точность измерения импульсов по пробегу для таких протонов $\Delta p / p \le 2\%$, а пространственный угол определяется с точностью ~0,5°. Экспериментальное разрешение по эффективной массе двух протонов для интервалов $M_{pp} \le 1912$ МэВ, /1912 $\le M_{pp} \le 1937$ / МэВ и $M_{pp} \ge 1937$ МэВ оказалось равным /1,5; 2,6; 3,8/ МэВ соответственно.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

На рис.1 приведено распределение по эффективной массе двух протонов, полученное для взаимодействий π-, р, d, ⁴He, С с углеродом с образованием двух и более протонов при импульсе 500 ≥ P_p ≥ 200 МэВ/с. Величина Q = M_{pp} - 2m_p соответствует свободной распадной энергии. В распределение рис.1 входят 3755 комбинаций от π⁻C-взаимодействий и 5944 комбинаций для АС-столкновений. Формы распределений по величине Q для двух классов событий оказались подобными. Шаг по величине Q равен 5 МэВ.

Распределение аппроксимировалось набором трех брейт-вигнеровских форм

$$BW = \frac{M_R \Gamma_R M}{(M_R^2 - M^2)^2 + M_R^2 \Gamma_R^2},$$
 /1/

где M_R , Γ_R - масса и полная ширина резонанса, M - текущее значение массы, и фоновым распределением, которое получилось переборкой протонов из разных событий. Брейт-вигнеровские формы умножались на фон для учета влияния фазового объема. Первые два интервала по величине Q не использовались для аппроксимации. В этой области существенно влияние взаимодействия в конечном состоянии, которое нами не учитывалось в фоновом распределении. На рис.1 сплошной линией показан результат аппроксимации, штриховой -

Рис.1. Распределение по эффективной массе двух протонов с импульсами 500 $\geq P_p \geq 200$ MэB/c, $Q = M_{pp} - 2m_p$.

Рис.2. Распределение по эффективной массе трех протонов с импульсами $600 \ge P_p \ge 200$ МэВ/с, $\mathbf{Q} = M_{ppp} - 3 m_p$.

Таблінца

Параметры предполагаемых резонансов в двухпротонной системе, $\chi^2 / N = 1, 2$.

	R ₁	R ₂	R ₃	фон
М /МэВ/	1926+1,4	1964+3,6	2026+6,6	-
Г/МэВ/	11,0+1,9	32,4 <u>+</u> 3,2	31,9+5,2	-
a /%/	3,3+0,5	9,0 <u>+</u> 1,0	4,0+0,9	83,7 <u>+</u> 0,7

вклад фона $/\chi^2/N = 1,2/.$ В таблице представлены подобранные величины M_R , Γ_R для предполагаемых резонансов и их относительные вклады α .

На рис.2 представлен спектр эффективных масс трех протонов в тех же событиях. В распределение на рис.2 входят 1528 комбинаций от π С-взаимодействий и 3620 комбинаций для AC-столкновений. Шаг по величине Q = M_{ppp} - 3m_p равен 7,5 МэВ. В качестве указания на эффект можно рассматривать выбросы в районе /2,90÷2,95/ ГэВ.

ЗАКЛЮЧЕНИЕ

Следует отметить перспективность поиска и исследований многопротонных состояний с помощью пузырьковых камер большого размера с относительно высокой тормозной способностью для протонов. Целесообразно использование пузырьковых камер с рабочими жидкостями в виде пропана, смесей водорода с неоном, пропана с фреоном. Использование более тяжелых жидкостей, например, ксенона, уже нецелесообразно вследствие заметного ухудшения разрешения по эффективной массе и возможных искажений из-за перерассеяний протонов в тяжелом ядре.

В настоящее время сотрудничество по обработке снимков с 2метровой пропановой камеры располагает ~1,5 млн.снимков, полученных при экспозициях в пучках протонов и легких релятивистских ядер в интервале импульсов на нуклон снаряда /2-10/ ГэВ/с. Путем визуального просмотра около 1 млн. снимков можно отобрать не менее 100 тыс. событий с числом протонов $n_p \ge 2$. Экспериментальная обработка такого материала позволит поставить исследования по проблеме узких низколежащих многопротонных состояний на количественную основу с рекордным разрешением по эффективной массе.

. Авторы считают своим приятным долгом выразить благодарность коллективу сотрудничества по обработке снимков с 2-метровой пропановой камеры ОИЯИ за помощь в получении и обработке экспериментального материала. Авторы также благодарны А.М.Балдину, Л.А.Диденко, И.А.Ивановской, Е.Н.Кладницкой, М.И.Соловьеву и А.П.Чепшакову за полезные обсуждения и замечания.

ЛИТЕРАТУРА

- 1. Балдин А.М. ОИЯИ, Р7-5808, Дубна, 1971; Краткие сообщения по физике, 1971, 1, с.35; Progress in Particle and Nuclear Physics, 1980, 4, р.95; Ставинский В.С. ЭЧАЯ, 1979, 10,с.949.
- Shahbazian B.A. Proc.of the Intern.Conf.on Hypernuclear and Kaon Physics, Heidelberg, Germany, 1982, p.287; JINR, E1-82-446, Dubna, 1982; Nucl.Phys., 1982, A374, p.73.
- Auer I.P. et al. Phys.Rev., 1981, D24, p.2008; Phys.Lett., 1977, B67, p.113.
- 4. Aprile E. et al. SIN Phys.Rep., 1981, 3, p.78.
- 5. Борисов Н.С. и др. ЖЭТФ, 1981, 81, с.1583.
- Bystricky J., Lehar E. Nucleon-Nucleon Scattering Data, Karlsruhe, 1978.
- Yokosawa A. Proceedings of the Meeting on Two-nucleon Systems and Dibaryon Resonances, Hiroshima, Japan, 1979, ANL-HEP-CP-80-01; Phys.Rep., 1980, 64, p.47.
- 8. Kamae T. et al. Phys.Rev.Lett., 1977, 38, p.468.
- 9. Ikeda H. et al. Phys.Rev.Lett., 1979, 42, p.1321.

- 10. Baba K. et al. Phys.Rev.C, 1983, 28, p.286.
- 11. Arvieux J. et al. SIN News Letters, 1980, 13, p.28.
- 12. Hoffiezer J.H. et al. Phys.Rev., 1981, C23, p.407.
- 13. Kanai K. et al. Prog.Theor.Phys., 1979, 62, p.153.
- 14. Glagolev V.V. et al. JINR, E1-83-59, Dubna, 1983; ОИЯИ, P1-83-565, Дубна, 1983.
- 15. Байрамов А.А. и др. ОИЯИ, Р1-83-207, Дубна, 1983.
- 16. Веребрюсов В.С. и др. Препринт ИТЭФ, № 273, М., 1964.
- 17. Бешлиу К. и др. ОИЯИ, Д1-83-815, Дубна, 1983.
- 18. Jaffe R.L. Phys.Rev.Lett., 1977, 38, p.195.
- 19. Lichtenberg D.B. Lett.Nuovo Cimento, 1978, 23, p.339.
- 20. Матвеев В.А. ОИЯИ, Д1-2-12036, Дубна, 1978, с.137.
- 21. Matveev V.A., Sorba P. Nuovo Cimento, 1976, A45, p.257.
- 22. Mulders P.J., Aerts A.T., Swart J.J. Phys.Rev., 1980, D21, p.2653.
- 23. Ishida S., Oda M. Prog. Theor. Phys., 1979, 61, p.1401.
- 24. Imachi et al. Prog.Theor.Phys., 1976, 55, p.551.
- 25. MacGregor M.H. Phys.Rev., 1979, D20, p.1616.
- 26. Ferreira E., Perer Munguia G.A. PUC Report 05/81, Brasil.
- 27. Макаров М.М. УФН, 1982, 136, 2, с.185; Лапидус Л.И. ОИЯИ, P2-11762, Дубна, 1978; Ableev V.G. et al. JINR, E1-82-777, Dubna, 1982.

Рукопись поступила в издательский отдел 17 февраля 1984 года

4

· НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7 р. 40 к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8 р. 00 к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3 р. 50 к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3 р. 00 к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5 p. 00 ĸ.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2 р. 50 к.
Д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2 р. 50 к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3 р. 60 к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5 р. 40 к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3 р. 20 к.
P18-82-117	Труды IV совещания по использованию новых ядерно- Физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна. 1982.	1 р. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5 р. 00 к.
Д2,4-83-179	Труды ХУ Международной школы молодых ученых по физике высоких энергий. Дубна, 1982.	4 р. 80 к.
	Труды УШ Всесоюзного совещания по ускорителям заряженных частиц. Протвино, 1982 /2 тома/	11 р. 40 к.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике. Дубна, 1982.	2 р. 50 к.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р. 55 к.
Д2,13-83-689	Труды рабочего совещания по пробленам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
Заказы	на упомянутые книги могут быть направлены ло 101000 Москва, Главпочтамт, п/я 79	адресу:

Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика	
_		
1.	Экспериментальная физика высоких энергии	
2.	Теоретическая физика высоких энергий	
3.	Экспериментальная нейтронная физика	
4.	Теоретическая физика низких энергий	
5۰	Математика	
6.	Ядерная спектроскопия и радиохимия	
7.	Физика тяжелых ионов	
8.	Криогеника	
9.	Ускорители	
10.	Автоматизация обработки экспериментальных данных	
11.	Вычислительная математика и техника	
12.	Химия	
13.	Техника физического эксперимента	
14.	Исследования твердых тел и жидкостей ядерными методами	
15.	Экспериментальная физика ядерных реакций при низких энергиях	
16.	Дозиметрия и физика защиты	
17.	Теория конденсированного состояния	
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники	
19.	Биофизика	

Агакишиев Г.Н., Гаспарян А.П., Кватадзе Р.А. 1-84-103 Поиск узких особенностей в спектрах эффективных масс двух и трех протонов методикой 2-метровой пропановой камеры

Проведен анализ спектров эффективных масс двух и трех протонов во взаимодействиях #⁻-мезонов при 40 ГэВ/с и легких релятивистских ядер при 4,2 ГэВ/с на нуклон с ядрами углерода методикой пропановой пузырьковой камеры. Получены указания на существование узких особенностей с шириной Г~ -/10-30/ МэВ при значениях эффективных масс 1,93; 1,96 и 2,95 МэВ. Предлагается экспериментальное исследование низколежащих многопротонных систем с разрешением по эффективной массе ΔM ≤ 5 МэВ.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1984

Перевод О.С.Виноградовой

Agakishiev H.N., Gasparian A.P., Kvatadze R.A. Search for Narrow Properties in Effective Mass Spectra of Two and Three Protons Using the Technique of Two-Meter Propane Chamber

Effective mass spectra of two and three protons are analysed in the interactions of π -mesons at 40 GeV/c and of light relativistic nuclei at 4.2 GeV/c per nucleon with carbon nuclei using the technique of the propane bubble chamber. The indications are obtained as to the existence of narrow properties with $\Gamma \sim /10-30/$ MeV for 1.93; 1.96 and 2.95 MeV effective masses. The experimental investigation of low-lying multiproton systems with resolution over effective mass $\Delta M < 5$ MeV is proposed.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1984