СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

C3Y38 5-732

24/17-45

1 - 8393

66712-75

В.И.Богатин, Е.Л.Григорьев, Ю.В.Кангрополь, В.Ф.Литвин, О.В.Ложкин, Ю.П.Яковлев

СИСТЕМАТИКА СЕЧЕНИЙ ФРАГМЕНТАЦИИ

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

1 - 8393

В.И.Богатин, Е.Л.Григорьев, Ю.В.Кангрополь, В.Ф.Литвин, О.В.Ложкин, Ю.П.Яковлев²

СИСТЕМАТИКА СЕЧЕНИЙ ФРАГМЕНТАЦИИ

объединенный институт ядерных исследования БИБЛИОТЕКА

Радиевый институт им. В.Г.Хлопина.

² Ленинградский государственный университет им. А.А.Жданова.

1. ВВЕДЕНИЕ

Изучение явления фрагментации выявило ряд особенностей процессов, протекающих под действием частиц высоких энергий, которые указывают на заметную роль в образовании сложных частиц ядерных состояний, далеких от равновесия /1-3/.

Однако природа неравновесных процессов фрагментации еще не установлена. В значительной мере причнной этого является отсутствие систематики выходов продуктов расщепления ядер. Имеющиеся в литературе /4-5/ попытки построить зависимости выходов фрагментов от массы ядра-мишени оказались малоуспешными, что свидетельствует о существовании связи сечений фрагментации с более детальными свойствами ядра и фрагмента, чем полное число нуклонов.

Следует отметить, что систематика выходов фрагментов может быть полезной при использовании явления фрагментации в других областях науки, таких как космохимия, физика космических лучей, космическая биология, радиохимия, поиски ядер, лежащих на границе стабильности. В этих случаях возможность быстро и с разумной точностью оценить выходы фрагментов могла бы оказаться желательной.

Сейчас можно говорить лишь о начальном этапе создания систематики выходов фрагментов. Если для выходов остаточных ядер уже существует аппроксимация Рудстама ^{/6/}, дающая возможность предсказывать эти выходы с точностью до фактора 3, достаточной для ряда приложений, то для фрагментов подобной аппроксимации не существует.

Основные требования, которые мы предъявляем кискомой аппроксимации, сводятся к следующему:

1. Зависимость должна включать минимум данных о ядре и фрагменте.

2. Формула должна быть простой и удобной для быстрых оценок с удовлетворительной точностью.

На данном этапе мы не можем ставить перед собой цель получить формулу, наилучшим образом совпадающую с экспериментом во всем доступном изучению диапазоне масс ядер и фрагментов и энергий первичных протонов. Эта ограниченность задачи связана с двумя обстоятельствами:

1. Имеется большой разброс в экспериментальных данных, которые зачастую позволяют выявить лишь общий ход, например, функции возбуждения.

2. Мы считаем желательным, ввиду полного отсутствия удовлетворительной теории фрагментации, показать возможность построения систематики выходов фрагментов и продемонстрировать некоторые проблемы, связанные с измерением полных сечений фрагментации.

2. ВЫБОР ЭМПИРИЧЕСКОЙ ФОРМУЛЫ ДЛЯ АППРОКСИМАЦИИ ПОЛНЫХ СЕЧЕНИЙ ФРАГМЕНТАЦИИ

Для того чтобы подобрать формулу, которая давала бы оценку полного сечения фрагментации $\sigma / \phi p / в$ зависимости от числа нейтронов и протонов ядра-мишени и фрагмента, можно привести некоторые соображения, учитывающие новые экспериментальные факты, полученные при изучении фрагментации за последнее десятилетие. Эти соображения основаны не на строгом, в рамках каких-либо моделей, анализе явления, а лишь служат как указания на возможные причины появления тех или иных членов в предлагаемой формуле, подлежащей сопоставлению с экспериментом.

Упомянутые экспериментальные факты, которые мы используем при выборе формулы для $\sigma / \phi p /$, сводятся к следующему: Существует экспоненциальная зависимость отношения выходов фрагментов из двух мишеней-изотопов от третьей проекции изоспина фрагмента t^{/7,8/}.
 Имеет место зависимость сечения образования

2. Имеет место зависимость сечения образования фрагмента от величины третьей проекции изоспина ядрамишени Т₃^{7,8}.

3. При энергиях первичного протона Е более О,6 $\Gamma \ni B^{/9,10/}$ форма спектров фрагментов слабо зависит как от Е, так и, даже для более низких энергий, от массы А тяжелого или среднего ядра-мишени. Это означает, что имеет место приблизительное постоянство т.н. "эффективной температуры" θ , служащей для аппроксимации спектра фрагмента.

Далее речь будет идти только о сечениях испускания основной части фрагментов, т.е. так называемых "испарительных" нуклидов и только при бомбардировке ядер протонами. Мы будем предполагать, что явление испускания "испарительных" нуклидов, в основном, связано с распадом /в том числе и неравновесным/ возбужденного ядра на два тела.

В с.ц.н. для дифференциального сечения $d\sigma_{\rm pp}$ /d ϵ такого процесса можно записать:

$$\frac{d\sigma_{\oplus p}}{d\epsilon} \sim ||\mathbf{M}||^2 \rho_f (\mathbf{U} - \mathbf{Q} - \epsilon) \epsilon^{1/2}, \qquad /1/$$

где М - матричный элемент распада $A \to m_1 + m_2$ ядра с числом нуклонов А на фрагмент m_2 и ядро-остаток m_1 , U - энергия возбуждения ядра А, ϵ - энергия фрагмента, Q - энергия отделения фрагмента, ρ_f - плотность уровней ядра m_1 . $|M|^2$ можно выразить через сечение поглощения фрагмента $\sigma_c (\epsilon)^{/5/2}$:

$$\|\mathbf{M}\|^{2} \sim \frac{\sigma_{c}(\epsilon)}{\rho_{i}(\mathbf{U})} \epsilon^{1/2}$$
, /1'/

где ρ_i - плотность уровней ядра А.

Обычно
$$\frac{5}{2}$$
 полагают, что $\sigma_{c}(\epsilon)$ не зависит от $\frac{N-Z}{2} = T_{3}$, $\frac{n-z}{2} = t_{3}$ и от U /здесь N и Z - числа

нейтронов и протонов ядра $A_{,n}$ и z - числа нейтронов и протонов фрагмента/. Это означает, что для оценки $|M|^2$ используется оптический потенциал W, а значит, и коэффициент поглощения k_0 , не зависящий от U, T_3 , t_3 . Плотность уровней $\rho(U)$ очень слабо зависит от избытка нейтронов и этой зависимостью можно пренебречь $^{/5/}$. Поскольку, как следует из результатов работ $^{/7,B/}$, приближение, использующее независимость k_0 от U, T_3 , t_3 не оправдывается на опыте, а оптический потенциал для нуклонов зависит от изоспинов $^{/1/}$.

$$W = W_1 + W_2 \frac{(T \cdot t)}{A}, \qquad /2/$$

где Т - изоспин ядра, t - изоспин нуклона, в формулу /1'/ следует ввести поправку, учитывающую изменение сечения поглощения $\sigma_c(\epsilon)$ /а значит, и $|M|^2$ / за счет изменения коэффициента поглощения на величину k⁺, зависящую от U, T₃, t₃. В приближении (T-t) = =T₃·t₃ можно предположить, что поправка k⁺ имеет структуру, аналогичную /2/:

$$k^{+} = k_{1}(U, \epsilon, m_{1}, m_{2}) + k_{2}(U, \epsilon, m_{1}, m_{2}) - \frac{T_{3(1)} \cdot t_{3}}{m_{1}m_{2}}, /3/$$

где $T_{3(1)} = T_3 - t_3$. В силу симметрии задачи относительно $m_1 \ \text{и} \ m_2$ можно записать следующие соотношения:

$$k_{i} (U, \epsilon, m_{1}, m_{2}) = k_{i} (U, \epsilon, m_{2}, m_{1})$$

$$k_{i} \sim \omega_{1}(r) \cdot \omega_{2}(r),$$

$$/4/$$

где

6

$$\begin{split} & \frac{3}{4\pi r \, {}^3_{0}(j)} ; \quad r \leq R_j = r_{0(j)} \, m \, {}^{1/3}_j \\ & \omega_j(r) = \{ \begin{array}{c} 0 \\ 0 \\ \end{array} \, & 0 \\ \end{array} \, \quad \text{при} \, r > R_j \; . \end{split}$$

Ограничиваясь анализом случая только S-волны, дополнительное поглощение от k^+ будем определять множителем при $\sigma_c(\epsilon)$

$$\eta^{+} = \exp\{\int_{0}^{\infty} k^{+}(r) dr\} = \exp\{\int_{0}^{R_{1}+R_{2}} k^{+}(r) dr,$$

т.е. η^+ будет иметь экспоненциальный характер зависимости от t_3 , имеющей место в эксперименте 7,8/.

Как показано в 77/, зависимость формы спектра фрагмента от T_3 ядра-мишени невелика, и этой зависимостью для оценки полного сечения $\sigma/$ фр/ в первом приближении следует пренебречь. Можно также предположить, что k_i зависят от m_1 и m_2 , как от

 $\mu = \frac{m_1 m_2}{m_1 + m_2} = \frac{m_1 m_2}{A}$ - приведенной массы фрагмента.

В этом приближении мы можем получить следующее выражение для поправочного множителя

$$\eta^{+} \approx \exp\{\frac{(R_{1} + R_{2})}{r_{0(1)}^{3}r_{0(2)}^{3}} [a(U, \mu) + b(U, \mu) \frac{T_{3(1)}t_{3}}{m_{1}m_{2}}]\}.$$
 /5/

Для фрагментов во всех дальнейших вычислениях примем $r_{0(2)} = 1,4$ и, кроме того, учтем, что величина U есть функция энергии Е. Имея это в виду, перепишем формулу /5/:

$$\eta^{+} \simeq \exp\{\frac{(R_{1}+R_{2})}{r_{0(1)}^{3}} [\alpha(E,\mu)+\beta(E,\mu)\frac{T_{3(1)}t_{3}}{m_{1}m_{2}}, /5'/$$

где коэффициенты a и β подлежат определению из эксперимента.

римсита. В приближении $\sigma_{c}(\epsilon) = \pi r_{0}^{2} A^{2/3} (1 - \frac{B}{\epsilon})$, где $\epsilon \ge B$, а B - кулоновский барьер для фрагмента $\frac{5}{6}$, и для равновесных значений ρ_{f} и ρ_{i} , как известно $\frac{8,9}{6}$, получаются результаты, противоречащие эксперименту. Обыч-

но отклонения от равновесности формы спектра учитывают введением эффективной температуры θ , значительно превышающей равновесную, т.е. считают, что

$$\rho_{\mathbf{f}}(\mathbf{U}-\mathbf{Q}-\epsilon)/\rho_{\mathbf{i}}(\mathbf{U}) \ge \exp\{-\frac{\epsilon+\mathbf{Q}}{\theta}\}.$$

Тогда, полагая, что зависимость матричного элемента М от U, входящая в k⁺, тоже эффективно учитывает и неравновесность распадающейся системы, для $d\sigma_{dp}(\epsilon)/d\epsilon$ получим соотношение:

$$\frac{\mathrm{d}\sigma_{\mathrm{d}\mathrm{p}\mathrm{p}}(\epsilon)}{\mathrm{d}\epsilon} \sim r_0^2 \mathrm{A}^{2/3} \frac{\epsilon - \mathrm{B}}{\theta^2} \eta^+ \exp\{\frac{-(\epsilon + \mathrm{Q})}{\theta}\}.$$

Интегрируя /2'/ по є, получим

$$r_{\phi p} \sim r_0^2 A^{2/3} \eta^+ f(\phi p)$$

где функция f/фр/ учитывает зависимость $\sigma/фp/$ от $-\frac{Q+B}{Q}$.

Для ядер, лежащих вблизи линии стабильности, величина Q_+B как функция (n,z) фрагмента с хорошей точностью сохраняется при изменении (N,Z) ядра-мишени вдоль линии стабильности, т.е. можно считать, что $exp\{-(Q+B)/\theta\} \approx f/ \phi p/.$

Для ядер, лежащих далеко от линии стабильности, соотношение $\exp\{-(Q+B)/\theta\} \approx f / \phi p /$ может стать слишком грубым для некоторых фрагментов. Для подбора *а* и β в формуле /2/ мы приняли, чтог₀ и г₀(1), в соответствии с /12/, в среднем, принимают значения:

1,4 - если
$$A, m_1 \le 27$$

1,3 - если $27 \le A, m_1 \le 63,5$ /6/
1,2 - если $63,5 \le A, m_1$

Из рис. б где приведены функции возбуждения $\sigma / \phi p / для^{18} \mathcal{F}(t_3 = 0)$, следует, что для коэффициента $a(E, \mu)$ можно предположить /при E > 0,2 ГэВ/ следующие свойства: $a(E, \mu) < 0$; $|a(E, \mu)|$ уменьшается с ростом E, что позволяет воспользоваться для $a(E, \mu)$ разложением по обратным степеням E:

$$a(E,\mu) = a_0(\mu) + \frac{a_1(\mu)}{E} + \frac{a_2(\mu)}{E^2} + \dots$$
 /7/

Ограничиваясь в разложении /7/ первыми двумя членами /что снижает точность при малых Е /, из анализа данных по сечениям σ (¹⁸ F) , σ (³ H) , σ (⁷ Be)^{/5/}, для коэффициентов α и β получаем следующие оценки:

$$\frac{a(E, \mu)}{\mu} = -(0,0072 \pm 0,0010) - \frac{0,0432 \pm 0,0050}{E}$$

$$\frac{\beta(E,\mu)}{\mu} = +4,32 \pm 0,20.$$

Искомая зависимость, связывающая σ /фр/ с N и Z ядра-мишени и (n, z) фрагмента приобретает следующий вид:

$$\sigma (\phi p) = r_0^2 A^{2/3} f(\phi p) \exp\{\mu \frac{R_1 + R_2}{r_{0(1)}^3} [-(0,0072 \pm 0,0010) - \frac{0,0432 \pm 0,0050}{E} + (4,32\pm0,20) \frac{T_{3(1)} \cdot t_3}{m_1 + m_2}]\}$$

/ $m_1 + m_2 = A$, $T_{3(1)} = \frac{N-Z}{2} - \frac{n-z}{2}$, $t_3 = \frac{n-z}{2}$ Е - веднницах ГэВ/ при значениях r_0 и $r_{0(1)}$, указанных в /6/. При подборе параметров формулы /9/ мы ограничились условием $m_2 \le \frac{1}{3}A$, что вызвано стремлением считать фрагментом достаточно малую часть исходного ядра.

В табл. 1 приведены значения f /фр/ для некоторых фрагментов, полученные из сопоставления формулы /9/ с экспериментальными данными для ядер-мишеней, лежащих на линии стабильности $^{5,13/}$. С этими значения-ми f /фр/ были вычислены функции возбуждения $\sigma/фp/$ для легких нейтроноизбыточных фрагментов 3 H , 8 Li , нейтрононедостаточного фрагмента 7 Be итяжелых фраг-

ТАБЛИЦА І

Значения функции ƒ (фр) мон для некоторых фратментов

Фрагмент	m2	t,	f(фр)мб	н Примечание
2 _H	2	0	100	Е =0.157+0.19 Гэн
з _Н	3	+1/2	3.52 <u>+</u> 0.8	Emin =0.45 ГэВ
^З не	3	-1/2	5.04 ± I.0	Emin =0.19 ToB
⁴ He	4	D	40.0 <u>+</u> I0.0	Е ≯ I.О ГэВ
⁶ He	6	+I	0.I3 <u>+</u> 0.06	Е ≯ І.О ГэВ
7 _{Be}	7	-1/2	0.74 ± 0.20	$E_{min} = 0.4 \Gamma \vartheta B$
7 L i	7	+I/2	0.77 <u>+</u> 0.15	E = I,O ГэВ
9Li	9	+3/2	0.016 <u>+</u> 0.04	Е = 2.8 ГэВ
13 N	13	-1/2	0.08 <u>+</u> 0.02	Emin = 0.94 ToB
17 N	17	+3/2	0.026 <u>+</u> 0.007	Е = 2.8 ГэВ
16 _C	16	+2	0.023 <u>+</u> 0.006	Е = 2.8 ГэВ
18 F	18	0	0.20 <u>+</u> 0.04	Е≽ І.О ГэВ
22 Na	22	0	0.16 <u>+</u> 0.02	Е≽ I.О ГэВ
²⁴ Na	24	+I	0.089+0.011 0.105 <u>+</u> 0.015	des Ag C Ag

ментов ¹⁸ F и ²⁴ Na, показанные на *рис. 1-7.* Можно видеть, что формула /9/ позволяет оценивать сечения фрагментов в широком диапазоне энергий Е. Для тех фрагментов и ядер-мишеней, для которых пока не существует подробных измерений функций возбуждения, в *табл. 2* приведены экспериментальные и рассчитанные по формуле /9/ отношения сечений при различных энергиях Е, вплоть до ЗОО ГэВ.

В табл. З даны отнощения выходов зеркальных изобар - фрагментов, образующихся при бомбардировке различных легких и тяжелых ядер протонами. Величины

ТАБЛИЦА 2 Отношения сечений для ряда фрагментов при различных значениях энергия протонов Е ГэВ

_	Фрагмент	Ядро-мишень		ଗ(E,)/ଗ(F,) эксп.	G(E,)/6(E,)	расч.
_	⁶ He	Cu) H Ag Pb) H	E _I =0.94 E ₂ =I.84	0.50 0.57 ±2 0.48	20%	0.64 0.54 0.47	
	⁹ Lı	Ti Cy Ag Ld Pr W U	E _I =I.0 E ₂ =2.8	0.305 0.240 0.210 0.210 0.175 0.210 0.203	± 25%	0.510 0.470 0.320 0.290 0.290 0.260 0.240	
	7 _{Be}	59 Co H	$E_1 = 3.0; E_2 = 29.0$ $E_1 = 11.5; E_2 = 300$	0 0.69 <u>+0</u> 0 0.85 <u>+</u> 0	10 12	0.78 0,93	
	1 ⁶ C	Ti Cu Ag La Pr W U	E ₁ =1.0 E ₂ =2.8	0.328 0.211 0.160 0.144 0.160 0.118 0.170	<u>+</u> 25%	0.350 0.280 0.140 0.115 0.114 0.090 0.080	
_	¹³ /	SI V H JAN H Pho H JAN H JAN H JAN H JAN H	$E_{I}=3.0; E_{2}=29.0$ $E_{i}=1.0$ $E_{i}=1.84$ $E_{I}=1.0$ $E_{2}=2.9$	0 0.62+0 0.40 0.30 0.10 0.33 0.26 0.21 0.07 0.20	_10 _±15%	0.66 0.34 0.25 0.18 0.24 0.17 0.11 0.10	
at refers	¹⁷ γ	Ti Cu Ag La Pr W U	G _I =I.0 G ₂ =2.8	0.40 0.23 0.16 0.16 0.14 0.11 0.11 0.17	<u>+</u> 25%	0.34 0.27 0.13 0.10 0.10 0.08 0.07	

Экспериментальные данные взяты из /5/, /13/, /14/, /15/.

ТАБЛИЦА З Отношения сечений зеркальных изобар (f(t₃)=f(-t₃))

Изобары	Ядро- мишень	Е, ГэВ	Расчет	Эксперимент
P/n	Aq	5.0	0,387	0.36I <u>+</u> 0.06
^З Н/Не ^З	Al	0.6	I.I9	1.18 <u>+</u> 0.20
н	Je	0.6	I.59	I.4I <u>+</u> 0.30
#	PB	0.6	6.69	6.IO <u>+</u> I,20
⁸ в/ ⁸ ь:	Aq	5,7	0.14	0.1-0.3
7 _{L:/7_{Be}}	Aq		3.02	3.90 <u>+</u> 0.60
⁸ B / ⁸ L:	u		0.04	0.06 <u>+</u> 0.0I5
7 Li / ⁷ Be	U	n	17.3	9.3
II _B /II _C	U	M	I8.9	13.3

Таблица 4

Отномение сечений фрагментов из двух изотопов ядер-мишеней.

Фрагме	HT IO _{B/} I	10 _B /II _B /8/		58 Ni /64 Ni /7/		112 sn /124 sn /7/	
-1	эксп.	расч.	эксп.	pacu.	эксп.	расч.	
IH	I.23 <u>+</u> 0.04	0.95		-	-	_	
2 _H	I.02 <u>+</u> 0.04	0.96	I.I4 <u>+</u> 0.05	0.95	I.25 <u>+</u> U.I3	0.95	
З _Н	0.84 <u>+</u> 0.04	0.80	0.66 <u>+</u> 0.03	0.69	0 .76<u>+</u>0. 06	0.61	
З _{Не}	I.I5 <u>+</u> 0.03	I.I7	I.52 <u>+</u> 0.08	1.3I	I.73 <u>+</u> 0.17	I.49	
$^{4}\mathrm{He}$	I.07 <u>+</u> 0.02	0.98	I.I7 <u>+</u> 0.03	0.95	I.62 <u>+</u> 6.05	0.97	
⁶ He	-	-	0.5 <u>+</u> 0.I	0.49	~0.30	0.38	
6 L i	-	-	I.34 <u>+</u> 0.13	0.98	I.26 <u>+</u> 0.07	0.99	
7Li	-	-	0.87 <u>+</u> 0.12	0.70	0.64 <u>+</u> 0.04	0.62	
⁸ ៤ដ	-	-	0.52 <u>+</u> 0.10	0.49	0 .35±0.0 6	0.38	
7_{Be}	-	-	2.2 <u>+</u> 0.5	I.4 0	_	-	

Рис.1-7. Зависимость сечений образования фрагментов из различных ядер как функция энергии налетающих протонов. Экспериментальные точки взяты из работ ^{/5,13-15/}. Сплошные кривые - расчет по формуле /9/.

сечений взяты из эксперимента и рассчитаны по формуле /9/ в приближении равенства f /фр/ для зеркальных изобар (f (+t₃) = f (-t₃)). Сравнение экспериментальных и расчетных отношений сечений, приведенных в *табл. 2* и 3, показывает, что формула /9/ пригодна для оценок этих отношений. Отметим при этом, что сечения выходов фрагментов, для которых приведены данные в *табл. 2* и 3, лежат в диапазоне от единиц до сотен *мбн.*

В табл. 4 показаны результаты сопоставления отношений сечений фрагментов из разделенных изотопов-мишеней с расчетом этих отношений по формуле /9/. В пределах точности эксперимента расчетные отношения, в основном, совпадают с экспериментальными, хотя имеются и отклонения, которые относятся к данным для фрагментов с $t_3 \leq 0$, для которых особенно велика разница в зна-

чениях Q на крайних изотопах Ni и S_n /7/. Этого эффекта следовало ожидать, исходя из той схемы получения формулы /9/, которую мы использовали, несмотря на возможное выравнивание энергий отделения каскадным процессом.

Таким образом, значения параметров a и β , подобранные для фрагментов ³ H , ⁷ Be, ¹⁸F и ядер-мишеней от Al до Pb, оказываются пригодными для оценок сечений большого числа фрагментов из ядер-мишеней от ¹⁰B до U.

3. ЗАКЛЮЧЕНИЕ

Формула /9/ позволяет с достаточной для ее приложений точностью оценивать выходы испарительных нуклидов при бомбардировке ядер от ¹⁰В до ²³⁸ U прото-

Puc. 3

нами с энергией от O,2 до ЗОО ГэВ. Большой диапазон данных, описываемых формулой /9/, позволяет предположить, что эта формула не только является удобной записью зависимости сечения от числа нуклонов в ядре и фрагменте и энергии первичных протонов, но и содержит физическую информацию о процессе фрагментации. По-видимому, независимость σ /фр/ в пределах точности экспериментальных данных по сечениям фрагментации, которые были нам доступны для анализа, от характеристик, отличающихся от A , T_3 и r_0 , может служить указанием на то, что процесс фрагментации сопровождается сильной перестройкой ядра. Таким образом, изучение сечений образования "медленных" фрагментов может дать информацию о релаксационных явлениях в сильновозбужденных нуклонных системах, особенно при энергиях пучка протонов ниже 1 ГэВ, где отклонения параметра

 θ от предсказываемых каскадно-испарительной теорией температур ядра особенно велики /4,5,9/ Что касается изучения структуры ядра, то, по-видимому, эксперименты по квазиупругому выбиванию фрагментов дают более непосредственную информацию, чем измерения полных сечений фрагментации. Из приведенных на *рис. 1-7* и в *табл. 2-4* данных видно, что для того, чтобы уловить более тонкие детали поведения σ /фр/, чем те, которые описываются формулой /9/, необходимо существенно повысить точность измерения функций возбуждения одновременно для большого числа легких и тяжелых фрагментов, используя, например, технику $\Delta E - E - \bar{E}$ телескопов /7/

При малой точности измерений даже изучение деталей спектров фрагментов не может гарантировать извлечения надежной информации о структуре тяжелых ядер. В виде примера укажем на то, что такие эффекты,

18

как некоторое различие спектров фрагментов, образованных на мишенях-изотопах одного элемента $^{7/}$, и различие спектров фрагментов-изотопов одного элемента, образованных из одного ядра-мишени, могут быть на качественном уровне поняты, если учесть в формуле /3/ второе приближение, приводящее к зависимости k^+ от ϵ .

Авторы выражают признательность Н.А.Перфилову за интерес к данной работе, В.К.Лукьянову, В.Д.Тонееву, Ю.А.Батусову - за полезные обсуждения, замечания и советы, участникам семинара Ленинградского университета /6-7 июня 1974 г./ по изучению свойств ядерной поверхности методами высоких энергий, на котором эта работа была доложена, за внимание.

Литература

- 1. Y.Fujmoto, Y.Yamaguchi. Progr. Theor. Phys., 5, 76 (1950).
- 2. Е.Л. Григорьев и др. ЯФ, 2, 97 /1965/.
- 3. В.В.Авдейчиков и др. Препринт ОИЯИ, Р-2093, Дубна, 1965.
- О.В.Ложкин, Н.А.Перфилов: В сб. "Ядерная химия", изд-во "Наука", М., 1965.
 В.С.Барашенков, В.Д.Тонеев. "Взаимодействие вы-
- 5. В.С.Барашенков, В.Д.Тонеев. "Взаимодействие высокознергетических частиц и ядер с ядрами", М., Атомиздат, 1972.
- 6. G.Rudstam. Th.D. Thesis, Uppsala (1956).
- 7. В.И.Богатин и др. ЯФ, 19, 32 /1974/.
- 8. В.В.Авдейчиков и др. Сообщение ОИЯИ, 1-7894, 1974.
- 9. О.В.Ложкин, Ю.П.Яковлев. Изв. АН СССР, 31, 315 /1967/.
- 10. Е.Л. Григорьев и др. ЯФ, 6, 696 /1967/.
- 11. О.Бор, Б.Моттельсон. Структура атомного ядра, т. 1, изд-во "Мир", М., 1971.
- 12. Л.Элтон. Размеры ядер. М., ИЛ., 1962.
- 13. Ф.П.Денисов, В.Н.Мехедов. Яберные реакции при высоких энергиях, М., Атомиздат, 1972.
- 14. L.Husain, S.Katcoff. Phys.Rev., C7, 2452 (1973).
- 15. S.Katcoff et al. Phys.Rev.Lett., 30, 1221 (1973).
- 16. R.G.Korteling et al. Phys.Rev., C7, 1611 (1974).

Рукопись поступила в издательский отдел 18 ноября 1974 года.