ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C-125

24/17.45 1 - 8385

620/2-75

М.Сабэу, А.Н.Соломин, Н.Г.Фадеев, Г.Ранфт, Й.Ранфт

АЗИМУТАЛЬНЫЕ КОРРЕЛЯЦИИ В МОДЕЛИ НЕЗАВИСИМО РОЖДАЮЩИХСЯ КЛАСТЕРОВ

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

1 - 8385

М.Сабэу, А.Н.Соломин, Н.Г.Фадеев, Г.Ранфт,* Й.Ранфт*

АЗИМУТАЛЬНЫЕ КОРРЕЛЯЦИИ В МОДЕЛИ НЕЗАВИСИМО РОЖДАЮЩИХСЯ КЛАСТЕРОВ

Направлено в ЯФ

Ousserlights Entry Respires Accessonable SUSJHOTEKA

^{*} Университет им. Карла Маркса, Лейпциг

§1. Введение

В работах, приведенных в обзоре $^{/1/}$, азимутальные двухчастичные корреляции были предметом исследования при низких и средних энергиях. Недавно появились экспериментальные данные по азимутальным корреляциям при высоких энергиях: 40 $^{/2-4/}$, 102 $^{/5,6/}$ 205 $^{/6/}$ ГэВ/с и энергиях ISR $^{/5c/}$. Результаты этих исследований обычно приводятся в виде инклюзивных и полуинклюзивных распределений по азимутальному углу ϕ между поперечными составляющими импульсов двух частиц:

$$\cos\phi = \frac{(\bar{\mathbf{P}}_{1\downarrow} \cdot \bar{\mathbf{P}}_{2\downarrow})}{|\bar{\mathbf{P}}_{1\downarrow}| \cdot |\bar{\mathbf{P}}_{2\downarrow}|},$$

а также в виде зависимости коэффициента асимметрии В от различных переменных /разности быстрот Δy двух частиц, поперечных импульсов частиц $P_{\perp 1}, P_{\perp 2}$ и др./:

$$B = \frac{N(\phi > \frac{\pi}{2}) - N(\phi < \frac{\pi}{2})}{N_{tot}} = \frac{\pi/2}{\frac{1}{2}} \frac{d\sigma}{d\phi} d\phi - \int_{0}^{\pi/2} \frac{d\sigma}{d\phi} d\phi}{\int_{0}^{\pi} \frac{d\sigma}{d\phi} d\phi}$$

где N($\phi \ge \frac{\pi}{2}$) - число пар частиц, имеющих угол $\phi \ge \frac{\pi}{2}$, N_{tot} - полное число пар исследуемых частиц, $d\sigma/d\phi$ - дифференциальное сечение инклюзивных реакций.

При высоких энергиях зависимость коэффициента В от Δy обнаруживает две характерные особенности:

1. При больших разностях быстрот $(\Delta y \ge 1, 5)$ параметр слабо меняется /в пределах 5-8%/ с изменением Δy независимо от зарядовой комбинации пары частиц. Этот эффект дальних корреляций (long range correlations) изучен в рамках кластерной модели и обусловливается в основном законами сохранения энергии-импульса.

2. При малых значениях быстрот $(|\Delta y| < 1)$ наблюдается эффект ближних корреляций (short range correlations), зависящий от зарядовой комбинации пары частиц. Для нетождественных пар частиц коэффициент В при $|\Delta y| = 0$ значительно больше, чем для тождественных: В $^{+-}(\Delta y \sim 0 = 0, 10, B^{\pm \pm}(\Delta y \sim 0) = 0, 02^{-6/6}$. Указание на аналогичный эффект получено также при энергиях FNAL $^{-6/6}$ и ISR $^{-8/6}$.

При фиксированной множественности (n) азимутальные распределения можно записать из кинематических соображений в виде ^{/9/}:

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\phi} = 1 - \frac{\pi}{2} \operatorname{B}\cos\phi\,, \qquad \qquad /1.1/$$

где

$$B = \frac{1}{n-1}$$
, /1.2/

т.е. В не зависит от быстрот рассматриваемых частиц. Однако наличие ближних корреляций между частицами приводит к тому, что простое поведение вида $(1 - const \cos \phi)$ не выполняется для малых Δy .

В настоящее время экспериментальное изучение азимутальных корреляций имеет важное значение, например, для усовершенствования мультиреджионной модели с целью исследования природы полюса Померанчука.

Вычисления, выполненные для частиц из области пионизации в предположении, что померон является простым полюсом, приводят к зависимости $d\sigma/d\phi$ в форме $(1-const/s cos \phi)^{/10/}$. Обнаружение отклонения экспериментального распределения от предлагаемой формы явилось бы указанием на более сложную природу полюса Померанчука. Предсказания для области фрагментации, основанные на доминирующей роли полюса Померанчука, приводят к отсутствию зависимости от угла ϕ двухчастичных распределений /11/. Зависимость сложного характера появляется, если предполагать, что померон не является простым полюсом.

Данные экспериментов показывают, что для $|\Delta y| \ge 2$ /т.е. по крайней мере одна из частиц находится вне центральной области/ имеет место зависимость от угла ϕ в виде /1.1/. Другая особенность азимутальных корреляций, отмеченная выше, может служить вторым аргументом в пользу более сложной природы полюса Померанчука.

В разделе 2 приводятся данные по инклюзивным и полуинклюзивным азимутальным корреляциям в $\pi^- p$ взаимодействиях при импульсе 40 ГэВ/с. Исследование зависимости коэффициента В для тождественных и нетождественных частиц в области $|\Delta y| \sim 0$ приводится в разделе 3. Расчеты выполнены на основе кластерной модели с учетом тождественности π -мезонов. В 4-ом разделе на основе модели независимых кластеров (independent cluster model) получена зависимость коэффициента асимметрии от разности быстрот исследуемых частиц. Сравнение экспериментальных данных и теоретических предсказаний изложено в 5 разделе.

2. Азимутальные корреляции в π⁻ р - взаимодействиях при импульсе 40 ГэВ/с

Экспериментальные данные основываются на анализе ~6000 неупругих $\pi^- p$ взаимодействий, зарегистрированных в двухметровой пропановой пузырьковой камере, облученной в пучке π^- -мезонов с импульсом 40 ГзВ/с. Работы по методической части эксперимента были опубликованы ранее $^{/2}, 12/$.

В настоящей работе представлены данные по азимутальным распределениям в двухчастичных инклюзивных и полуинклюзивных реакциях: $\pi^{-}p \rightarrow \pi^{\pm}\pi^{\pm} + \dots$ $\pi^{-}p \rightarrow \pi^{+}\pi^{-} + \dots,$

а также зависимость коэффициента асимметрии B от разности быстрот Δy частиц в этих реакциях.

На рис. І приводятся распределения $dN/d\phi = \frac{1}{\pi\sigma} d\sigma/d\phi$ в зависимости от угла ϕ для тождественных й нетождественных пар π -мезонов в реакциях с разной множественностью п.

Как отмечалось в $^{/4,12/}$, при малых углах ϕ наблюдается разница в поведении распределений $dN/d\phi$ для $\pi^{\pm}\pi^{\pm}$ и $\pi^{+}\pi^{-}$ -пар. Чтобы подчеркнуть этот эффект, распределения для тождественных пар /см. рис. 1-2/ были нормированы на соответствующие распределения для $\pi^{+}\pi^{-}$ пар в интервале $\frac{\pi}{2} \leq \phi \leq \pi$. Эта разница в поведении $dN/d\phi$ сохраняется, если исключнть нз рассмотрения события с малой множественностью /где вклад дифракционной компоненты велик/, и имеет

место в полуинклюзивных реакциях n > 6.

Данные, представленные на рис. 2 для тех же множественностей показывают, что разное поведение $dN/d\phi$ обусловлено парами π -мезонов, имеющих близкие значения быстрот ($|\Delta y| \le 0.4$). Для частиц с большой разностью быстрот ($|\Delta y| \ge 1.6$) $dN/d\phi$ имеет одинаковое поведение, не зависящее от зарядовой комбинации пары и при любых множественностях п.

На рис. З и в *табл.* 1 приводится зависимость коэффициента асимметрии В от разности быстрот Δy тождественных и нетождественных частиц. Из этих данных видно, что параметр В при малых значениях Δy значительно больше для $\pi^+\pi^-$ -пар частиц, чем для $\pi^\pm \pi^\pm$, а для больших разностей быстрот величина В в пределах ошибок не зависит от зарядовой комбинации пары и слабо зависит от разности быстрот Δy .

На рис. 2 и 3 для полуинклюзивных реакций приводятся данные только для n = 6,8, где статистические ошибки еще позволяют наблюдать эффект.

Рис. 1. Распределения $dN/d\phi$ в зависимости от азимутального угла ϕ для тождественных и нетождественных пар π -мезонов в π -p- реакциях с разной множественностью при энергии 40 ГэВ/с. /На рис. 1-3 введены обозначения: ϕ - для тождественных, δ - для нетождественных пар заряженных пионов/.

Таким образом, экспериментальные данные по азимутальным корреляциям между пионами в $\pi^- p$ -взаимодействиях при импульсе 40 ГэВ/с обнаруживают эффекты как близких, так и дальних корреляций, которые наблюдались и в других экспериментах при энергиях FNAL и ISR.

В заключение этого раздела следует отметить, что при сравнении данных по корреляциям в π^- р -взаимодействиях при импульсе 4О ГэВ/с с мультипериферической кластерной моделью в работах $^{/4,12/}$ расчетные кривые не учитывали эффекта тождественности частиц,

Рис. 2. То же, что на рис. 1, для двух значений разности быстрот: $|\Delta y| < 0,4$ $|\Delta y| \ge 1,6$.

Рис. 3. Зависимость коэффициента асимметрии В от разности быстрот $|\Delta y|$ пождественных и непождественных пар π - мезонов в π - р - реакциях с разной множественностью при энергии 40 ГэВ/с.

что, возможно, явилось причиной неудовлетворительного описания азимутальных корреляций в области малых углов ϕ /в то время как двухчастичные корреляции по быстротам частиц показали качественное согласие с основными положениями этой модели/.

3. Азимутальные корреляции между тождественными и нетождественными частицами, рождающимися из одного кластера

В статистической бутстрап-модели коэффициент асимметрии определяется числом частиц ν , на которое распадается кластер $^{/13/}$:

$$B_{1F} = \frac{1}{\nu - 1} \,. \tag{3.1/}$$

Этот результат, полученный с применением распределения Больцмана, не учитывает тождественности частиц. Используя статистический подход Хагедорна и Ранфта ^{/14/}, который они применили для получения одночастичных спектров, можно получить двухчастичные распределения и выражение для коэффициента асимметрии В с учетом тождественности частиц.

Согласно (14), вероятность $W(\nu_{ik} = n)$ обнаружить $\nu_{ik} = n$ частиц сорта k с импульсами \vec{P}_i есть *:

$$W(\nu_{ik} = n) = \frac{z(\nu_{ik} = n)}{Z},$$
 /3.2/

где Z - полная функция состояния системы:

$$Z = \sum_{\nu_{ik}} \prod_{ik} x_{ik}^{\nu_{ik}}, x_{ik} = \exp[-\frac{1}{T}\sqrt{\overline{P}_{i}^{2} + m_{k}^{2}}].$$

* Здесь используются определения и обозначения, принятые в /14/ /приложение 1/. Функция состояния Z может быть представлена в виде:

$$Z = \prod_{i,k} z_{ik} = \prod_{k} (\prod_{i \neq k} z_{ik}) = \prod_{k \neq k} z_{k}, \qquad /3.4/$$

где

$$z_{ik} = \sum_{\nu} x_{ik}^{\nu} = \frac{1}{1 - x_{ik}}$$
 /3.5/

формально можно считать функцией состояния газа, состоящего из неопределенного числа Бозе-частиц одного сорта k и одинаковыми импульсами \bar{P}_i , и

$$z_{k} = \prod_{\alpha} z_{\alpha k} \equiv z_{i k} \prod_{\alpha} \frac{z_{\alpha k}}{z_{i k}}, \qquad (3.6)$$

т.е. функция состояния системы, состоящей из одного сорта (k) частиц. $z(\nu_{ik} = n)$ - функция состояния Z, вычисленная для случая $\nu_{ik} = n$. Она может быть получена из $z_k(\nu_{ik} = n)$, при условии, что $z_{ik} = \sum_{ik} x^{\nu_{ik}}$ для $\nu_{ik} = n$ есть просто x_{ik}^n , поэтому

$$z_{k} (\nu_{ik} = n) = x_{ik}^{n} \frac{z_{k}}{z_{ik}}.$$
 (3.7/

Также в тождестве $Z = z_k (\frac{z}{z_k})$, заменив множитель z_k на $z_k (\nu_{ik} = n)$ из /3.7/, получим:

$$z (\nu_{ik} = n) = \frac{x_{ik}^{n}}{z_{ik}} Z$$
. /3.8/

Вероятность $W(\nu_{ik}=n)$, определяемая уравнением /3.2/, может быть теперь записана в виде

$$W(\nu_{ik} = n) = \frac{x_{ik}^{n}}{z_{ik}}$$
. /3.9/

Аналогично, вероятность иметь $\nu_{j\ell}$ частиц сорта ℓ с импульсами P_j определяется выражением:

$$W(v_{j\ell} = m) = \frac{z(v_{j\ell} = m)}{Z}$$
. (3.10/

Вероятность $\mathbb{W}(\nu_{ik} = n, \nu_{j\ell} = m)$ обнаружить п частиц сорта k с импульсами \overline{P}_i и m частиц сорта ℓ с импульсами \overline{P}_i , есть:

$$W(\nu_{ik} = n, \nu_{j\ell} = m) = \frac{z(\nu_{ik} = n, \nu_{j\ell} = m)}{Z}$$
. /3.11/

Так же как и /3.8/, функция состояния в этом случае может быть представлена в виде:

$$z (\nu_{ik} = n, \nu_{j\ell} = m) = \frac{x_{ik}^{n}}{z_{ik}} \frac{x^{m}}{z_{j\ell}} Z,$$
 (3.12/

поэтому для вероятности /3.11/ получается следующее выражение:

$$W(\nu_{ik} = n, \nu_{j\ell} = m) = \frac{z_{ik}^{n}}{z_{ik}} \frac{x_{j\ell}^{m}}{z_{j\ell}}.$$
 (3.13/

Двухчастичное импульсное распределение для нетождественных пар частиц получается путем усреднения произведения $\nu_{ik} \cdot \nu_{i\ell}$:

$$<\nu_{ik}, \nu_{j\ell} >= \sum_{n,m} nm \Psi (\nu_{ik} = n, \nu_{j\ell} = m) = \frac{x_{ik}}{1 - x_{ik}} \frac{x_{j\ell}}{1 - x_{j\ell}} . /3.14/$$

Для тождественных пар частиц, имеющих одинаковый импульс P_i ($\nu_{ik} = \nu_{j\ell} = n$), импульсное распределение можно записать в виде:

$$\langle \nu_{ik} (\nu_{ik}-1) \rangle = \sum_{n} n(n-1) W(\nu_{ik}=n).$$
 /3.15/

С учетом /3.9/ и /3.11/ в результате суммирования /3.15/ получается:

$$\langle \nu_{ik}(\nu_{ik}-1)\rangle = \frac{1}{z_{ik}}\sum_{n}^{\infty} n(n-1)x_{ik}^{n} = \frac{2x_{ik}^{2}}{(1-x_{ik})^{2}}.$$
 /3.16/

Таким образом, совместное импульсное распределение для тождественных пар частиц содержит фактор 2 в числителе, если обе частицы имеют одинаковый импульс и, в частности, азимутальный угол между поперечными составляющими импульсов $\phi = 0$. Коэффициент асимметрии, возникающей из тождественности частиц, принято обозначать В s /15/.

Поскольку более удобно работать с непрерывными распределениями, то множитель 2 в /3.16/ можно заменить функцией вида:

$$f = 1 + \exp \left[-\frac{1}{2(\Delta p)^2} (\vec{P}_1 - \vec{P}_2)^2 \right],$$
 /3.17/

которая для пар частиц с одинаковыми импульсами воспроизводит фактор 2. Численное значение константы Δp в /3.17/ можно оценить из соотношения неопределенности: $\Delta p \simeq 200 \ M \rightarrow B/c$ при $\Delta x \simeq 1/m_{\pi} / m_{\pi}$ - масса пиона/.

Вводя сферические координаты, двухчастичное распределение /3.16/ можно представить в виде ($|P_i| = p_i$):

$$I^{s} = \int \exp\left[-\frac{1}{T}\left(\sqrt{p_{1}^{2} + m_{1}^{2}} + \sqrt{p_{2}^{2} + m_{2}^{2}}\right)\right] (1 + \exp\left[-\frac{1}{2(\Delta p)^{2}} \times \frac{1}{2(\Delta p)^{2}} + \frac{1}{2(\Delta p)^{2}} +$$

$$\times p_{1}^{2} dp_{1} p_{2}^{2} dp_{2} d\cos\theta_{1} d\cos\theta_{2} d\phi - \frac{1}{(1 - \exp[-\frac{1}{T}\sqrt{p_{1}^{2} + m_{1}^{2}}])(1 - \exp[-\frac{1}{T}\sqrt{p_{2}^{2} + m_{2}^{2}}]}$$

Здесь рассматривается зависимость /3.18/ только от угла ϕ . Грубая оценка /3.18/ впредположении: $\theta_1 = \theta_2 \sim \frac{\pi}{2}$, $|\bar{P}_1| \simeq |\bar{P}_2| \simeq 0.4 \ \Gamma \ni B/c$, $E_1 = E_2 \simeq 0.4 \ \Gamma \ni B$, $d_{P_1} = 0.2 \ \Gamma \ni B/c$, если пренебречь вкладом знаменателя, показывает, что 1^{s} может быть аппроксимирована выражением вида:

$$I^{s} \sim 1 + e^{-4(1 - \cos \phi)}$$
. /3.19/

Кроме В^s, полный коэффициент асимметрии определяется также асимметрией $B_{1F}^{(k)}$ /3.1/, возникающей из кинематики распада кластера. Для так называемых средних файерболов, введенных в /16/, величина $B_{1F}^{(k)}$ оценивается /7/

$$B_{1F}^{(k)} = \langle \frac{1}{\nu - 1} \rangle = 0.131.$$
 /3.20/

Таким образом, распределение по азимутальному углу ϕ для частиц от распада одного файербола можно представить в виде:

$$\frac{d\sigma}{d\phi} = 1 - \frac{\pi}{2} B_{1F}^{(k)} \cos \phi$$
для нетождественных частиц,
/3.21/

 $\frac{d\sigma}{\phi} = (1 - \frac{\pi}{2} B_{1F}^{(\kappa)} \cos \phi) I^{\beta}$ для тождественных частиц.

На рис. 4 приведены распределения по углу ϕ , вычисленные по формулам /3.21/. Несмотря на грубую оценку выражения /3.18/, разница в поведении $d\sigma/d\phi$ при $\phi \sim 0$ остается значительной для тождественных и нетождественных пар частиц. Аналогичное поведение наблюдается и в экспериментальных распределениях $d N/d\phi$ /см. рис. 2/ при условии $|\Delta y| \leq 0.4$ /это

Рис. 4. Распределения $dN/d\phi$ в зависимости от угла ф для тождественных и нетождественных пар π - мезонов, рождающихся из одного файербола /расчетные кривые/.

условие означает, что частицы рождаются преимущественно из одного файербола/.

Оценка коэффициента асимметрии из выражения /3.21/ дает следующее:

$$B_{1F^{2}} = 0,154$$
 для нетождественных частиц
 $B_{1F^{2}} = -0.062$ для тождественных частиц. /3.22/

Соответствующие экспериментальные значения для $|\Delta y| \leq 0.4$:

$$B^{+-} = 0,107 \pm 0,03$$

 $B^{--} = -0,053 \pm 0,04$

Приведенные теоретические и экспериментальные результаты и их сравнение указывают на возможную интерпретацию экспериментальных данных с точки зрения эффекта тождественности частиц.

4. Азимутальные корреляции в модели независимо рождающихся кластеров

Для вычисления азимутальных корреляций в инклюзивных реакциях можно воспользоваться подходом, разработанным в /16/ для полуинклюзивных реакций.

Распределение по азимутальному углу для реакций, в которых рождаются n заряженных частиц, записывается для тождественных пар, например, $\pi^-\pi^-$, в виде:

. / 1

$$\rho_{2\pi^{-}\pi^{-}}^{(\mathbf{n})}(\phi, \mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{s}) = 2\pi \frac{1}{\mathbf{n}-1} \tilde{Q}_{2}^{\mathbf{av}}(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{s}) \frac{\langle \nu_{-}(\nu_{-}-1) \rangle_{\mathbf{n}}}{\langle \nu_{-} \rangle_{\mathbf{n}}} \times (1 - \frac{\pi}{2} \mathbf{B}_{1\mathbf{F}}^{(\mathbf{n})} \cos \phi) + 2\pi \tilde{Q}_{1}^{\mathbf{av}}(\mathbf{y}_{1}, \mathbf{s}) \tilde{Q}_{1}^{\mathbf{av}}(\mathbf{y}_{2}, \mathbf{s}) \times$$

$$\times \left[1 - \frac{1}{n-1} \frac{\langle \nu_{-}(\nu_{-}-1) \rangle_{n}}{\langle \nu_{-} \rangle_{n}}\right] \left(1 - \frac{\pi}{2} B_{2F}^{(n)} \cos\phi\right), \qquad /4.1/$$

для нетождественных частиц $\pi^+\pi^-$:

$$\rho_{2\pi^{+}\pi^{-}}^{(n)}(\phi, y_{+}, y_{-}, s) = 2\pi \frac{1}{n_{-}} \tilde{Q}_{2}^{av}(y_{+}, y_{-}, s) \frac{\langle \nu | \nu_{-} \rangle_{n}}{\langle \nu_{-} \rangle_{n}} \times (1 - \frac{\pi}{2} B_{1F}^{(n)} \cos \phi) + 2\pi \tilde{Q}_{1}^{av}(y_{+}, s) \tilde{Q}_{1}^{av}(y_{-}, s) [1 - \frac{1}{n_{-}} \frac{\langle \nu_{+} \nu_{-} \rangle_{n}}{\langle \nu_{-} \rangle_{n}}] \times (1 - \frac{\pi}{2} B_{2F}^{(n)} \cos \phi), \qquad (4.2/$$

где ν , ν_+ , ν_- - число заряженных положительных и отрицательных частиц из распада одного файербола; n, n₊, n₋число заряженных положительных и отрицательных частиц в реакции; $\langle \nu \rangle_n$ - среднее число частиц, на которые распадается файербол в n - частичной реакции; $\tilde{Q}_1^{av}(y,s)$, $\tilde{Q}_2^{av}(y_1,y_2,s)$ - одно- и двухчастичные распределения по быстротам частиц, испущенных из одного среднего файербола /16/.

Для получения выражения для коэффициента асимметрии в инклюзивных реакциях необходимо произвести усреднение по всем п. В результате усреднения получается:

для тождественных частиц

$$< \mathbf{B}_{--}^{(\mathbf{n})}(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{s}) > =$$

$$= \left[\frac{1}{\langle \mathbf{n}_{-}-\mathbf{l} \rangle} \widetilde{\mathbf{Q}}_{2}^{av}(\mathbf{y}_{1}^{-}, \mathbf{y}_{2}^{-}, \mathbf{s}) \frac{\langle \nu_{-}(\nu_{-}-\mathbf{l}) \rangle}{\langle \nu_{-} \rangle} < \mathbf{B}_{1 \, \mathrm{F}}^{\mathrm{like}} > +$$

$$+ \widetilde{\mathbf{Q}}_{1}^{av}(\mathbf{y}_{1}^{-}, \mathbf{s}) \widetilde{\mathbf{Q}}_{1}^{av}(\mathbf{y}_{2}^{-}, \mathbf{s}) (1 - \frac{1}{\langle \mathbf{n}_{-}-\mathbf{l} \rangle} \frac{\langle \nu_{-}(\nu_{-}-\mathbf{l}) \rangle}{\langle \nu_{-} \rangle}) < \mathbf{B}_{2 \, \mathrm{F}}^{>} \right] \times$$

$$\times \left[\widetilde{\mathbf{Q}}_{1}^{av}(\mathbf{y}_{1}^{-}, \mathbf{s}) \widetilde{\mathbf{Q}}_{1}^{av}(\mathbf{y}_{2}^{-}, \mathbf{s}) (1 - \frac{1}{\langle \mathbf{n}_{-}-\mathbf{l} \rangle} \frac{\langle \nu_{-}(\nu_{-}-\mathbf{l}) \rangle}{\langle \nu_{-} \rangle}) +$$

$$+\frac{1}{} \tilde{Q}_{2}^{av} (y_{1}, y_{2}, s) \frac{<\nu(\nu_{-1})}{<\nu_{-}>}]^{-1}$$

для нетождественных частиц:

$$< \mathbf{B}_{+-}^{(n)}(y_{+}, y_{-}, s) > =$$

$$= \left[\frac{1}{} \frac{<\nu_{+}\nu_{-}>}{<\nu_{-}>} \widetilde{Q}_{2}^{av}(y_{+}, y_{-}, s) < \mathbf{B}_{1F}^{unlike} + \widetilde{Q}_{1}^{av}(y_{+}, s) \widetilde{Q}_{1}^{av}(y_{-}, s) \times \right]$$

$$\times (1 - \frac{1}{\langle n_{-} \rangle} - \frac{\langle \nu_{+} \nu_{-} \rangle}{\langle \nu_{-} \rangle}) \langle B_{2F} \rangle] \times$$
 (4.4/

$$\times \left[\frac{1}{\langle \mathbf{n} \rangle} \frac{\langle \nu_{+} \nu_{-} \rangle}{\langle \nu_{-} \rangle} \widetilde{Q}_{2}^{\mathbf{av}}(\mathbf{y}_{+},\mathbf{y}_{-},\mathbf{s}) + \widetilde{Q}_{1}^{\mathbf{av}}(\mathbf{y}_{+},\mathbf{s}) \widetilde{Q}_{1}^{\mathbf{av}}(\mathbf{y}_{-},\mathbf{s}) (1 - \frac{1}{\langle \mathbf{n} \rangle} \frac{\langle \nu_{+} \nu_{-} \rangle}{\langle \nu_{-} \rangle})\right],$$

где $< B_{1F}^{like} >, < B_{1F}^{unlike} >$ определяются выражением /3.2/, $< B_{2F}^{>}$ - коэффициент асимметрии для частиц, рождающихся из двух файерболов.

Предполагая, что < B_{2 F} > определяется в основном законами сохранения энергии импульса, будем иметь:

$$< B_{2F} > = \frac{1}{}$$
, $n_{tot} = n_0 + n_+ + n_-$.
статистической бутстрап-модели было получено /17/:
 $<\nu_-(\nu_- - 1) > - <\nu_- >^2 = -0.75 <\nu_->$, /4.5/

B

Предполагая, что в среднем файербол распадается на 4 частицы, получаем:

 $<\nu_{+}\nu_{-}>-<\nu_{1}><\nu_{-}>=0.25<\nu_{-}>.$

$$\frac{\langle \nu_{-}(\nu_{-}-1)\rangle}{\langle \nu_{-}\rangle} = 0.5, \quad \frac{\langle \nu_{-}\nu_{-}\rangle}{\langle \nu_{-}\rangle} = 1.45.$$
 (4.6/

В табл. II собраны все необходимые величины для оценки коэффициента асимметрии по формулам /4.3/ и /4.4/. В таблице III приведены результаты такой оценки для случае ву $_1 = y_2 = 0$ и $y_1 = 0$, $y_2 = 2,5$. В последнем случае разность быстрот частиц достаточно велика $|\Delta y| \sim -2,5$,т.е. вклад частиц от распада одного файербола незначителен и значение параметра В определяется частицами из двух файерболов, т.е. дальние корреляции / long range correlations / обусловлены в данной модели кинематикой распада файербола.

5. Заключение

В табл. / собраны экспериментальные данные для коэффициента асимметрии В для тождественных инетождественных пар *п*-мезонов при разных энергиях. Данные в табл. / для РР -столкновений при энергиях 1О2 и 205 ГэВ оценены из рисунков в работах ^{/5,6}/. На *рис.* 5 приведена зависимость параметра В от разности быстрот при этих энергиях.

Экспериментальные данные при разных энергиях 40, 102 и 205 ГэВ согласуются между собой и указывают на наличие ближних корреляций в распределениях по азимутальному углу ($\Delta y \sim 0$).

Эффект ближних корреляций, как видно из приведенных данных при импульсе 40 $\Gamma \mathcal{B}/c / puc. 1, 2/$, не зависит в инклюзивных реакциях от вклада событий с малой множественностью /т.е. от вклада дифракционных событий/ и проявляется также в полуинклюзивных реакциях с $n \geq \frac{\leq n}{2}$.

Рис. 5. Зависимость коэффициента асимметрии В от разности быстрот $|\Delta y|$ тождественных и нетождественных π - мезонов в инклюзивных pp - реакциях при энергиях 102 и 205 ГэВ/с.

	Экс	арименшал	виклюзив в инклюзив	ения козі нріх реакі	ффициентс тиях	і асиммет	nndi
Peak-	P L	V	y ≤ 0.5	~ K7	ગ	<u></u> 9. , 9 ₂]≤	0.5 y_k0.5, y_l= 2
Røh	/ LaB/c	, / B ^{±±}	B⁺-	$B^{\pm \pm}$	6.7	B²‡	b⁺⁻ b⁺⁺ b⁺
d- 11	40	-0,025	5 0.II7	0.055	0,072	-0° 017	0,102 0,059 0,082
		±0,01	010,0± 5	±0.017	±0.014	±0,017	±0,015±0,025±0,021
ΡΡ	102	0,025	0,083	0,055	0 .0 45		
		± 0,015	10 °0 7	±0,015	±0,015		
PP	205	0,03	0,08	0,05	0,05		
		10,0±	10,0	±0,01	±0,01		

Ταδλυψα

	Знс	н фф еох	н (наниа ас	Таблица еобходимъ симметрии	II. не для тес и по фор	оретическ мулам /4.	сой оценки .5/ и /4.6/		
P_nao. (FaB/c)	<404>	< "U" >	< B _{ic} >	õ ^{au} (0)	$\widetilde{q}_{1}^{\omega'}(t.5)$	õn (0,0)	õ2"(0,2.5)	1 - u - u - u - u - u - u - u	<u>1</u> 2.1-12
40	5.62	I,8I	0.135	0,260	0,078	0.IO8	0,0060	0,553	I.236
001	6,38	2.19	0.117	0.248	0,076	0.105	0,0058	0,457	0.840
200	7.65	2.82	0.095	0.218	0.072	0.100	0.0055	0.355	0.550
		E		Таблиц	ta 111.				
		l eopemu	ические з в инкл	начения кс Юзивных Г	о Эффициен Реакциях	та асимм	nnduə		
	Prago,	/ B	(0°0)	B(O	(0,	B	0.25)	ł	
	40	Ĩ	0.020	0.1	[8]	0.0	060	2	
	100		00°0	0.1	168	0.0	078		
	200		0.008	0.1	[54	0.0	064		
								ş	

Сравнение экспериментальных значений коэффициента асимметрии при разных энергиях с расчетами по модели независимых кластеров / табл. Ш, рис. 4/ указывает на их качественное согласие. Это означает, что ближние корреляции в распределениях по азимутальному углу в основном объясняются эффектом тождественности частиц.

Следует отметить, однако, что приведенные теоретические оценки достаточно грубы /в особенности оценка интеграла /3.19// и не претендуют на количественное описание экспериментальных данных. Согласие с данными эксперимента может быть улучшено как с помощью более точной оценки выражения /3.18/, так и изменением свойств кластеров/масса кластера,среднее число частиц из распада кластера и др./.

Дальнейшее изучение азимутальных корреляций в инклюзивных и полуинклюзивных реакциях необходимо как для улучшения имеющихся экспериментальных данных, так и для совершенствования теоретических моделей / в частности, для более точного определения параметров кластера/.

Считаем приятной необходимостью выразить свою благодарность В.Г.Гришину и Н.Н.Мельниковой за полезные обсуждения и критические замечания в проведении данной работы.

Литература

- I. J.Ranft. Correlations in Multiparticle Production. Karl Marx Univ. Preprint KMU-HEP 7408 (1974). Talk at the Vth International Symposium on Many Particle Hadrodynamics, June 4-10 Leipzig-Eisenach, DDR (1974).
- 2. Alma-Ata, Bucharest, Budapest, Dubna, Hanoi, Krakow, Moscow, Sofia, Tashkent, Tbilisi, Ulan-Bator coll. Nucl. Phys., B74, 1 (1974).
- 3. R.Blutner et al. Nucl. Phys., B78, 333 (1974).
- 4. M.Sabau . Contribution to the Vth Int. Symp. on Many Part. Hadrodyn., June 4-10 (1974), Leipzig-Eisenach, DDR.
- 5. C.M.Bromberg et al. Phys.Rev., D9, 1864 (1974).
 - b) C.M.Bromberg et al. Rochester-Michigan preprint UR-485 (1974).
 - c) M.Pratap et al. Phys.Rev.Lett., 33, 797 (1974). d) H.Dibon et al. Phys.Lett., B44, 313 (1973).

- 6. T.Ferbel. Contribution to the Vth Int. Symp. on Many Part. Hadrodyn., June 4-10 (1974), Leipzig-Eisenach, DDR.
- 7. G.Ranft, J.Ranft. Nuovo Cim. Lett., 10, 485 (1974).
- 8. H.Albrecht et al. Observation of Inelastic p.p. Collisions at the ISR with a Streamer Chamber, CERN preprint (1974), presented at the XVII Int. Conf. on High Energy Physics, London, July 1-10 (1974).
- M.C.Foster et al. Azimuthal Correlations of High Energy Products. Stony Brook preprint (1974).
 M.Pratap, J.C.Shaw. Phys.Rev., D8, 3839 (1973).
 D.Sivers. Argonne preprint ANL/HEP 7246 (1972).
- 10. A.Bassetto, M.Toller. Nuovo Cim.Lett., 2, 409 (1971).
- II. D.Z.Freedman et al. Phys.Rev.Lett., 26, 1197 (1971).
- 12. Алма-Ата, Будапешт, Бухарест, Дубна, Краков, Москва, София, Ташкент, Тбилиси, Улан-Батор, Ханой - сотрудничество. Препринт ОИЯИ, РІ-8269, Дубна, 1974.
- 13. E.M.Ilgenfritz, J.Kripfganz. Nucl. Phys., B62, 141 (1973).
- 14. R.Hagedorn, J.Ranft. Suppl. Nuovo Cim., 6, 169 (1968).
- 15. G.Goldhaber et al. Phys.Rev., 120, 300 (1960).
- I6. G.Ranft, J.Ranft. CERN preprint TH-1838 (1974).
- 17. H.J.Mohring et al. Karl Marx Univ. preprint KMU-HEP-7405 (1974).

Рукопись поступила в издательский отдел 15 ноября 1974 года.