Т- 506 объединенный институт ядерных исследований лаборатория высоких энергий

1 - 8366

ТОДОРОВ Петр Тодоров

СПЕКТР К⁰ - МЕЗОНОВ ВЫСОКИХ ЭНЕРГИЙ В ОПЫТАХ ПО РЕГЕНЕРАЦИИ КАОНОВ Специальность 01-04-01 - экспериментальная физика Автореферат диссертации на соискание ученой степени кандидата физико-математических наук (Диссертация написана на русском языке)

Работа выполнена в Лаборатории высоких энергий Объединенного института ядерных исследований.

いたいという

「「「「「「「「」」」」

Научный руководитель:

кандидат физико-математических наук старший научный сотрудник М.Ф.Лихачёв. Официальные оппоненты:

доктор физико-математических наук старший научный сотрудник D.A.Будагов, кандидат физико-математических наук

старший научный сотрудник В.Г.Гришин.

Ведущее научно-исследовательское учреждение:

Физический институт АН СССР им. П.Н.Лебедева. (Лаборатория фотомезонных процессов, Москва).

Автореферат разослан " 1974 г. Защита диссертации состоится " 1977 г. на заседании Ученого совета Лаборатории высоких энергий Объединенного института ядерных исследований, г. Дубна "Московской области.

С диссертацией можно ознакомиться в библиотеке ЛВЭ.

Ученый секретарь Совета кандидат физико-математических наук ММИАС

Манагер М.Ф. Лихачев

ТОДОРОВ Петр Тодоров

СПЕКТР К⁰- МЕЗОНОВ ВЫСОКИХ ЭНЕРГИЙ В ОПЫТАХ ПО РЕГЕНЕРАЦИИ КАОНОВ

Специальность 01-04-01 - экспериментальная физика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

(Диссертация написана на русском языке)

Объсдиненный инстит/т перных песлодований ENGINOTEKA

В проведенном на серпуховском ускорителе эксперименте по трансмиссионной регенерации К⁰ - К⁰ - мезонов на протонах /I-4/ использовался пучок К, - мезонов, рожденных на внутренней мишени ускорителя. Знание импульсного спектра и монитора являлось важным условием для получения физических результатов при изучении этого процесса. Основной целью эксперимента являлось измерение и исследование Энергетического поведения разности амплитуд упругого рассеяния вперед К⁰ и К⁰на протонах. конкретнее, модуля и фазы разности амплитуд рассеяния:

 $f^{\circ}(p) - f^{\circ}(p) \equiv |f^{\circ}(p) - f^{\circ}(p)| \exp\left\{i \cdot \arg\left(\overline{f}(p) - \overline{f}^{\circ}(p)\right)\right\},$

где $f'(\rho)$ и $\bar{f}'(\rho)$ - выплитуды упругого рассеяния вперед К⁰- и К⁰ - мезонов на ядрах мишени-регенератора при данном

р - импульсе К⁰- мезонов.

Введем следующие обозначения:

,S(p)- импульсный спектр падающих К⁰_L - мезонов;

М - монитор (число прошедших сквозь мишень К. - мезонов); $\mathcal{C}(\mathcal{R}_{\ell})$ - эффективность установки к регистрации $K^{0}_{\ell} \rightarrow \Pi^{+}\Pi^{-}$ распадов; G_t - полное сечение рассеяния К⁰- и К⁰- мезонов; K= / - волновое число К⁰ - мезона;

Д - длина регенератора;

Л_S=СВУ 5- распадная длина К⁰ - мезона;

Плотность рассеивающих центров;

 $\Delta m = \frac{(m_L - m_s)c^2}{L} - \text{ разность масс } K_L^0 - K_S^0 - \text{мезонов, выражен$ ная в обратных единицах времени;

$$\int_{S(L)}^{7} = \frac{1}{K_{S(L)}} \text{ величины, обратные временам жизни } K_{S}^{0} (K_{L}^{0}) - \text{ме-} \\ \text{зонов;} \\ \int_{S+-}^{7} \text{ парциальная ширина распада } K_{S}^{0} - \text{мезона на } \Pi^{+}\Pi^{-}; \\ = \frac{L}{M_{S}} - \text{длина регенератора в единицах распадных длин} \\ K_{S}^{0} - \text{мезона;} \\ \frac{1}{2} \left| \frac{1}{2} \right|_{+-}^{4} \text{ и } \Phi_{+-} - \text{ параметры нарушения CP - инвариантности в } \\ \text{распадах } K_{S}^{0} + \Pi^{+}\Pi^{-} \end{cases}$$

Разность амплитуд упругого рассеяния вперед К⁰- и \overline{K}^0 - мезонов связана с величиной $\rho(p)$ - амплитудой трансмиссионной регенерации на выходе мишени - регенератора следурщим образом: $\rho(p) = \int \rho(p) / exp [i \phi_p(p)] =$

$$= J_{i} : \frac{2(\hat{f}(p) - \hat{f}(p))}{\kappa} \Lambda_{s} \cdot N \frac{1 - exp[(i\Delta m \overline{\tau}_{s} - \frac{1}{2})e]}{\frac{1}{2} - i\Delta m \overline{\tau}_{s}} exp(-G_{t}N \frac{1}{2}), \quad (2)$$

$$\begin{split} \rho(\rho) & \text{можно найти, исследуя изменения интенсивности } \mathcal{K}^{o} \rightarrow \mathcal{T}^{+} \mathcal{T}^{-} \\ \text{распадов за мишеныр-регенератором в зависимости от собствен$$
ного времени жизни <math>t \mathcal{K}^{o} -мезонов, которая описывается формулой / 5-7 /: $\frac{d^{2} \mathcal{K}_{2} \mathcal{T}}{d \rho d t} (\rho, t) = \mathcal{M} \cdot S(\rho) \cdot \mathcal{E}(\rho, t) \cdot \mathcal{I}_{s+-}^{r} \left[|P(\rho)|^{2} \mathcal{L}^{-\mathcal{I}_{s}} t + |\mathcal{M}_{s+-}|^{2} \mathcal{L}^{-\mathcal{I}_{s}} t + \\ + 2|\rho(\rho)|/\eta_{s+-}|\mathcal{E}^{-\frac{\mathcal{I}_{s} + \mathcal{I}_{s}}{2}} \cdot t \cos(\Delta m t + \phi_{p}(\rho) - \phi_{s+-}) \right]. \end{split}$ (3)

В этом выражении величины $\int_{L_{s}} \int_{S} \Delta m_{s} / \eta_{+-} / \phi_{+-} , \int_{S+-} u$ звестны из других экспериментов.

Величины М, $S(\rho)$ и $\mathcal{E}(\rho, t)$ могут быть определены независимо от $/\rho(\rho)/$ и $\mathcal{C}_{\rho}(\rho)$ в том же эксперименте.

Таким образом, в выражении (13) неизвестными величинами оставится $\rho(\rho)/\mu\phi(\rho)$.

Исследование $f^{\circ}(\rho) - \bar{f}^{\circ}(\rho)$ позволяет проверить ряд теоретических моделей /8-13/. Используя известную связь между мнимой частью $f^{\circ}(\rho) - \bar{f}^{\circ}(\rho)$ и разностью полных сечений взаимодействий К⁰ и \bar{K}^{0} на ядрах мишени-регенератора, можно проверить выполнимость следствий, вытекающих из теоремы Померанчука /14/.

Независимое определение М и $S(\rho)$ от $/\rho(\rho)/$ и $\varphi_{\rho}(\rho)$ (например, на основе трехчастичных распадов K_{L}^{0} -мезонов) позволяет определить с высокой точностью модуль и фазу разности амплитуд.

С другой стороны, пучок K_L^0 - мезонов есть результат реакцим $P + A \ell \rightarrow K^o(\overline{K^o}) + X \rightarrow K_L^o + X$.

где X - сумма любых частиц, удовлетворяющих законам сохранения; т.е. Эта реакция является одночастичным инклюзивным процессом. Следовательно, изучение спектра К⁰_L - мезонов дает возможность проверить, проявляется ли при достигнутых энергиях масштабная инвариантность для этих частиц.

Теоретические идеи и модальные представления о проявлении масштабной инвариантности в высокоэнергетичных адрон-адронных процессах получили хорошур экспериментальнур основу в опытах на серпуховском ускорителе /15/. В этих опытах впервые было установлено, что отношение вероятности рождения К – мезонов и антипротонов к вероятности рождения П – мезонов является функцией P'_{Ruax} , где р – импульс рожденной частицы, а P_{Max} его максимальное значение. Для объяснения масштабной инвариантности Т.Бенеке, Т.Чу, С.Янг и Е.Йен /16/ предложили гипотезу предельной фрагментации. Согласно этой гипотезе в процессе взаимодействия налетающая частица и частица-мишень не теряют полностью свою индивидуальность, а только возбуждаются. Потом каждая из них распадается в своей системе координат. Продукты распада не зависят от природы другой частицы, и при стремлении квадрата полной энергии системы S' к бесконечности распределения продуктов распада стремятся к предельным распределениям, не зависящим от S'.

Р. Фейнман /17/ предложил партоннур модель и гипотезу о масштабной инвариантности, которур он вывел из партонной модели с помощьр качественных теоретических соображений. Он ввел новур переменнур $\mathcal{X} = \mathcal{L} q_z / v\overline{s}$, где q_z – продольная составляющая импульса в системе центра масс. Согласно этой гипотезе при $S \rightarrow \infty$ инвариантное дифференциальное сечение рождения частицы с импульсом q_z зависит только от q_z и \mathcal{X} :

$$\lim_{S \to \infty} \left[f(S, q_z, q_z) \right] = f(x, q_z).$$

$$(4)$$

В области фрагментации, где $|x| \gg 2\sqrt{m^2 + q_\perp^2}/\sqrt{5}$ (*m* - масса частицы с импульсом q), гипотеза предельной фрагментации полностью эквивалентна гипотезе масштабной инвариантности /18/.

В.А.Матвеев, Р.М.Мурадян и А.Н.Тавхелидзе /19/ на основе принципа автомодельности и обобщенного анализа размерностей тоже приходят к выводу, что при высоких энергиях в области фрагментации f является функцией только от x. и q_1 : $f = f(x, q_1)$. Таким образом, с точки зрения асимптотического поведения функции \pounds все эти теоретические гипотезы приводят к эквивалентным результатам.

На основании некоторых теоретических соображений /20,21/ принимается, что функцив *f* можно представить в виде

$$f(x,q_{1}) = A_{1} \exp(-A_{2} P_{1}^{\perp} - A_{3} x).$$
 (5)

Если в заданной области энергии масштабная инвариантность выполняется, то аппроксимация инклозивных спектров частиц по формуле (5) не должна зависеть от энергии первичных частиц.

В диссертации наши данные о форме импульсного спектра К⁰ -мезонов, рожденных при энергии первичных протонов 70 ГэВ, сопоставляются с аналогичными данными для Кт - мезонов, полученными в работах^{/22,23/} при энергиях протонов 19,2 и 24 ГэВ.

Диссертация состоит из шести глав.

Первая глава - введение. Она содержит постановку задачи, краткое изложение сущности теоретических моделей о масштабной инвариантности (§ I) и описание использования спектра и монитора при определении модуля и фазы разности амплитуд упругого рассеяния K^0 и \overline{K}^0 на протонах (§ 2).

Вторая глава посвящена общему описанию экспериментальной установки, работающей на линии с ЭЕМ (§ I), и программному обеспечению эксперимента (§ 2). В ней рассматривается работа магнитного искрового спектрометра в целом, а также устройство и работа его составных частей: магнита, искровых камер, систем сцинтилляционных счётчиков для запуска искровых камер, мюонного и электронного детекторов. Описаны программы, предназначенные для контроля работы спектрометра, приема и записи полезной информации на ЭЕМ, а также и программы обработки данных.

В третьей главе описан метод восстановления импульсного спектра.

Определяются виды спектров, которые используются в работе при обработке экспериментальных данных, определяются эффективности установки с помощью моделированных событий.

Далее в ней излагаются некоторые из существующих методов восстановления спектра K^0_L - мезонов на основе их трехчастичных распадов, в том числе и метод, использованный в данной реботе. Как известно, вычисление импульса K^0_L - мезона по кинематическим параметрам его трехчастичных распадов, когда известны импульсы двух вторичных заряженных частиц и направление K^0_L - мезона, приводит к двухзначному решению. Проблема заключается в нахождении распределения событий по истинным значениям импульсов K^0_L - мезонов при условии, что для каждого индивидуального события неизвестно, какое из двух найденных значений импульса является истинным и какое - ложным.Эта задача решается статистическими методами. Использованный нами метод основан на работе^{/24/}.

Четвертая глава посвящена обработке экспериментальных данных.

В ней рассматривается процедура обработки и даются критерии отбора $K^0_{\mathcal{H},3}$ - событий. Дается оценка примесей от других распадов. Показывается, что доля примесей невелика (I%) и ев при дальнейшем анализе можно было пренебречь. Этот факт иллострируется хорошим согласием в распределениях моделированных и экспериментально полученных $K^0_{\mathcal{H},3}$ - событий (рис. I). Строятся распределения экспериментальных и моделированных событий, необходимых для статистической обработки данных. Далее здесь рассматривается процедура обработки и даются критерии отбора $K^0_{3\pi}$ - событий.

Определяются геометрические эффективности детекторов мюонов и электронов. Описывается процедура отделения КЗП распадов от фоновых и рассмотрен вопрос о возможном влиянии оставшихся фоновых событий на физический результат, а именно, на матричный элемент К⁰ЗП - распада.

Целесообразность определения матричного элемента К⁰ЗП - распада продиктована большим разбросом экспериментальных мировых данных. В диссертации используется линейное приближение для описания зависимости матричного элемента от кинетической энергии нейтрального пиона в системе центра масс К⁰_L - мезона ^{/25/}. Найдено, что параметр наклона G_c равен

G. = -0,271=0,012.

В этой же главе описана процедура определения формы импульсного спектра К⁰_L - мезонов и монитора-полного числа К⁰_L - мезонов, прошедщих через регенератор.

Пятая глава посвящена физическим результатам и их обсужденив. Получены импульсный спектр и монитор K_L^0 – мезонов на основе анализа K_{A3}^0 – распадов. Исследована их зависимость от матричного элемента K_{A3}^0 – распада. Показано, что форма спектра устойчива к варьированив матричного элемента, а изменения величины монитора составляют одну статистическув ошибку, когда матричный элемент меняется в пределах, полученных в работе /26/ (табл.I).

Импульсный спектр и монитор получены также из анализа $K_{3\pi}^0$ – - распадов. Исследована зависимость спектра и монитора от матричного элемента $K_{3\pi}^0$ – распада. При варьировании матричного элемента в пределах,соответствующих основным мировым данным, форма спектра практически не меняется, а монитор меняется приблизительно на одну статистическур ошибку (табл.2).

8

Хорошее совпадение формы спектров и значений мониторов, полученных из анализа $K^{0}_{,\mu}$ з-и $K^{0}_{,3\pi}$ - распадов, дает возможность объединить эти результати. На рис.2 показан спектр $K^{0}_{,L}$ - мезонов, полученный совместно из $K^{0}_{,\mu}$ з-и $K^{0}_{,3\pi}$ - распадов.

С целью сравнения наших результатов с результатами, полученными в работах /22,23/ при энергии первичных протонов I9,2 и 24 ГэВ, соответствующие спектры были аппроксимированы с помощью формулы (5). Полученные результаты приведены в табл.3.

Удовлетворительное совпадение полученных значений параметров A2 и A3 для трех указанных Энергий определенно говорит о проявлении масштабной инвариантности для К⁰ - мезонов в исследуемой области энергий первичных протонов.

Исследована также зависимость модуля модифицированной разности амплитуд $F_{2,1}(p) = 2/\hat{f}(p) - \tilde{f}'(p)//K$ и фазы разности амплитуд $C_{2,1}^{*}(p) = arg(\hat{f}'(p) - \tilde{f}'(p))$ от монитора.

Зависимость $F_{2i}(p)$ от монитора показана на рис. 3 и в табл. 4.

Зависимости фазн $\varphi_{21}(p)$ и общей для всех импульсов фазн φ_{21} от монитора приведены в табл.5 и на рис.4 и 5.

ОСНОВНИЕ РЕЗУЛЬТАТЫ

Полученные в диссертации результаты можно разделить на две группы: методические и физические.

Методические результаты

Был создан ряд программ для обеспечения экспериментов на линии с ЭВМ: это программа контроля работы счётчиков в ходе накопления экспериментальных данных *FGM*; программа построения кривых задержанных совпадений для годоскопических моонных счётчиков; программа построения амплитудного спектра частиц, зарегистрированных детектором электронов *КОД-S*, и программа контроля работы установки в режиме набора статистики.

Эти программы позволили использовать более полно ЭЕМ в процессе наладки и подготовки установки к проведению на ускорителе ИФВЭ сеансов по набору первичных данных, а также контролировать нормальную работу аппаратуры во время проведения этих сеансов.В результате Эффективность использования времени на ускорителе по набору статистики достигала 80%.

Физические результаты

I. Впервые получен импульсный спектр K_L^0 - мезонов в интервале I4-50 ГэВ/с при энергии первичных протонов 70 ГэВ. Хорошая статистическая обеспеченность и доказанное отсутствие существенных систематических отклонений дали возможность использовать этот спектр как для изучения регенерации $K_L^0 - K_S^0$ - мезонов и трехчастичных распадов K_L^0 - мезонов, так и для проверки масштабной инвариантности при достигнутых энергиях. Имея в виду отсутствие в настоящее время данных по спектрам K_L^0 -мезонов, полученных на экспериментальном материале, соизмеримом с нашим, можно ожидать, что этот спектр будет полезен в будущем, когда такие данные появятся.

2. На основе этого спектра и данных из других работ получено экспериментальное подтверждение выполнимости гипотезы масштабной инвариантности для К-мезонов в интервале энергий первичных протонов от 19,2 до 70 ГзВ.

H

3. Полученный по $K_{\mathcal{A}3}^0 - \kappa K_{3\pi}^0$ – распадам монитор позволил определить с хорошей точностью модуль амплитуды регенерации $F_{\mathbf{A}4}(p) = 2/f(p) - \tilde{f}(p)//\kappa$ и фазу регенераций $G_{\mathbf{A}4}(p) = arg(f(p) - \tilde{f}(p))/2/$.

 а) Показано, что знание монитора позволило уменьшить примерно в 2,5+3 раза ощибки при определении фазн и модуля амплитуды регенерации К⁰ - мезонов на протонах.

б) Показано, что те небольшие различия в абсолютных величинах разности полных сечений K^0 и \overline{K}^0 мезонов, которые существуют между нашими данными /2/ и данными серпуховских работ/59,60/, выполненных с заряженными каонами, не могут быть объяснены погрешностями в определении монитора.

4. Из метода определения модуля и фазы амплитуды трансмиссионной регенерации каонов видно, что знание формы спектра в этом случае является очень существенным. Форма спектра входит в выражение (42) как в явном виде в качестве $S(\rho)$, так и в неявном виде через $E(\rho, t)$. Поэтому нахождение формы спектра K^0 -мезонов высоких энергий и его использование в опытах по регенерации K^0 - мезонов /2/ было одним из решавщих факторов для получения физических результатов - абсольтных величин фазы и модуля амплитуды трансмиссионной регенерации каонов на протонах в интервале энергий I4-50 ГэВ, а также в последующих аналогичных экспериментах по регенерации K^0 - мезонов на дейтерии и углероде.

Основные результаты диссертации были представлены на Международной конференции по элементарным частицам в Амстердаме (1971 г.), на международных конференциях по физике высоких энергий в Батавии (1972 г.) и в Лондоне (1974 г.), а также опубликованы в работах / 1,2,26,27/

CONTRACTOR AND READ REPORTED TO A STATE

Рис.4. Зависимость фазы 921(Р) от монитора.

۱			
ľ	с.		
•			

Таблица 1

Зависимость формы импульсного спектра К_ -мезонов и монитора от параметров λ_+ , λ_o и \mathcal{Z}_o =+I

•		
Р К ⁰ (ГэВ/с)	$\lambda_{+} = + 0,046$ $\lambda_{0} = + 0,024$	$\lambda_{+}^{=} + 0,035$ $\lambda_{0}^{=} + 0,031$
I4-I6. I6-I8 I8-20 20-22 22-24 24-26 26-28 28-30 30-32 32-34 34-36 36-38 38-40 40-42 42-44 44-46 46-48 48-50	$126, 1^{\pm}10, 1$ $126, 6^{\pm} 6, 9$ $108, 3^{\pm} 5, 4$ $95, 1^{\pm} 4, 5$ $79, 6^{\pm} 3, 7$ $66, 0^{\pm} 3, 1$ $55, 1^{\pm} 2, 6$ $43, 6^{\pm} 2, 1$ $34, 1^{\pm} 1, 7$ $27, 1^{\pm} 1, 4$ $20, 8^{\pm} 1, 1$ $16, 2^{\pm} 0, 8$ $11, 2^{\pm} 0, 7$ $7, 7^{\pm} 0, 5$ $6, 1^{\pm} 0, 5$ $3, 7^{\pm} 0, 5$ $2, 6^{\pm} 0, 4$ $2, 3^{\pm} 0, 5$	$125, 6^{\pm}10, 0$ $126, 2^{\pm} 6, 8$ $108, 6^{\pm} 5, 4$ $95, 4^{\pm} 4, 5$ $79, 9^{\pm} 3, 8$ $66, 2^{\pm} 3, 1$ $55, 3^{\pm} 2, 6$ $43, 7^{\pm} 2, 1$ $34, 1^{\pm} 1, 7$ $27, 2^{\pm} 1, 4$ $20, 8^{\pm} 1, 1$ $16, 2^{\pm} 0, 9$ $11, 2^{\pm} 0, 7$ $7, 7^{\pm} 0, 5$ $6, 1^{\pm} 0, 5$ $3, 7^{\pm} 0, 5$ $2, 6^{\pm} 0, 4$ $2, 3^{\pm} 0, 5$
Монитор/10 ⁶	2379,5 ± 40	2429,0 ± 40

Таблица 2

		M3 00	· · · ·	-			
P _K O		Д			රං	= - 0.27	
(ГэВ/с)	<i>do</i> = -0.25	60=-0.27	60= -0.29	60=-0,3I	A	В	C
I8-20	204.6 ± 22.0	203.4 ± 22.0	202.3 ± 21.8	20I.2 ± 2I.7	172.0 ± 19.3	I88.8 ± 20.6	195.5 ± 21.3
20-22	15I.4 ± 11.4	I5I.0 ± II.4	150.5 ± 11.3	150.I-± II.3	I47.0 ± 10.8	149.0 ± 11.7	150.I ± II.2
22-24	I4I.7 ± 8.7	I4I.7 ± 8.7	141.6 ± 8.7	I4I.6 ± 8.7	134.9 ± 8.2	I38.5 ± 8.5	I40.2 ± 8.6
24-26	II3.I ± 6.4	II3.4 ± 6.4	II3.8 ± 6.4	II4.2 ± 6.4	II4.2 ± 6.4	II9.3 ± 6.5	II5.0 ± 6.4
26-28	I00.4 ± 5.4	100.8 ± 5.4	IOI.I ± 5.4	IOI.5 ± 5.4	I08.2 ± 5.6	105.7 ± 5.6	I02.7 ± 5.5
28-30	74.5 ± 4.I	74.6 ± 4.I	74.8 ± 4.I	75.0 ± 4.I	79.9 ± 4.3	76.6 ± 4.2	76.0 ± 4.2
30-32	6I.4 ± 3.5	6I.5 ± 3.5	6I.6 ± 3.5	6I.7 ± 3.5	63.2 ± 3.5	62.I ± 3.5	6I.8 ± 3.5
32-34	46.9 ± 2.9	46.9 ± 2.9	46.9 ± 2.9	46.9 ± 2.9	47.5 ± 2.9	46.6 ± 2.9	47.0 ± 2.9
34-36	35.0 ± 2.5	35.0 ± 2.5	35.I ± 2.5	35.I ± 2.5	38.0 ± 2.5	36.8 ± 2.5	35.8 ± 2.5
36-38	28.2 ± 2.3	28.3 ± 2.3	28.3 ± 2.3	28.4 ± 2.3	29.9 ± 2.3	28.9 ± 2.3	28.7 ± 2.3
38-40	17.7 ± 2.1	I7.8 ± 2.I	I8.0 ± 2.I	I8.I ± 2.I	23.2 ± 2.2	2I.0 ± 2.2	19.I ± 2.I
40-42	15.7 ± 2.1	I5.9 ± 2.I	I6.I ± 2.I	I6.3± 2.I	20.7 ± 2.2	I7.6 ± 2.2	17.I ± 2.I
42-44	9.5 ± 1.9	9.7 ± 1.9	9.8 ± 1.9	I0.0 ± I.9	I6.I ± 2.I	13.5 ± 2.0	II.2 ± 2.0
<u>Монитор</u> 10 ⁶	1552 ± 43	1507 ± 43	I464 ± 42	I42I ± 40	1857 ± 49	I649 ± 45	1577 ± 44

Зависимость формы импульсного спектра К⁰ -мезонов и монитора от матричного элемента К⁰_{3II} - распада и от примеси фоновых событий. А - без вычитания фоновых событий, В - после вычитания К⁰_{M3} - событий, С - после вычитания К⁰_{M3} - К⁰_{C3} - событий, Д - после вычитания всех фоновых событий

 A2(ГэВ) ⁻² A3 X²/df	Пара- метры	The second second
6.7 ± 0.2 3.7 ± 0.2 I.58	I9.2 ГэВ	and on a survey
7.0 ± 0.3 3.0 ± 0.1 2.08	24 ГэВ	уштьчайон и
6.7 ± 0.2 3.7 ± 0.1 I.16	70 Гэв	протонов

Параметри А2 и А3, полученные при аппроксимации экспериментальных данных с помощью формулы (5), для различных энергий первичных протонов

Габлица

w

6

Таблица 4

Зависимость модифицированной разности амплитуд F₂₁(P)x10²

от монитора. Фаза φ_{21} - общая для всех импульсных интервалов

Монитор в ед. 109									
	2,00	2,13	2,27	2,40	2,53	2,66	2,80		
F ₂₁ (I6)	32.7 ± 4.I	29.2 ± 4.1	26.4 ± 4.1	24.2 ± 4.2	22.6 ± 4.2	2I.5 ± 4.3	20.9 ± 4.3		
F ₂₁ (20)	2I.9 ± I.2	19.2 ± 1.1	17.2 ± 1.0	15.4 ± 1.0	14.0 ± 1.0	12.8 ± 1.0	II.8 ± I.0		
F ₂₁ (24)	2I.5 ± 0.8	19.I ± 0.7	17.2 ± 0.7	15.6 ± 0.6	I4.3 ± 0.6	13.2 ± 0.6	12.3 ± 0.6		
F ₂₁ (28)	18.2 ± 0.8	I6.I ± 0.6	I4.3 ± 0.6	12.9 ± 0.5	10.6 ± 0.5	.9 .8 ± 0.4	9.I ± 0.5		
F ₂₁ (32)	I9.5 ± 0.8	17.4 ± 0.6	I5.6 ± 0.6	I4.2 ± 0.5	I3.0 ± 0.5	12.0 ± 0.4	II.2 ± 0.4		
₽ ₂₁ (36)	17.6 ± 0.8	15.6 ± 0.7	13.9 ± 0.6	I2.6 ± 0.6	II.5 ± 0.5	10.5 ± 0.5	9.7 ± 0.5		
₽ ₂₁ (40)	16.3 ± 1.1	I4.3 ± I.0	I2.7 ± 0.9	II.4 ± 0.8	10.3 ± 0.8	9.4 ± 0.7	8.7 ± 0.7		
₽ ₂₁ (46)	I4.9 ± I.2	13.0 ± 1.1	II.5 ± 1.0	10.2 ± 0.9	9.2 ± 0.9	8.3 ± 0.8	7.6 ± 0.8		
x²/ 80 <i>DF</i>	69.6	60.6	54.2	50.8	51.0	55 . I	63.4		

Зависимость	фазы	$\varphi_{21}(\mathbf{p})$	OT	монитора

	Монитор, в ед. 10 ⁹								
	2,00	2.13	2.27	2.40	2.53	2.66	2.80		
${ \varphi_{2I} - \atop _{oomag}}$	I60.5 ± 5.2	151 ± 5	I43 ± 4.9	I35 ± 4.9	I27 ± 4.9	II9 ± 4.9	II2 ± 4.8		
$\varphi_{2I}^{(I6)}$	2I7 ±18.8	196 ± 20	178 ± 21	162 ± 22	I46 ± 2I	13I.5± 20	II8 ± I8		
$\varphi_{2I}^{(20)}$	169 ±11.6	157 ±11.5	I46 ±II.6	136 ±11.8	126 ± 12	115 ± 12	105 ± 12		
φ_{2I} (24)	153 ±9.8	I44 ±9.6	I34 ±9.4	I26 ± 9.4	117 ± 9 . 3	109.6±9.2	IO2 ± 9		
φ_{2I} (28)	165 ± 12	159 ±11.4	152 ± 11	I45 ± II	139 ± II.I	132 ±11.2	I25±II.4		
ψ_{21} (32)	151 ± 13	I44 ±12.7	I38 ± I2	132.± 12	126 ± 11.8	120 ±11.7	II5±II.6		
ψ_{2I} (36)	I4I ± 17	I35 ±16.4	131 ± 16	126 ± 16	I2I = 15.6	116 ±15.5	III±15.4		
(40)	I65 ± 37	·157 ±32,9	150 ± 30	I43 ± 29	I37 ± 27.9	13I ±27.5	I26±27.5		
φ_{2I} (46)	105 ± 37	I00 ±36.5	95.3± 36	90.7± 35	86.I± 34.4	8I.6 ±33.7	77.2±33		
X ² /80DF	58.5	52.I	47.5	45.4	46.3	50.7	58.8		
ľ						and the second			

õ

ЛИТЕРАТУРА

I. В.К.Бирулев и др., ОИЯИ, РІ-6164, Дубна (1971).

2. V.K.Birulev et al. JINR, E1-6851, Dubna (1972).

3. К.Ф. Альбрехт и др., ОИЯИ, I-7427, Дубна (1973).

4. K.F.Albrecht et al., JINR, E1-7353, Dubna (1973).

5. V.L.Lyuboshitz et al. Preprint JINR, D-1926, Dubna (1965).

6. M.Bott-Bodenhausen et al., Phys.Lett., 20,212 (1966).

7. C.Alff-Steinberger et al., Phys.Letters, 20,207 (1966).

M.Lusignoli et al. Nuovo Cim., 45A, 792 (1966);
 Phys.Lett., 24B, 296 (1967).

9. И.Г.Азнаурян, Л.Д.Соловьев.ЯФ. 12,638 (1970).

ІО. М.Е.Вишневский и др. Препринт ИТЭФ № 815, 1970.

II. В.И.Лисин и др. Препринт ИТЭФ № 871, 1971.

I2. V.Barger, R.Phillips. Phys.Lett., 33B, 425 (1970)

I3. G.V.Pass et al., Nucl.Phys.B9,549 (1969).

I4. Peview of Particle Properties. Phys.Letters, 33B, 1(1970).

15. D.Б.Бушкин и др. ЯФ, 10, 585 (1969).

I6. T.Benecke et al., Phys.Rev., 188, 2159 (1969).

17. R.P.Feynman, Phys.Rev. Lett., 23, 1415 (1969).

18. Р.Мурадян, ОИЯИ, Р2-6762, Дубна (1972).

I9. В.А.Матвеев и др. ОИЯИ, Р2-4543, Р2-4578, Р2-4824, Дубна (1969).

20. A.H.Mueller, Phys.Rev., D2, 2963 (1970).

21. Л.Ф.Соловьев, ИФВЭ, СЭФ, 71-108 (1971).

22. J.Allaby et al. CERN,70-12.

23. Т.Eichten et al. Nucl.Phys., B44, 333 (1972).
 24. Г.Тахтамышев. ОИЯИ, 2543, Лубна (1966).
 25. Basile et al. Phys.Lett., 28B, 58 (1968).

26. K.F.Albrecht et al. KFKI-73-46, Budapest.

27. Д.Вестергомби и др.. ОИЯИ, 1-7739, Дубна (1974).

Рукопись поступила в издательский отдел

6 ноября 1974 года