

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

1801/84

1-83-912

9/11-84

наблюдение и исследование узкого состояния в системе **Г**(1385) **К**⁺

Сотрудничество: Берлин - Дубна - Москва Прага - София - Тбилиси

А.Н.Алеев, В.А.Арефьев, В.П.Баландин, В.К.Бирулев, Т.С.Григалашвили, Б.Н.Гуськов, И.М.Иванченко, Н.Н.Карпенко, Д.А.Кириллов, И.Г.Косарев, В.Р.Крастев, Н.А.Кузьмин, Б.А.Кулаков, М.Ф.Лихачев, А.Л.Любимов, А.Н.Максимов, А.Н.Морозов, А.В.Позе, Л.В.Сильвестров, В.Е.Симонов, Л.А.Слепец, П.Т.Тодоров, Р.К.Траянов, В.Д.Чолаков, А.С.Чвыров Объединенный институт ядерных исследований. Дубна

Х.Новак, Х.-Э.Рызек, К.Хиллер Институт физики высоких энергий АН ГДР, Берлин-Цойтен

А.С.Белоусов, Я.А.Ваздик, Е.И.Малиновский, С.В.Русаков, Ю.В.Соловьев, А.М.Фоменко, Л.Н.Штарков Физический институт им. П.Н.Лебедева АН СССР, Москва

Э.Д.Молодцов Институт ядерных исследований АН СССР, Москва

Е.А.Чудаков Научно-исследовательский институт ядерной физики МГУ, Москва

Я.Гладки, С.Немечек, М.Новак, А.Прокеш Физический институт ЧСАН, Прага

Д.Т.Бурилков, В.И.Генчев, И.М.Гешков, П.К.Марков Институт ядерных исследований и ядерной энергетики БАН, София

Н.С.Амаглобели, В.П.Джорджадзе, В.Д.Кекелидзе, Н.Л.Ломидзе, Г.И.Никобадзе, Р.Г.Шанидзе

Научно-исследовательский институт физики высоких энергий ТГУ, Тбилиси

В $^{/1-4/}$ сообщалось о наблюдении аномально узкого резонанса N_{ϕ} , распадающегося на $\Sigma^-/1385/$ и K^+ . Малая ширина резонанса указывает на его экзотическую природу. Очевидный интерес представляет изучение свойств этого резонанса и получение новых данных, подтверждающих его существование. Для выяснения природы этого резонанса важно также исследовать механизм его рождения и определить характеристики его распада.

В данной работе приведены новые результаты по поиску и изучению N_{ϕ} , рожденного в нейтрон-углеродных взаимодействиях. Исследование основано на данных, полученных в эксперименте по изучению очарованных частиц, проводимом на серпуховском ускорителе с помощью спектрометра БИС-2. Высокое экспериментальное разрешение по массе позволило надежно выделить распады известных гиперонов ^{/6/}, включая распады

Σ-	(1385)	+1	0 7	-			/1/	1
_	/							

\° → pπ ⁻ ,	/2/

а также распады очарованных частиц ^{/6/}. Изучалась реакция

n +	C →	Σ	(1385) h +,	131

в которой Σ⁻/1385/ и положительно заряженный адрон h⁺ регистрировались в основном в области фрагментации нейтронного пучка.

1. УСЛОВИЯ ЭКСПЕРИМЕНТА

Эксперимент проводился на нейтральном канале серпуховского протонного синхротрона на энергию 70 ГэВ. Пучок формировался при рассеянии внутреннего протонного пучка на бериллиевой мишени под углом 11,3 мрад. Для подавления фотонной компоненты в пучке использовался свинцовый фильтр толщиной ~10 см. Заряженные частицы выводились из пучка с помощью рассеивающего магнита. Среднее значение импульса сформированного пучка, состоящего в основном из нейтронов с ~1,3% примеси K° - мезонов, равно 40 ГэВ/с ^{/7/}.

На рис.1 приведена схема размещения в канале элементов спектрометра БИС-2. Для исключения заряженной компоненты из состава пучка использовался сцинтилляционный счетчик (А). За углеродной мишенью (Т) толщиной около 6 г.см⁻² и малой пропорциональной

Рис.1. Схема размещения в пучке нейтронов элементов спектрометра БИС-2 и топология типичного события $n + C \rightarrow \Sigma^{-}(1385) h^{+}$.

камерой PC1 расположен объем длиной ~1,5 м, определяющий максимально допустимую длину распада для регистрируемых Λ° барионов. Два набора двухкоординатных многопроволочных пропорциональных камер с двухмиллиметровым шагом намотки /PC 2-6 и PC 7-11/, расположенные соответственно до и после спектрометрического магнита /M/,

использовались для регистрации вторичных заряженных частиц. Магнит М изменял поперечную составляющую импульсов заряженных частиц на 0,64 ГэВ/с. За пропорциональными камерами размещались годоскоп сцинтилляционных счетчиков (H1), черенковский счетчик полного поглощения из свинцового стекла (HCC), μ - детекторы /H2 и H3/ и нейтронный монитор (M_n).

Для запуска спектрометра исполъзовалась информация, поступающая с А, Н1 и полосок некоторых PC /1,2,6,7-11/. Логика запуска требовала прохождения через указанные PC и H1 не менее четырех заряженных частиц.

Экспериментальная информация была получена при трех конфигурациях спектрометра, которые различались полярностью магнитного поля в M, расположением T и некоторыми геометрическими параметрами PC. Все эти изменения позволили оценить возможные систематические ошибки. В течение ~960 ч работы ускорителя было зарегистрировано около 11,4.10⁶ событий нейтрон-углеродных взаимодействий, что соответствует интегральному потоку нейтронов, проходящему через T ~ 6.10¹¹.

Более детальное описание спектрометра и условий проведения эксперимента содержится в^{/8/}.

2. ОТБОР СОБЫТИЙ

Для выделения процесса /3/ среди зарегистрированных взаимодействий отбирались события, содержащие Л°-барионы и только одну

Рис.2. а/ распределение "нейтральных вилок" по инвариантной массе $M(p\pi^{-})$ в области массы $M(\Lambda^{\circ}) = 1115,6 \text{ МэВ/с²; б/ спектр$ инвариантных масс системы $<math>(\Lambda^{\circ}\pi^{-})$; пунктирные кривые – результат аппроксимации распределения резонансной и фоновой кривыми.

положительно и одну отрицательно заряженные частицы (h + и h). Геометрическая реконструкция треков осуществлялась независимо с помощью двух программ^{/9/}. Требовалось, чтобы все восстановленные траектории отличались друг от друга по геометрическим параметрам не менее чем на величину тройного экспериментального разрешения. Для этой цели использовалась процедура, описанная $B^{/1/}$. Для выделения Λ° -барионов по их распадам /2/ требовалось. чтобы у соответствующей "нейтральной вилки" минимальное расстояние между треками не превышало 1 см, а ее восстановленная вершина располагалась в объеме распада не ближе 15 см от центра Т. Отбирались события, у которых восстановленная общая для трех траекторий / Λ° , h^+ и h^- / вершина располагалась в области T и имела среднеквадратичное расстояние от траекторий, не превышающее 0.7 см. На рис.1 приведены две проекции восстановленных траекторий и всех зарегистрированных в РС искр типичного отобранного события.

На рис.2а приведено распределение отобранных событий по величине инвариантной массы $M(p\pi^{-})$ "нейтральных вилок". Четкий пик в районе массы Λ° -бариона соответствует зарегистрированным распадам /2/. Экспериментальное разрешение по массе для этих распадов составляет 1,8 МэВ/с². "Нейтральные вилки" с инвариантной массой $M(p\pi^{-})$, отличающейся от $M(\Lambda^{\circ}) = 1115,6$ МэВ/с² не более чем на 7 МэВ/с², идентифицировались как Λ° -барионы. Всего было отобрано 13711 событий с Λ° -барионами при уровне фона ~10%.

На рис.26 приведено распределение этих событий по величине инвариантной массы $M(\Lambda^{\circ}\pi^{-})$, полученной в предположении, что h⁻⁻ является пионом. В распределении присутствуют два четких пика: более узкий, соответствующий распадам $\Xi \to \Lambda^{\circ}\pi^{-}/$ детальное описание выделения и исследования этих распадов приведено в $^{/5/}$, и более широкий, отвечающий распадам $/11/\Sigma^{-}/1385/$. Пунктирными кривыми показан результат аппроксимации этого распределения полиномиальной функцией для фона и кривой Брейта-Вигнера для резонанса. Полученные значения массы и ширины резонанса хорошо согласуются с известными данными для $\Sigma^{-}/1385/^{-10/}$. Считалось, что события, у которых $M(\Lambda^{\circ}\pi^{-})$ отличались от массы $\Sigma^{-}/1385/$

не более чем на 35 МэВ/с², содержат распады /1/. При учете всех приведенных выше условий отбора было выделено 3970 событий - кандидатов в исследуемую реакцию /3/.

3. СУЩЕСТВОВАНИЕ ПИКА В СПЕКТРЕ ИНВАРИАНТНЫХ МАСС СИСТЕМЫ $\Sigma^{-}/1385/$ K⁺

На рис.3 сплошными линиями показаны распределения по инвариантной массе $M(\Lambda^{\circ}\pi^{-}K^{+})$, полученной в предположении, что h^{+} является каоном. Ширина шага в этих распределениях /20 МэВ/с²/ выбрана равной ~5-кратной величине экспериментального разрешения. Для градуировки абсолютной величины шкалы масс использовались распады известных странных частиц $K^{\circ}_{s} \rightarrow \pi^{+}\pi^{-}, \Xi^{-} \rightarrow \Lambda^{\circ}\pi^{-},$ $\Lambda^{\circ}/1520/\rightarrow \Lambda^{\circ}\pi^{+}\pi^{-}$, восстановленные независимо при каждой из трех конфигураций спектрометра. Таким образом, величина возможной систематической ошибки при восстановлении изучаемых масс была уменьшена до 6 $M \Rightarrow B/c^2$. Распределение на рис. 36 получено для событий /3/, то есть для событий, у которых Λ° -барионы и π^- -мезоны являются продуктами распада $\Sigma^-/1385/$. Два других распределения, рис. За и в, получены для событий, отобранных при условиях 1280 < $M(\Lambda^{\circ}\pi^{-})$ < 1350 MэB/c² и 1420 < $M(\Lambda^{\circ}\pi^{-})$ < 1490 MэB/c² соответственно. Эти условия выделяют события, у которых Λ° -барионы и π^- -мезоны не являются продуктами распада $\Sigma^-/1385/.$ На рис. 36, в отличие от распределений на рис. 3а и в, в двух интервалах с центрон при 1960 Мов/с2 виден четкий пик, в которон содержится около 150 событий над уровнем фона /- 430 событий/, полученным путем усреднения по четырем интервалам, по два справа и слева от пика.

Для исключения гипотезы: не является ли наблюдаемый пик кинематическим отражением состояния со странностью -1 из-за ошибочной идентификации h^+ / K + вместо π^+ / было построено распределение инвариантных масс $M(\Lambda^{\circ}\pi^{-}\pi^{+})$ для тех же событий, полученное в предположении, что h⁺ является пионом /пунктирное распределение на рис. 36/. Это распределение может быть описано гладкой кривой, оно не имеет каких-либо статистически значимых выбросов. Возможность воспроизведения наблюдаемого узкого пика путем кинематического отражения известных гиперонных резонансов проверена также путем моделирования событий. Было определено, что резонанс в системе $\Sigma^{-}/1385/\pi^{+}$ с массой ~1690 МэВ/с² может обусловить отраженный сигнал в области значения массы 1960 МэВ/с², но ширина отраженного сигнала будет больше, чем первоначального. Так, например, известный резонанс $\Sigma/1765/$, который может распадаться по каналу $\Sigma/1.385/\pi$, может имитировать пик в исследуемом спектре масс при 1990 МэВ/с², который в 4 раза шире наблюдаемого, а его значение спин-четности 7/2⁺, как будет показано ниже, исключается в нашем случае. Для других близких по массе гиперонных резонансов не известны каналы распада на $\Sigma^{-1}/1385/\pi^+$,

Рис.3. Распределения событий по инвариантной массе системы ($\Lambda^{\circ}\pi^{-}h^{+}$) в предположении, что h^{+} является каоном /сплошные гистограммы/ или пионом /пунктирная гистограмма/, полученные для случаев, когда: б/ Λ° -барион и π^{-} -мезон являются продуктами распада $\Sigma^{-}/1385/$; а/ и в/ Λ° -барион и π^{-} мезон не являются продуктами распада $\Sigma^{-}/1385/$.

и, в любом случае, они не могут обусловить пик в системе $\Sigma^{-/1385/K^+}$, близкий к наблюдаемому, ни по массе, ни по ширине. Следовательно, наблюдаемый пик не является кинематическим отражением какого-либо гиперона. Спектр инвариантных масс, построенный для тех же событий в предположении, что h⁺ - протон, также имеет гладкую форму. Таким образом, при-

веденные данные свидетельствуют, что пик соответствует распадам барионного состояния с нулевой странностью, которое мы обозначили через $N_{\rm A}$:

4. МОДЕЛИРОВАНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ УСЛОВИЙ

Геометрическая эффективность спектрометра БИС-2 при регистрации изучаемых процессов рассчитывалась с использованием программы моделирования, основанной на методе Монте-Карло. При моделировании принимались во внимание: геометрия расположения в канале элементов спектрометра, кулоновское рассеяние заряженных частиц в веществе, пространственное разрешение PC, распады вторичных частиц и условия запуска спектрометра. Моделированные события обрабатывались по тем же программам /с учетом всех условий отбора/, что и экспериментальные события.

На первом этапе было отобрано 2500 моделированных событий рождения и распада N_{ϕ} . Предполагалось, что N_{ϕ} рождается инклю-зивно в нейтрон-нуклонных взаимодействиях в соответствии с сечением

$$\frac{d^{3}\sigma}{dP_{T}^{2}dx} \propto \exp(-b \cdot P_{T}^{2}) \cdot (1-x)^{n}, \qquad (5/2)$$

где P_T - поперечная составляющая импульса N_ϕ , $x = P_L^*/P^{*-}$ переменная Фейнмана, P_L^* и P^* - соответственно продольная составляющая импульса и максимально возможный импульс N_ϕ в системе центра масс реакции. Параметры b и n подбирались таким образом, чтобы распределения совпадали как по продольной, так и по поперечной составляющим импульсов N_ϕ для зарегистрированных в эксперименте и моделированных событий. Подбор параметров осуществлялся в результате итерационной процедуры, при помощи введения "веса" для моделированных событий. Таким же образом подбирались параметры, характеризующие распад N_ϕ , который первоначально моделировался изотропным.

Определенная полная эффективность регистрации N₆ по распадам /4/ составила $\epsilon = 1,5\cdot 10^{-9}$. Полученные разрешения по массам востстановленных Λ° и $\Sigma^{-}/1385/$ для моделированных событий хорошо согласуются с наблюдаемыми в эксперименте сигналами. Было определено, что разрешение по массе N₆ равно 3,8 MaB/c², а зависитмость эффективности регистрации системы $\Sigma^{-}/1385/$ К⁺ от ее инвариантной массы является гладкой монотонной функцией и не может обусловить наблюдаемый пик.

5. ВЫДЕЛЕНИЕ РЕЗОНАНСА N_d И ОЦЕНКА ФОНА

На рис.4 черными кружками представлено распределение N_{ϕ} событий из пика, приведенного на рис.36, по величине P_T^2 , полученное после вычитания фона и учета эффективности их регистрации. Поведение фоновых событий оценивалось для событий из двух соседних интервалов с каждой стороны от пика, см. рис.36. Распределение таких фоновых событий по P_T^2 , полученное также с учетом эффективности их регистрации, приведено на рис.4 белыми кружками. Видно, что спектры распределения по P_T^2 для резонансных N_{ϕ} и фоновых событий имеют разный характер. Распределение для N_{ϕ} имеет четко выраженный пик в области малых P_T^2 , в то время как для фоновых событий распределение носит монотонный характер во всей области регистрируемых событий: $P_T^2 < 1,0$ /ГэВ/с/². Распределения хорошо аппроксимируются простой экспоненциальной зависимостью $\sim \exp(-b \cdot P_T^2)$ /пунктирные прямые на рис.4/. Для событий N_{ϕ} в области

Рис.4. Спектры распределения по P_T^2 для резонансных (•) и фоновых (О) событий. Пунктирными линиями показаны аппроксимации этих спектров.

параметр наклона b = /9,9++3,0/ /ГэВ/с/⁻², а для фоновых событий во всей области P_T^2 тот же параметр равен /2,2 + +0,2/ /ГэВ/с/⁻².

Для улучшения отношения сигнала к фону в дальнейшем при выделении N_ф применялось условие /6/.На рис.5а приведено рас-

пределение по инвариантной массе системы $\Sigma^{-/1385/K^+}$ для 2189 отобранных событий. Уровень фона под пиком был оценен путем аппроксимации всего массового спектра гладкой функцией, состоящей из экспоненты и полинома 4-степени /пунктирная кривая/. На рис.56 показана величина стандартных отклонений от уровня фона в каждом из интервалов распределения. 118+19 событий N_d соответствуют 7,6 таких стандартных отклонений. В результате аппроксимации сигнала N_d с помощью кривой Брейта-Вигнера получено, что центральное значение массы равно /1956^{+ô}₋₆ / MэB/c², а

/6/

его ширина - /16+12/ МэВ/с². С учетом величины экспериментального разрешения по массе установлено, что ширина резонанса равна /14+12/ МэВ/с².

Был исследован состав фона, воспроизводящий весь наблюдаемый спектр масс системы $\Sigma^{-}/1385/K^{+}$. При этом предполагалось наличие двух источников фоновых событий. К первому были отнесены события дифракционной диссоциации нейтрона в системы $\Lambda^{\circ} \pi^{-} K^{+} n \pi^{\circ}$, $\Sigma^{\circ}\pi^{-}K^{+} + n\pi^{\circ}$ и $\Sigma^{-}/1385/K^{+} + n\pi^{\circ}$ при n = 0, 1, 2. Все эти процессы были промоделированы с учетом измеренных сечений /11/ на основе программы Монте-Карло. Спектр инвариантных масс системы $\Sigma^{-}/1385/K^{+}$ для таких событий, регистрируемых в эксперименте, показан на рис.6 точечной кривой. Вторым источником фоновых событий являлись события инклюзивного рождения Λ° -барионов, сопровождаемых двумя разноименно заряженными частицами. Спектр инвариантных масс для таких событий был получен из выборки событий, в которых кроме Λ° -барионов было зарегистрировано более трех заряженных частиц (h^+ , h^- , h^\pm , ...). Соответствующее распределение для комбинаций $\Lambda^{\circ}h^+h^-$, удовлетворяющих всем условиям отбора, приведено на рис.6 пунктирной линией. Это распределение хорошо аппроксимируется гладкой функцией и не имеет каких-либо статистически значимых выбросов.

Рис.6. Спектр инвариантных масс системы $\Sigma^{-}/1385/K^{+}/$ для исследуемых событий /сплошная гистограмма/ и событий, в ко-торых зарегистрированы дополнительные заряженные частицы /пунктирная гистограмма/. Точечная кривая – рассчитанный спектр масс для процессов дифракционной диссоциации, сплошная линия – результирующая фоновая кривая.

Результирующая фоновая кривая, полученная с учетом обоих источников фоновых событий, показана на рис.6 сплошной кривой, которая удовлетворительно воспроизводит весь спектр наблюдавшихся событий в системе Σ 7/1385/K⁺, кроме области пика.

6. ИЗУЧЕНИЕ ПРОЦЕССА РОЖДЕНИЯ

Определены характеристики инклюзивного рождения N_{ϕ} в нейтроннуклонных взаимодействиях в рамках параметризации сечения /5/ при значении параметра b = 9,9 /ГэВ/с/⁻², полученного из распределения событий по P_T^2 /рис.4/. На рис.7 приведено распределение зарегистрированных N_{ϕ} по

На рис.7 приведено распределение зарегистрированных N_{ϕ} по величине продольной составляющей импульса в лабораторной системе P_L . Аналогичное распределение, полученное для моделированных событий, наилучшим образом воспроизводит экспериментальный спектр при значении параметра $n = /-0, 2\pm0, 2/$ /пунктирная кривая/. Отрицательная величина параметра n указывает на то, что N_{ϕ} рождается в основном при значении x = 1, то есть в процессе дифракционной диссоциации нейтрона на квазисвободных нуклонах углеродной мишени.

Произведение сечения рождения $N_{\phi}(\sigma)$ на вероятность распада по наблюдавшемуся каналу (B) определяется согласно выражению $\sigma \cdot B = N \cdot A / (N_A \cdot T \cdot B_1 \cdot B_2 \cdot M_n \cdot \epsilon)$, где N - число наблюдавшихся N_{ϕ} ; A - атомный номер мишени; N_A - число Авогадро; T - толщина мишени; B_1 и B_2 - доли распадов соответственно по каналам /2/ и /3/; M_n - интегральный нейтронный поток, проходящий через мишень; ϵ - эффективность регистрации N_{ϕ} . Было определено, что $\sigma \cdot B = /1,15\pm0,19/$ мкб на ядро углерода. При этом величина возможной систематической ошибки не превышает 30%.

Рис.7. Распределение зарегистрированных N_ф по P_L /черные кружки/ и его аппроксимация моделированными событиями /пунктирная линия/.

7. ИЗУЧЕНИЕ ХАРАКТЕРИСТИК РАСПАДА N ...

Для определения значения спин-четности J^P применялся метод, разработанный в^{/12/}. Такой метод может быть успешно применен в случае двухчастичного распада на частицы со спин-четностями 3/2⁺ и 0⁻, если можно пренебречь высшим угловым моментом из двух возможных при заданном J. В нашем случае последнее условие удовлетворяется благодаря малой энергии распада. Изучалось

Рис.8. а/ распределения по $\cos\psi$ для зарегистрированных N_{ϕ} /сплошная гистограмма/ и фоновых событий /пунктирная гистограмма/; б/ распределение рожденных N_{ϕ} по $|\cos\psi|$ /черные кружки/ и ожидаемые спектры при различных значениях J^{P} /пунктирные кривые/.

распределение N_{ϕ} по величине сов ψ где ψ - угол между вектором импульса $\Sigma^{-}/1385/$ в системе покоя N_{d} и вектором импульса Λ° в системе покоя $\Sigma^{-}/1385/$. Такое распределение для зарегистрированных N d после вычитания фона приведено на рис.8а /сплошная линия/. Характер этого распределения отличается от распределения для фоновых событий, представленного на том же рисунке пунктирной линией. На рис.86 черными кружками показано соотвстствующее распределение по $|\cos\psi|$ для рожденных N_d, полученное с учетом эффективности их регистрации. Пунктирными кривыми на этом рисунке показаны распределения, ожидаемые для указанных значений Ј Р. Видно, что спектр для N_ф удовлетворяет натуральным значениям JP: 3/2. 5/2⁺, 7/2⁻ и т.д.

В предположении рождения N_{ϕ} в процессе дифракционной диссоциации нейтрона на нуклоне, в соответствии с результатами раздела 6, могут быть рассчитаны азимутальный угол Треймана-Янга (ϕ) и полярный угол Готтфрида-Джексона (θ)^{/13/}, характеризующие направление вектора импульса $\Sigma^-/1385/в$ системе покоя N_{ϕ} .

На рис.9 приведено распределение рожденных N_{ϕ} по величине $\cos \theta$, полученное после вычитания фона и учета эффективности регистрации. В данном распределении имеется указание на два пика, соответствующие вылету $\Sigma^{-}/1385/$ вперед и назад относительно направления пучка нейтронов. Такой характер распределения не согласуется со значением $J^{P} = 3/2^{-}$, при котором ожидается изотропное распределение. Значит, возможные J^{P} для N_{ϕ} могут принитмать натуральные значения начиная с $5/2^{+}$.

Рис.10. Распределения по ϕ для рожденных N_{ϕ} /черные кружки/ и фоновых событий /светлые/.

На рис.10 приведены распределения по углу ϕ : для N_{ϕ} , полученное после вычитания фона /черные кружки/, и для фоновых событий /светлые/. Оба распределения получены с учетом эффективности регистрации событий. Распределения имеют разный характер: фоновые события распределены анизотропно, а N_{ϕ} - изотропно по углу ϕ . Изотропное распределение по углу ϕ ожидается в случае сохранения спиральности в t-канале. В этом же случае /для J P = 5/2⁺/ распределение по сов θ должно иметь характерные пики, представленные на рис.9.

8. ВЫВОДЫ И ИХ ОБСУЖДЕНИЕ

1. Подтверждено существование нового барионного резонанса N_{\phi} в системе Σ $\bar{}/1385/K^+$ Такой вывод основан на следующих аргументах:

Рис.9. Распределение рожденных N_{d} по $\cos \theta$.

а/ в спектре инвариантных масс системы $\Sigma^{-}/1385/K^{+}$ наблюдается узкий статистически значимый пик. Общий характер массового спектра, кроме области пика, хорошо описывается гладкой функцией и может быть получен как результат учета известных реакций, доминирующих при исследуемых энергиях;

б/ события из пика и соседних с пиком интервалов по массе имеют различную природу. Различается характер их распределений по P_{π}^2 , ϕ и $\cos\psi$;

в7 наблюдаемый пик не может быть объяснен кинематическим отражением какого-либо известного гиперонного резонанса из-за ошибочной идентификации положительно заряженной частицы / K^+ вместо $\pi^+/;$

г/ поскольку события, обусловливающие пик, рождаются в процессе дифракционной диссоциации нейтрона /см. ниже, пункт 3/, идентифицированные $\Sigma^-/1385$ / должны сопровождаться положительно заряженными каонами для образования нейтральной системы с нулевой странностью. Значит, положительно заряженные частицы для событий из пика являются K⁺-мезонами, как и было предположено ранее;

д/ наблюдаемый пик не может быть отождествлен с известным резонансом $\Delta/1950$ /, имеющим канал распада на $\Sigma^{-}/1385/$ K^{+/10,14/} так как его ширина /200-300 MэB/c²/ и значение $J^{P} = 7/2^{+}$ ис-ключаются в нашем случае. Кроме того, такой резонанс имеет изотопический спин 3/2 и не может быть рожден в процессе дифракционной диссоциации, в котором рождаются события из пика /см. пункт 3/.

2. Определена масса N $_{\phi}$, равная /1956 $^{+8}_{-6}$ / МэВ/с² /с системати-ческой ошибкой, не превышающей 6 МэВ/с²/, и его ширина, равная /14+12/ МэВ/с².

3. Показано, что N_{ϕ} рождается в процессе дифракционной диссоциации нейтрона и определены характеристики этого процесса:

а/ суммарный заряд и барионное число продуктов распада N_{ϕ} такие же, как у нейтрона;

б/ распределение по продольной составляющей импульса N_{ϕ} соответствует максимуму при значении фейнмановской переменной x = 1;

в/ рождение N_{ϕ} наблюдается только в случае отсутствия других заряженных частиц, рожденных в области фрагментации пучка нейтронов и зарегистрированных спектрометром, и не наблюдается в противном случае /см. рис.6/;

г/ определен параметр наклона дифференциального сечения рождения по P_{T}^2 , равный b = /9,9+3,0/ /ГэВ/с/ $^{-2}$. Такое значение параметра является характерным для процессов дифракционной диссоциации нуклона на нуклоне при рассматриваемом значении массы^{/15/};

d/ определено, что в процессе рождения N_{ϕ} сохраняется спиральность в t-канале, что является характерным для процессов дифракционной диссоциации; e/ определено, что выделенным направлением распада N_{ϕ} являет-ся направление пучка нейтронов.

4. Измерена величина произведения сечения рождения N $_{\phi}$ в нейтрон-углеродных взаимодействиях на вероятность его распада по наблюдавшемуся каналу, равная /1,15+0,19/ мкб на ядро углерода, при возможной систематической ошибке не более 30%. С учетом зависимости сечения $\sigma \sim A^{2/8}$, характерной для дифракционных процессов, получена величина, равная /0,22+0,04/ мкб на нуклон.

5. Если N_d рождается в процессе дифракционной диссоциации нейтрона, то его изотопический спин равен 1/2 и он может распадаться на Λ° K°. Используя верхнюю границу величины произведения сечения рождения N_d на вероятность его распада на Λ° K°, полученную в ^{/16/}, определили предел на отношение парциальных ширин его распада $\mathbf{B}(\Lambda^{\circ}$ K°)/B(Σ^{\sim} /1385/K⁺) < 2,7 при 90%-ном уровне достоверности.

6. Определено, что возможны только натуральные значения спинчетности J^P: 5/2⁺, 7/2⁻ и т.д. Такие значения удовлетворяют правилу Грибова-Моррисона^{/17/} для процессов дифракционной диссоциации нейтрона.

7. Малая ширина N_{ϕ} не может быть объяснена в рамках стандартных представлений о трехкварковой структуре бариона. Поэтому с учетом распада на странные настицы ножет быть рассмотрена гипотеза о пятикварковой структуре N_{ϕ} . В такой модели в состав N_{ϕ} кроме трех валентных кварков нейтрона входят два дополнительных, странных кварка, образуя состояние (uddss). Возможность существования таких состояний и их проявления в виде узких резонансов обсуждается в ряде теоретических работ /18,19/. Естественным механизмом рождения такой пятикварковой системы может быть дифракционный процесс, соответствующий, например, приве-

Puc.11. Диаграмма дифракционного рождения N_d в случае его пятикварковой (uddss) структуры.

денной на рис.11 диаграмме. Для дифракционного рождения пятикварковой системы может быть также рассмотрена модель "внутренних ароматов", предложенная С.Бродским и др. /20/.

Несмотря на то, что приведенная гипотеза может объяснить как малую ширину N_{ϕ} , так и механизм его рождения и не противоречит всем определенным его свойствам, другие возможные гипотезы нельзя считать исключенными.

Авторы глубоко признательны А.М.Балдину, А.Н.Тавхелидзе и И.А.Савину за поддержку экспериментов и постоянный интерес к работе, благодарны Р.Ледницкому за расчеты, выполненные им, позволившие получить результаты, изложенные в разделе 7, а также И.М.Граменицкому, В.Г.Кадышевскому, А.Б.Кайдалову и В.А.Матвееву за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Алеев А.Н. и др. ЯФ, 1981, 34, с. 386; ОИЯИ, E1-80-726, Дубна, 1980.
- 2. Алеев А.Н. и др. ЯФ, 1982, 36, с. 1420; ОИЯИ, Д1-82-116, Дубна, 1982.
- 3. Алеев А.Н. и др. ОИЯИ, Д1-82-921, Дубна, 1982.
- 4. Алеев А.Н. и др. ОИЯИ, Д1-83-602, Дубна, 1983.
- 5. Алеев А.Н. и др. ОИЯИ, P1-82-353, Дубна, 1982; Aleev A.N. et al. PHE-82-7, Berlin-Zeuthen, 1982.
- 6. Алеев А.Н. и др. ЯФ, 1982, 35, с. 1175; ЯФ, 1983, 37,
 с. 1474; ОИЯИ, Р1-81-693, Дубна, 1981; ОИЯИ, Д1-82-895,
 Р1-82-343, Дубна, 1982; JINR, E1-82-759, Dubna, 1982,
 JINR, E1-83-417, Dubna, 1983.
- 7. Алеев А.Н. и др. ОИЯИ, 1-81-67, Дубна, 1981.
- 8. Айхнер Г. и др. ОИЯИ, 1-80-644, Дубна, 1980; Максимов А.Н. и др. ОИЯИ, 1-81-574, Дубна, 1981.
- 9. Бурилков Д.Т. и др. ОИЯИ, 10-80-656, Дубна, 1980; Бурилков Д.Т. и др. ОИЯИ, 10-81-772, Дубна, 1981.
- 10. Roos M. et al. Phys.Lett., 1982, 111B, p. 1.
- 11. Baksay L. et al. Phys.Lett., 1976, 61B, p. 405; Göttgens R. et al. Z.Phys.C, 1983, vol.19, p. 283; Givernaud A. et al. Z.Phys.C., 1981, vol.8, p. 291.
- 12. Button-Shaffer J. Phys.Rev., 1965, 139, p. B607.
- Jackson J.D. Nuovo Cimento, 1964, 34, p. 1644;
 Gottfried K., Jackson J.D. Nuovo Cimento, 1964, 33, p.309;
 Treiman S.B., Yang C.N. Phys.Rev.Lett., 1962, 8, p. 140.
- 14. Ansorge R.E. et al. Phys.Rev., 1974, D10, p. 32; Ansorge R.E. et al. Nucl.Phys., 1976, B103, p. 509.
- 15. Albrow M.G. et al. Nucl.Phys., 1976, B108, p. 1; Babaev A. et al. Nucl.Phys., 1976, B116, p. 28.
- 16. Aleev A.N. et al. PHE 83-1, Berlin-Zeuthen, 1983.

- 17. Грибов В.Н. ЯФ, 1967, 5, с. 197; Morrison D.R.O. Phys.Rev., 1968, 165, р. 1699.
- Hogaasen H., Sorba P. Nucl.Phys., 1978, B145, p. 119; De Crombrugghe M., Hogaasen H., Sorba P. Nucl.Phys., 1979, B156, p. 347.
- 19. Strottman D. Phys.Rev., 1979, D20, p. 748.
- 20. Brodsky S.J. et al. Phys.Lett., 1980, 93B, p. 451; Brodsky S.J. et al. Phys.Rev., 1981, D23, p. 2745; Bertsch G. et al. Phys.Rev. Lett., 1981, 47, p. 297.

Рукопись поступила в издательский отдел 29 декабря 1983 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

.

.

	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	P.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к,
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
д4-80-385	Труды Маждународной школы по структуре ядра. Апушта, 1980.	5	p.	00	к.
A2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	p.	50	к,
<u>д10,11-81-622</u>	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- миях. Дубна, 1980	2	р.	50	к.
д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
Д17-81-758	Труды II Международного симпозиуна по избранным проблемам статистической механики. Дубна, 1981.	5	p.	40	к.
A1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.
Д2-82-568	Труды. совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	p.	75	к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	p.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	p.	00	к.
A2,4-83-179	Труды ХУ Международной школы молодых ученых по физике высоких энергий. Дубна, 1982.	4	p.	80	к.
	Труды УШ Всесоюзного совещания по ускорителям заряженных частиц. Протвино, 1982 /2 тома/	11	p.	40	к.
д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.	2	р.	50	к.
A7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6	р.	5	5 K
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волм. Дубна, 1983.	2	p.	00	к.
Заказы	на упомянутые книги могут быть направлены по 101000 Москва, Главпочтамт, п/я 79	адр	ecy	•	

Издательский отдел Объединенного института ядерных исследований

.

T.	
	Алеев А.Н. и др. Наблюдение и исследование узкого состояния в системе Σ-7/1385/К+
	Получены новые данные по наблюдению и исследованию узкого резонанса.
	распадающегося на Σ ^{-/} 1385/ и К ⁺ .Масса резонанса составляет /1956 ⁺⁸ / МэВ/с ² ,
	а его ширина – /14+12/ МэВ/с ² . Резонанс рождается в процессе дифракционной диссоциации нейтрона на квазисвободных нуклонах углеродной мишени. Пара- метр наклона дифференциального сечения по P_T^2 равен /9,9+3,0/ /ГзВ/с/- ² . Величина произведения сечения его рождения на вероятность распада по наблю даемому каналу равна /0,22+0,04/ мкб на нуклон. Определено, что спин- четность резонанса имеет одно из натуральных значений: 5/2 ⁺ , 7/2 ⁻ и т.д.
	Работа выполнена в Лаборатории высоких энергий ОИЯИ.
	Сообщение Объединенного института ядерных исследований. Дубна 1983
	Aleev A.N. et al. 1-83-912 Observation and Investigation of Narrow State in $\Sigma^{-}/1385/\text{K}^{+}$ System
	New data on the production and the investigation of a narrow resonance decaying into $\Sigma^-(1385)K^+$ are obtained. The mass of the resonance is
	1956^{+8}_{-6} MeV/c ² and its width is 14 ± 12 MeV/c ² . The resonance is produced in
	a diffraction dissociation process of neutrons on a quasi-free nucleons of carbon nuclei. The slope parameter of the P_T^2 differential cross section is equal to: 9.9 ± 3.0 (GeV/c) ⁻² . The partial cross section times the bran- ching ratio is $0.22 \pm 0.04 \mu$ b per nucleon. The resonance has one of the natural spin-parities: $5/2^+$, $7/2^-$ and etc.
	The investigation has been performed at the Laboratory of High Energies, JINR.

Перевод авторов