2/11-84

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

1657/84

Бидадзе Г.С. 1-83-895

ОБ ИЗУЧЕНИИ ИНКЛЮЗИВНОГО ОБРАЗОВАНИЯ ВЕКТОРНЫХ МЕЗОНОВ НА УСТАНОВКЕ ГИПЕРОН (Сотрудничество ИФВЭ-ОИЯИ)

Г.С.Бицадзе, В.Б.Виноградов, В.Глинка, А.Б.Йорданов, В.М.Королев, В.Г.Одинцов, А.А.Семенов, С.В.Сергеев, Б.Ситар, П.Стрмень, Р.В.Ценов, А.А.Фещенко, Й.Шпалек Объединенный институт ядерных исследований, Дубна

С.А.Акименко, В.И.Белоусов, А.М.Блик, С.А.Зелепукин, В.Н.Колосов, В.М.Кутьин, Г.П.Макаров, А.И.Павлинов, В.А.Сергеев, А.С.Соловьев Институт физики высоких энергий. Серпухов

Я.Антош Институт экспериментальной физики САН, Кошице

А.М.Артыков Самаркандский государственный университет

Ю.А.Кульчицкий, А.С.Курилин Институт физики АН БССР, Минск

1. ВВЕДЕНИЕ

Проведенные в последние годы эксперименты по исследованию рождения ϕ -мезонов на ядрах и их анализ/1-10/ свидетельствуют о том, что кварковая структура адронов проявляется не толь-ко в жестких /большие P_t /, но и мягких адрон-адронных взаимо-действиях /малые P_t /. Это стимулировало разработку ряда кварк-партонных моделей, претендующих на количественное описание экспериментальных данных. Проверка этих моделей в различных про-цессах и при различных энергиях является одной из важных задач физики высоких энергий.

Исследование процессов образования частиц в каон-нуклонных взаимодействиях имеет свои особенности, связанные с наличием валентного странного кварка в каоне. Изучая импульсные распределения частиц, также содержащих странный кварк (\mathbf{K}^{*o}, ϕ), можно получить данные о структурной функции каона в рамках модельных предпосылок.

На рис.1 приведены имеющиеся к настоящему времени экспериментальные данные по инклюзивному образованию ф-мезона в каон-

ł

БИБЛИОТЕНА

ных пучках. Большинство данных получено на пузырьковых камерах, и их статистическая точность невелика, особенно в области фрагментации каона, где сечение быстро уменьшается. Обращает на себя внимание отсутствие данных при малых энергиях первичных K^+ -мезонов.

Целью выполняемого эксперимента является детальное изучение инклюзивного образования векторных мезонов ϕ , K, ρ в различных адронных пучках при энергии /5-15/ ГэВ, а также проведение измерений на различных ядрах для изучения эффекта длины формирования адронов /11/.

В данной работе представлены предварительные экспериментальные данные по исследованию реакций

$$\mathbf{K}^{+} + \mathbf{B}\mathbf{e} \rightarrow \phi (\mathbf{K}^{*\circ}) + \mathbf{X}$$
 /1/

при импульсе 11,2 ГэВ/с.

Мы проанализировали полученные результаты с целью изучения условий регистрации $\phi(K^{*\circ})$ -мезона, что необходимо для проведения эксперимента с большой статистической обеспеченностью.

2. ПОСТАНОВКА ЭКСПЕРИМЕНТА

Измерения были проведены на ускорителе ИФВЭ^{/12/}. Схема установки показана на рис.2. Пучок К⁺-мезонов выделялся с помощью четырех газовых черенковских счетчиков С₁-С₄/13/. В пучке содержалось 7% каонов. Размер мишени из бериллия по пучку - 10 см. В триггере учитывалось требование прохождения через спектрометрический магнит установки/14/ /с полем 8900 Гс/ по крайней мере двух частиц разного знака. Для подавления фона от π -мезонов и электромагнитных ливней за магнитом располагались два двухканальных черенковских счетчика С_Ш /1х1 м²/ длиной два метра, заполненные фреоном-12 при давлении 1 атм, включенные на антисовпадение. Эффективность регистрации пионов с энергией выше 3 ГэВ

составила 0,95. В отдельных экспозициях счетчики С п не включались в триггер. Использующийся в триггере годоскопический счетчик Г₈ включался в том случае, если срабатывало не менее двух его элементов. Сцинтилляционные счетчики $\Pi_{1\div2}$ и $L_{1\div4}$ включалось по схеме $\Pi_1 \ \Pi_2 \cdot (L_1 + L_2) \cdot (L_3 + L_4)$. Уровень триггера составил $\approx 1,3\cdot10^{-3}$ при включенных в триггер счетчиках С п $\approx 3,5\cdot10^{-3}$ – без них.

Вторичные частицы регистрировались при помощи искровых проволочных камер /ИПК/ с шагом 1 мм и размерами 0,5 и1 м² с памятью на ферритовых кольцах ^{/15/}. Установка содержала 22 плоскости ИПК с общим числом каналов около 20 тысяч. Перед магнитом две камеры были повернуты на угол 45°. Координатная точность ИПК составляла /0,3 \div 0,5/ мм. Для определения точностных характеристик

спектрометра отбирались события реакции

$$K^+ + Be \rightarrow K^\circ (\pi^+\pi^-) + X$$

Погрешность при определении эффективной массы системы $(\pi^+\pi^-)$, образующейся при распаде K_s° -мезона, составила $\sigma = +2$, 6 МэВ /16//рис. 3/.

Приводимые ниже результаты соответствуют прохождению через установку $\sim 6\cdot 10^8~K^+$ -мезонов. Установка была связана он-лайн с ЭВМ ЕС-1010.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Обработка записанной на магнитные ленты информации / ~80 тысяч триггеров/ проводилась в два этапа. На первом проводилась полная геометрическая реконструкция событий при следующих условиях: а/ наличие не менее двух треков до и после магнита MC-12; б/ наличие /по крайней мере/ двух частиц разного знака. Эту стадию отбора прошли $\pm 15\%$ событий. На следующем этапе проводилось устранение неоднозначности между проекциями с помощью повернутых на угол 45° камер, находилась вершина события, производилась "сшивка" треков в мишени и магните, восстанавливался импульс частиц/17/. Характерная погрешность при определении импульса составляла $\Delta p/p \pm 0.5\%$. Количество событий, прошедших указанную обработку, составило 640.

/2/

На рис.4 показаны распределения по эффективной массе (К К)системы для данных, полученных с включенными в триггер счетчиками С_Ш /рис.4а/ и без С_Ш /рис.4б/. В области массы ϕ -мезона наблюдается пик шириной ≃20 МэВ. Существенно, что отношение эффект - фон практически не зависит от включения С ..., что свидетельствует о незначительном вкладе фона от π -мезонов. Это дает основание просуммировать имеющиеся данные /рис.5/. Одним из источников фона в спектре эффективных масс системы (K⁺K⁻⁻) является отражение состояний К° и К*° /рис.6/. События, входящие в область $M_{K^{\circ}}$ + 12 МэВ /система $\pi^{+}\pi^{-}$ / и $M_{K^{*\circ}}$ + 50 МэВ /система К⁺π ⁻/, были исключены из спектра эффективных масс системы (К⁺К[−]). Полученное после этого распределение представлено на рис.7. В результате проведения данной процедуры спектр существенно изменяется только в области МК+К- > 1,040 ГэВ. На этом основании пик в рассматриваемом спектре можно отождествить с ф-мезоном. Полученные для него значения массы и ширины составляют $M_{\rm th}$ = /1016,0 + 0,8/ МэВ, σ = 8,2 МэВ соответственно. При использовании более жестких критериев отбора для событий, записанных с включенными в триггер Сш, получено распределение /рис.8/ с лучшими значениями параметров /18/: M_b = /1020 + 0,8/ МэВ/с², $\sigma = 5.1$ M $m B/c^2$.

При определении dN/dX вносились поправки, учитывающие аксептанс установки. Вычисление геометрической эффективности регистрации ϕ -мезона как функции X осуществлялось путем моделирования методом Монте-Карло в предположении изотропного распада ϕ -мезона в системе покоя. На рис.9 показана полученная с учетом аксептанса зависимость dN/dX. При ее вычислении использовались события, масса ϕ -мезона для которых находилась в интервале

4

5

6

+ 20 МэВ от среднего экспериментального значения. Форма распределения /рис.9/ согласуется с данными ^{/1/} при энергии 10 и 16 ГэВ для пучка К-мезонов; максимум распределения находится в районе X = 0,7, что связано с доминирующей ролью странного S-кварка во фрагментационной области. На рис.10 показано аналогичное распределение для K^{*o} /890/. Область максимума распределения находится в области X = 0,8.

4. ЗАКЛЮЧЕНИЕ

Проведенные измёрения и расчеты позволяют сделать следующие выводы. 1. Сигнал от ф-и К*° -мезонов

явно выделяется над фоном.

 Форма спектра для ф-мезона аналогична наблюдаемой в К р-взаимодействиях при близкой энергии.

3. При некоторой модификации установки скорость набора статистики для ϕ - и $K^{*\circ}$ -мезона в пике составит 10⁸ событий в сутки.

4. Для изучения свойств заряженных и нейтральных частиц, сопровождающих векторные мезоны /поиск новых состояний/, а также для работы в *т*-и р-пучках, необходимы многоканальный широкоапертурный черенковский счетчик и годоскопический ливневый детектор.

В заключение авторы считают своим приятным долгом поблагодарить Ю.А.Будагова, В.П.Джелепова, Ю.Д.Прокошкина, В.Б.Флягина и Ю.Ф.Ломакина за постоянное внимание и поддержку. Авторы признательны Н.А.Русаковичу за содействие на основных этапах выполнения работы. За помощь в проведении эксперимента авторы благодарят С.П.Жунина, Н.П.Мошкова, П.В.Симонова и М.В.Тихонова.

ЛИТЕРАТУРА

- 1. Sixel P. et al. Preprint CERN/EP, 82-7, Geneva, 1982. 2. Воробьев А.П. и др. Препринт ИФВЭ, 80-36, Серпухов, 1980. 3. Арестов Ю.А. и др. Препринт ИФВЭ, 80-83, Серпухов, 1980. 4. Antipov Yu. et al. Yad.Fiz., 1978, 28, p.1299. 5. Barth M. et al. Preprint CERN/EP 82-71, Geneva, 1982. 6. Daum C. et al. Nucl. Phys., 1981, B186, p.205. 7. Morrison D.R.O. Preprint CERN/EP.79-102, Geneva, 1979. 8. Лиходед А.К., Шишлянников П.В. УФН, 1978, 124/1/, с.3. 3. Animus D.H. H HP. 10, 1979, 28/5/, c.1299 10. Chiem C.Y. et al. Nucl. Phys., 1976, B104, p.189. 11. Канчели О.В. Письма в ЖЭТФ, 1973, 18, с.465. 12. Белоусов В.И. и др. Препринт ИФВЭ, 73-90, Серпухов, 1973. 13. Качанов В.А. Препринт ИФВЭ, 69-11, Серпухов, 1969. 14. Акименко С.А. и др. ОИЯИ, Р13-80-155, Дубна, 1980. 15. Макаров Г.П. и др. Препринт ИФВЭ, 76-77, Серпухов, 1976; Карпеков Ю.Д. и др. Препринт ИФВЭ, 72-118, Серпухов, 1972. 16. Кульчицкий Ю.А. и др. ОИЯИ, Б1-1-83-137, Дубна, 1983. 17. Виноградов В.Б. и др. ОИЯИ. Р1-83-390. Дубна, 1983.
- Review of Particle Properties, Particle Data Group, CERN, Geneva, 1982.

7

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Tauru UT Bassanauara sanamaura na usumautannu anan

•	женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
<u>4-80-271</u>	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
д4-80-385	Труды <mark>Международной школы по структуре ядра.</mark> Алушта, 1980.	5	p.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	p.	50	к.
д10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	p.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
A17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	p.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	p.	. 75	бк.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	p.	. 30) к.
A3,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5	р.	. 00) к.
Д2,4-83-179	Труды XУ Международной школлы молодых ученых по физике высоких энергий. Дубна, 1982.	4	р.	80	ιк.
	Труды УШ Всесоюзного совещания по ускорителям заряженных частиц. Протвиню, 1982 /2 тома/	11	р.	. 40) к.
<mark>д11-83</mark> -511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.	2	p.	50	к.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6	P	. 5	5к.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	:	2 p	. 01	0 к.
Заказ	ы на упомянутые книги могут быть награвлены по	ад	bec	у:	

101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного ниститута ядерных исследований

Бицадзе Г.С. и др.	1-83-8
Об изучении инклюзивного образования	
векторных мезонов на установке і ипстин	
тотрудничество ново - онинт	

Представлены предварительные экспериментальные данные по исследованию реакций $\mathbb{K}^+ + \mathbb{B}e \to \phi(\mathbb{K}^{*\circ}) + \mathbb{X}$ при 11,2 ГэВ/с. С целью изучения условий регистрации векторных мезонов проведен анализ распределений по эффективной массе для вторичных частиц.Установлено,что пики ϕ - и $\mathbb{K}^{*\circ}$ -мезонов существенно выделяются над фоном, а форма спектра dN/dX для ϕ -мезона подобна наблюдаемой в \mathbb{K}° -взаимодействиях при близкой энергии. Показано, что при некоторой модификации установки скорость набора статистики значительно увеличится.

95

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1983

Bitsadze G.S. et al.	1-83-895
On the Investigation of Vector Meson Inclusive Production	
on HYPERON Installation ,	
/IFHE - JINR Collaboration/	

Preliminary experimental data on the investigation of the $\mathbb{K}^+ + Be \rightarrow \phi(\mathbb{K}^{*\circ}) + X$ reactions at 11.2 GeV/c are presented. In order to study the conditions of vector meson registration the effective mass distributions for secondary particles are analysed. It is established that the peak ϕ - and $\mathbb{K}^{*\circ}$ mesons is reliably distinguished over the background level, and spectrum shape dN/dX for ϕ -meson is similar to that observed in \mathbb{K}^-p interactions at a close energy. It is shown that at some modification of the installation the rate of statistics acquisition will considerably increase.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой