

ОБЪЕДИНЕННЫЙ Институт ядерных исследований

дубна

1-83-196

96-83

А.А.Байрамов, Ю.А.Будагов, Ш.Валкар, В.К.Волчков, А.М.Дворник, Ю.Ф.Ломакин, А.А.Маилов, Н.В.Максименко, В.С.Румянцев, В.Б.Флягин, Ю.Н.Харжеев

ИССЛЕДОВАНИЕ ИНКЛЮЗИВНЫХ РЕАКЦИЙ С ОБРАЗОВАНИЕМ МЕЗОННЫХ РЕЗОНАНСОВ В ПИОН-УГЛЕРОДНЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ 5 ГЭВ/с

Направлено в журнал "Ядерная физика"

1983

Процессы множественного образования частиц во взаимодействиях адронов с ядрами являются одним из основных источников информации о пространственно-временных характеристиках сильных взаимодействий. Эти же процессы открывают новые возможности для изучения свойств кварковой структуры адронов /см., напр., $^{1,2/}$. Вместе с тем известно $^{3,4/}$, что в указанных процессах большая доля вторичных стабильных частиц /пионов, каонов/ образуется через распад мезонных резонансов / η , ρ , ω , K*, f/. В результате форма распределений выходов стабильных частиц в значительной степени обусловлена кинематикой распада резонансов, а наименее искаженные и наиболее глубокие характеристики механизма взаимодействия адронов содержатся в данных о процессах образования резонансов.

В настоящее время экспериментальный материал по инклюзивному образованию резонансов на ядрах выглядит очень скудно.

Подобные процессы изучались в трех экспериментах: в π^-C взаимодействиях при 4/5/и 40 ГэВ/с/6/, в π^-Be- и π^-C -взаимодействиях при 43 ГэВ/с/7/. В связи с этим новые данные по рождению резонансов на ядрах представляют несомненный интерес.

В настоящей работе сообщаются результаты исследования процессов инклюзивного образования ρ° , ω и f /1270/-мезонов в π^{-} Свзаимодействиях при 5 ГэВ/с. Экспериментальные данные основаны на 15000 π^{-} С-взаимодействий, зарегистрированных в метровой пропановой пузырьковой камере ЛЯП ОИЯИ. Методика отбора, идентификации и обработки событий изложена в работе^{/8/}. Примесь протонов среди неразделенных положительных треков с P > 1 ГэВ/с составляет 60%. Примесь К[±]-мезонов в группе π^{\pm} -мезонов не превышает 2%.

Сечения выхода мезонных резонансов были найдены из анализа распределения по эффективной массе М $\pi^+\pi^-$ -пар, образующихся в реакции

$$\pi^{-}C + \pi^{+} + \pi^{-} + X.$$

В общем случае на форму распределения dN/dM могут оказать влияние все те резонансы или короткоживущие частицы, среди продуктов распада которых имеются $\pi^+\pi^-$ -пары. В нашем случае мы ограничились рассмотрением вклада только от ρ° , ω - и f /1270/-мезонов, имеющих подходящие моды распада / ρ° + $\pi^+\pi^-$, ω + $\pi^+\pi^-\pi^\circ$ и f+ $\pi^+\pi^-$ /. Вкладом от η /549/-мезона мы пренебрегли, т.к. по оценке, выполненной на основании результатов наших предыдущих работ/9/, сечение его выхода в реакции /1/ не превышает 0.3 мб.

1

/1/

В процессе анализа распределения dN/dM необходимо учитывать экспериментальные погрешности в измерении эффективной массы M, которые приводят к искажению формы функций Брейта-Вигнера, описывающих спектры по M от распада резонансов с массой M₀ и шириной Γ_0 . Наблюдаемая в эксперименте форма резонансного пика, при наличии указанных искажений, может быть представлена в виде

$$F_{R}(M) = \int_{m_{-}}^{m_{+}} BW(m, M_{0}, \Gamma_{0}) D(M,m) dm.$$
 /2/

Здесь ВW - релятивистская функция Брейта-Вигнера / 10/

BW (m, M₀,
$$\Gamma_0$$
) = $\frac{mM_0\Gamma(m)}{(m^2 - M_0^2)^2 + M_0^2\Gamma^2(m)}$, /3/

$$\Gamma(m) = \Gamma_0 (q/q_0)^{2\ell+1} (\rho(m) / \rho(M_0)),$$

где $\rho(m)$ - медленно меняющийся множитель, который для распадов 1- \Rightarrow 0- + 0- равен m⁻¹. Такое же значение $\rho(m)$ мы использовали для распада f /1270/. q - импульс одного из продуктов распада в системе покоя резонанса, q₀ - значение q при m = M₀, ℓ - спин резонанса. D (M, m) - так называемая функция разрешения, которую мы выбрали в виде нормального распределения

$$D(M,m) = \frac{K}{\sqrt{2\pi}} \cdot \frac{1}{\sigma(M)} \exp\left[-\frac{(M-m)^2}{2\sigma^2(M)}\right], \qquad (4/4)$$

где $\sigma(M) = /0,088 M - 0,02/ ГэВ/с², K = 1,0027 - фактор, учиты$ вающий ограниченность области интегрирования в /2/, которая была $задана условием <math>m_{\pm}=M \pm 3\sigma(M)$. Отметим, что мы также провели анализ спектра dN/dM с использованием обрезанного распределения Брейта-Вигнера/11/.0казалось, что изменение формы функции разрешения не влияет, в пределах экспериментальных погрешностей, на величину сечений выхода мезонных резонансов.

Сечение выхода ω -мезонов мы нашли с помощью метода, предложенного и реализованного в работе /12/Метод основан на определении величины вклада "отражения" распада $\omega \rightarrow \pi^+ \pi^- \pi^\circ$ в спектр dN / dM.

Обозначим через ϕ (M,M $_{\omega}$) спектр по эффективной массе М $\pi^+\pi^-$ пар, образующихся в распаде ω -мезона с массой М $_{\omega}$. Масса М $_{\omega}$ - случайная величина, распределенная в соответствии с функцией Брейта-Вигнера /3/. Поэтому форма "отражения" определяется ин-

$$\mathbf{RF}_{\omega} (\mathbf{M}) = \int \phi (\mathbf{M}, \mathbf{M}_{\omega}) \mathbf{BW} (\mathbf{M}_{\omega}, \mathbf{M}_{0}, \Gamma_{0}) d\mathbf{M}_{\omega}.$$
 (5/

Используя технику расчета фазовых объемов /см., например, $^{/13/}$, спектр ϕ (M, M,) можно представить в виде

$$\phi(\mathbf{M}, \mathbf{M}_{\omega}) = \mathbf{C} \cdot \mathbf{M} \cdot \mathbf{I}_{1}(\mathbf{M}, \mathbf{M}_{\omega}) \cdot \mathbf{I}_{2}(\mathbf{M}, \mathbf{M}_{\omega}),$$

$$I_{1}(M, M_{\omega}) = \int d^{4}p \,\delta(p^{2} - M^{2}) \,d^{4}k_{3} \,\delta(k_{3}^{2} - m_{3}^{2}) \,\delta^{3}(\vec{p} + k_{3}) \,\delta(E + E_{3} - M_{\omega}), \quad /6/$$

$$I_{2}(M, M_{\omega}) = \int |A|^{2} \frac{d^{3}k_{1}}{2E_{2}} \cdot \frac{d^{3}k_{2}}{2E_{2}} \,\delta^{4}(p - k_{1} - k_{2}).$$

Здесь все величины определены в системе покоя ω -мезона, Снормировочная константа, \mathbf{k}_1 , \mathbf{k}_2 и \mathbf{k}_3 - 4-импульсы π^+ -, π^- -и π° -мезонов, \mathbf{m}_1 , \mathbf{m}_3 - массы π^+ -, π° -мезонов соответственно, $\mathbf{p} = (\mathbf{k}_1 + \mathbf{k}_2)$ - суммарный импульс $\pi^+\pi^-$ -пары, $\mathbf{E}_1 = \sqrt{\mathbf{k}_1^2 + \mathbf{m}_1^2}$. $\mathbf{E} = \sqrt{\mathbf{p}^2} + \mathbf{M}^2$, $\mathbf{A} = [\mathbf{k}_1 \times \mathbf{k}_2]$ - матричный элемент распада ω -мезона/14/. Интеграл I₁ - это известный двухчастичный фазовый объем

$$I_1(M, M_{\omega}) = \pi \frac{|\vec{p}|}{M_{\omega}}.$$

Интеграл I 2 легко приводится к виду

$$I_{2}(M, M_{\omega}) = \frac{\pi}{2|\vec{p}|} \int_{\underline{E}_{-}}^{\underline{E}_{+}} dE_{1}[\vec{p}^{2}(\frac{M^{2}}{4} - m_{1}^{2}) - M^{2}(\frac{E}{2} - E_{1})^{2}],$$

$$E_{\pm} = \frac{1}{2}(E_{\pm}|\vec{p}| \sqrt{1 - \frac{4m_{1}^{2}}{M^{2}}}),$$

и после интегрирования имеем

$$I_2(M, M_{\omega}) = \frac{\pi}{12} \frac{\vec{p}^2}{M} (M^2 - 4m_1^2)^{3/2}.$$

Подставляя значения І и І в /6/, получаем

$$\phi(\mathbf{M},\mathbf{M}_{\omega}) = \mathbf{C} \cdot \frac{\pi}{12} \frac{|\vec{\mathbf{p}}|^3}{\mathbf{M}_{\omega}} (\mathbf{M}^2 - 4\mathbf{m}_1^2)^{3/2} .$$

$$|\vec{\mathbf{p}}| = \frac{\sqrt{\mathbf{M}_{\omega}^2 - (\mathbf{M} + \mathbf{m}_3)^2} \sqrt{\mathbf{M}_{\omega}^2 - (\mathbf{M} - \mathbf{m}_3)^2}}{2\mathbf{M}_{\omega}},$$

2

3

171

где M изменяется в пределах $2m_1 \leq M \leq M_{\omega} - m_3$. В случае узких резонансов, к которым относится и ω -мезон / Γ_0 = 10 M3B/, можно положить BW (M_{ω}, M₀, Γ_0) = $\delta(M_{\omega} - M_0)$ и из /5/ находим

 $RF_{\omega}(M) = \phi(M, M_0). \qquad (8/$

Аналогичный вид функции /7/ получен в работе^{/16/}. Причина столь подробного изложения расчета функции /7/ заключается в том, что она совершенно не совпадает с неоправданно громоздким выражением для функции $\phi(M, M_0)$, приведенным в работе^{/12/}и неоднократно цитируемым в ряде работ. Следует, однако, заметить, что численные значения функции /7/ и функции $\phi(M, M_0)$ из работы^{/12/}/обе функции нормируются на единичную площадь/ практически совпадают во всем интервале изменения M.

Экспериментальное распределение dN /dM для реакции /1/ представлено на рис.1. Там же сплошной плавной линией изображен результат аппроксимации данных в интервале масс 0,28-1,45 ГэВ/с² аналитическим выражением

$$\frac{dN}{dM} = BG(M) \left[1 + a_1 \frac{K^{-1}}{q} F_{\rho}(M) + a_2 \frac{K^{-1}}{q} F_f(M) + a_3 \frac{K^{-1}}{q} RF_{\omega}(M) \right], \qquad /9/$$

где $\mathbb{K}^{-1} = 1 \cdot F_{9}B^{2}$, a_{1} , a_{2} и a_{3} - подбираемые параметры, определяющие относительные вклады резонансов ρ° , f и ω . Функции $F_{\rho}(M)$, $F_{f}(M)$ и $RF_{\omega}(M)$ определены выше формулами /2/ и /8/.Входящие в эти функции массы и ширины резонансов были зафиксированы при табличных значениях / 15/.Функции BG(M)- фоновое распределение, выбранное в виде

 $BG(M) = (M_1 / 1\Gamma_{9B}/c^2)^{b_1} \exp(-b_2M_1 + b_3M_1^2),$

где b_i - подбираемые параметры, M₁= M - 2m₁. Аппроксимация проводилась с помощью метода наименьших квадратов.

Инклюзивные сечения выхода резонансов, полученные в результате аппроксимации и пересчитанные к значениям, учитывающим все возможные каналы распада резонансов, приведены в табл.1. Мы также определили сечения выхода ρ° - и f -мезонов путем аппроксимации распределения dN/dM в области масс $M \ge 0,6$ ГэВ/с², где вклад отражения ω -мезона уже несуществен. Эти сечения в пределах одной ошибки совпали с сечениями, приведенными в табл.1. В последней колонке этой таблицы приведено отношение средней множественности π^{-} -мезонов, образующихся от распада резонанса /обозначены как π^{-} рез./, к полной средней множественности π^{--} мезонов. Согласно этим данным, в π^{-} С-взаимодействиях при 5 ГэВ/с примерно 8% π^{-} -мезонов образуются в результате распада мезонных резонансов ρ° , ω и f.

Рис.1. Инклюзивный спектр эффективных масс пар (*π*⁺*π*⁻)-мезонов в *π*⁻С -взаимодействиях при 5 ГэВ/с. Сплошная кривая – результат аппроксимации.

Таблица 1

$\pi^- C \rightarrow R + X$		при 5 ГэВ/с	
Символ резонанса R	Инклюзивное сечение σ(R), мбн	Средняя множественность <n(r)></n(r)>	$\frac{\langle n(\pi_{pes.})\rangle}{\langle n(\pi^{-})\rangle}$
po	12,9+3,4	0,072+0,019	0,047+0,012
ω.	6,0+4,0	0,033+0,022	0,021+0,014
f	2,9+1,8	0,016+0,010	0,010+0,006
$\rho^{\circ} + \omega + f$	21,8+5,6	0,121+0,031	0,078+0,019

В табл.2 представлены данные о средних множественностях $\langle n(R) \rangle$ мезонных резонансов, образующихся в реакции /1/ при 4,0 /5/; 5,0 /наст.раб./ и 40,0 ГэВ/с/6/. Значения $\langle n(R) \rangle$ при 4,0 и 5,0 ГэВ/с

4

5

	-		0		-
77	U	-> '	D	+	A

Таблица 2

$\pi^{-}C \rightarrow R + X$						
Импульс пучка, ГэВ/с	4,0	5,0	40,0			
исло комбинац. спектре dN / dM	~ 2700	<u>~</u> .55400	<u>≃</u> .140500			
<n(p<sup>o)></n(p<sup>	0,11+0,02	0,072+0,019	0,47+0,05			
<n(w)></n(w)>	0,05+0,03	0,033+0,022	0,50+0,06			
<n(f)></n(f)>	and the second second	0,016+0,010	0,05+0,05			
<n(<math>\pi_{pe3.})></n(<math>	0,11 <u>+</u> 0,03	0,078+0,019	0,33+0,03			

dia do

Рис.2. Распределение ρ° -мезонов по \mathbf{p}_{1}^{2} . Рис.3. Распределение ρ° -мезонов по быстроте.

-18 08 02 12 22 32 Yant

20-10 00 10 20

-0°+X.5/38/c

в пределах экспериментальных ошибок согласуются между собой. При обеих энергиях $\omega - \mu \rho^{\circ}$ -мезоны рождаются в отношении 1:2. С ростом энергии множественности этих резонансов существенно увеличиваются и находятся в отношении 1:1.

Рассмотрим теперь нормированные дифференциальные сечения $(1/\sigma_{in}) d\sigma / dy$ и $(1/\sigma_{in}) d\sigma / dp_{i}^2$ реакции

при 5 ГэВ/с. Здесь у - быстрота в лаб. системе, p_1^2 - квадрат поперечного импульса.

Метод вычисления какого-нибудь распределения, например, dN/dy в реакции /10/ состоит в следующем. Для і -ого интервала быстроты $y_{\pi\pi}$ $\pi^+\pi^-$ -пар, образующихся в реакции $\pi^-C \to \pi^+ + \pi^- + X$, строится спектр dN /DM.В этом спектре, с помощью изложенной выше стандартной процедуры, определяется доля $\pi^+\pi^-$ -комбинаций (a_i), обусловленных ρ° -мезоном. Величина распределения dN/dy в і -ом интервале быстроты ρ° -мезона определяется выражением dN_i/dy = = a_i (dN_i / dy_{$\pi\pi$}).

Наборы спектров dN /dM, из которых определялись дифференциальные сечения реакции /10/, аппроксимировались в интервале масс /0,6-1,4/ ГэВ/с² выражением /9/ при фиксированных значениях $a_{2} = a_{2} = 0.$

Дифференциальное сечение $(1/a_{in}) d\sigma/dp_1^2$ представлено на рис.2. Сплошная линия на этом рисунке - результат аппроксимации данных выражением $A \exp(-Bp_1^2)$. Найденное значение параметра наклона B = 3,2+0,6 /ГэВ/с/-2 в пределах ошибок хорошо согласуется с величиной B = 2,7+0,4 /ГэВ/с/-2 для реакции /10/ при 40 ГэВ/с/6/. Такая близость величин параметров наклона В позволяет заключить, что форма распределения по p_1^2 в реакции /10/, возможно, слабо зависит от энергии.

На рис.3 приведено дифференциальное сечение $(1/\sigma_{in}) d\sigma/dy$ реакции /10/. Нижняя шкала этого рисунка размечена значениями быстроты у*, соответствующими быстроте ρ° -мезона в с.ц.м. $\pi^{-1}p$ -взаимодействий при 5 ГэВ/с. Дифференциальное сечение имеет характерный максимум в области $0, 0 \le y^* \le 1, 0$, при этом $\simeq 80\%$ ρ° -мезонов образуется в передней полусфере ($y^* \ge 0$).

В заключение кратко сформулируем основные результаты работы.

1. Измерены полные инклюзивные сечения выхода ρ° , ω -и f /1270/-мезонов в π^- С -взаимодействиях при 5 ГэВ/с. Показано, что в этих взаимодействиях примерно 8% π^- -мезонов образуется в результате распада указанных мезонных резонансов.

2. В реакции с образованием ρ° -мезонов измерены инклюзивные дифференциальные сечения по у и p_{\perp}^2 . Данные о таких сечениях на ядрах при энергиях ниже 40 ГэВ ранее отсутствовали.

Авторы выражают благодарность Н.К.Куциди за полезные обсуждения.

ЛИТЕРАТУРА

1. Замолодчиков А.Б., Копелиович Б.З., Лапидус Л.И. ЯФ, 1982, т.35, с.129. 7

6

/10/

- 2. Шабельский Ю.М. ЭЧАЯ, 1981, т.12, с.1070.
- 3. Лиходед А.К., Шляпников П.В. УФН, 1978, т.124, с.3.
- 4. Гришин В.Г. УФН, 1979, т.127, с.51; Гришин В.Г. ЭЧАЯ, 1979, т.10, с.608.
- 5. Yuldashev B.S. et al. Preprint VTL PUB-75, 1980.
- 6. Ангелов H.C. и др. ЯФ, 1981, т.33, с.1546.
- 7. Антипов Ю.М. и др. Препринт ИФВЭ, 82-137, Серпухов, 1982.
- 8. Абдинов 0.5. и др. ОИЯИ, Р1-11820, Дубна, 1978.
- 9. Амаглобели Н.С. и др. ЯФ, 1975, т.22, с.1269; Будагов Ю.А. и др. ОИЯИ, Р1-9506, Дубна, 1976; Будагов Ю.А. и др. ЯФ, 1970, т.12, с.1222.
- 10. Jackson I.D. Nuovo Cim., 1964, vol.34, p.1644.
- 11. Статистические методы в экспериментальной физике /под ред. А.А.Тяпкина/. Атомиздат, М., 1976.
- 12. Ангелов Н.С. и др. ЯФ, 1977, т.25, с.117.
- 13. Копылов Г.И. Основы кинематики резонансов. "Наука", М., 1970.
- 14. Stevenson M.L. et al. Phys.Rev., 1962, vol.125, p.687.
- 15. Review of Particle Properties. Phys.Lett., 1982, vol.111B.
- 16. Batjunia B.V. et al. Z.Phys., 1983, C18, s.353.

Рукопись поступила в издательский отдел 30 марта 1983 года. Байрамов А.А. и др. Исследование инклюзивных реакций с образованием мезонных резонансов в пион-углеродных взаимодействиях при 5 ГэВ/с

Измерены полные инклюзивные сечения выхода ρ° , ω -и f /1270/-мезонов в π° С -взаимодействиях при 5 ГэВ/с и соответствующие средние множественности $\langle n(\rho^{\circ}) \rangle = 0,072\pm0,019$, $\langle n(\omega) \rangle = 0,033\pm0,022$, $\langle n(f) \rangle = 0,016\pm0,010$. Показано, что в этих взаимодействиях примерно 8χ π° -мезонов образуются в результате распада указанных мезонных резонансов. В реакции с образованием ρ° -мезонов измерены инклюзивные дифференциальные сечения по быстроте и квадрату поперечного импульса.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1983

Bajramov A.A. et al. Investigation of Inclusive Reactions with the Production of Meson Resonances in Pion-Carbon Interactions at 5 GeV/c

Total inclusive cross sections for ρ° , ω - and f /1270/ meson production and the corresponding average multiplicities $\langle n(\rho^{\circ}) \rangle = 0.072\pm0.019$, $\langle n(\omega) \rangle = 0.033\pm0.022$, $\langle n(f) \rangle = 0.016\pm0.010$. have been measured in $\pi^{-}C$ -interactions at 5 GeV/c. It is shown that approximately 8 percent of secondary π^{-} -mesons are produced from the meson resonance decay. For the reactions with the production of ρ° -mesons the dependence of the inclusive differential cross sections on the rapidity and p^{2} is analysed.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.