СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C346.46 A-329

201- 75 - 8250

196/2-75 Г.Т.Адылов, Ф.К.Алиев, А.С.Водопьянов, И.Иоан, Т.С.Нигманов, Э.Н.Цыганов, С.Б.Нурушев, Л.Ф.Соловьев, Э.Далли, Д.Дрики, Дж. Томпкинс, П.Шепард

ЭФФЕКТИВНОСТЬ РЕГИСТРАЦИИ СОБЫТИЙ В ОПЫТЕ ПО УПРУГОМУ 77 р-РАССЕЯНИЮ НА МАЛЫЕ УГЛЫ ПРИ ЭНЕРГИЯХ 40 И 50 ГЭВ И ВЫЧИСЛЕНИЕ ДРУГИХ ПОПРАВОК К ДИФФЕРЕНЦИАЛЬНОМУ СЕЧЕНИЮ

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

1 - 8250

Г.Т.Адылов, Ф.К.Алиев, А.С.Водопьянов, И.Иоан, Т.С.Нигманов, Э.Н.Цыганов, С.Б.Нурушев¹, Л.Ф.Соловьев¹, Э.Далли,² Д.Дрики²,Дж.Томпкинс², П.Шепард²

ЭФФЕКТИВНОСТЪ РЕГИСТРАЦИИ СОБЫТИЙ В ОПЫТЕ ПО УПРУГОМУ Пр- РАССЕЯНИЮ НА МАЛЫЕ УГЛЫ ПРИ ЭНЕРГИЯХ 40 И 50 ГЭВ И ВЫЧИСЛЕНИЕ ДРУГИХ ПОПРАВОК К ДИФФЕРЕНЦИАЛЬНОМУ СЕЧЕНИЮ

> объединенный институт якерных исследования БИБЛИОТЕКА

Институт физики высоких энергий, г. Серпухов.

² Калифорнийский университет, Лос-Анджелес.

Упругое П⁻р- рассеяние при энергиях налетающих пионов 40 и 50 ГэВ исследовалось с помощью экспериментальной установки /I/, представленной на рис.І. Данные, накопленные этим спектрометром на магнитных лентах, использовались для выделения событий изучаемого процесса с помощью программ, описанных в /2/. Для вычисления дифференциального сечения П⁻р упругого рассеяния необходимо было учесть потери событий, обусловленные неэффективностью спектрометра и вышеупомянутых программ.

Эффективность восстановления траекторий частиц
в спектрометре

Программа поиска и реконструкции событий "TRACKFINDING" использовала данные о координатах искр, возникающих в камерах вдоль траекторий частиц. Восстановление треков велось последовательно в трёх блоках камер. В блоке I располагались 5 искровых камер S.C.I - S.C.5 и одна пара пропорциональных камер Р.С., в блоке П-семь искровых камер S.C.6 - S.C.12 и в блоке Ш-шесть искровых камер S.C.13 - S.C.18. Одна камера в блоке I и по две в блоках П и Ш были повернуть на угол 45⁰ относительно других.

Потери событий, вызываемые неэффективностью возникновения искр в камерах и восстановления треков частиц, определялись с помощью программы "SPECEFF".

Эффективность регистрации координат прохождения частиц в камере определялась по данным восстановленных событий. Для восстановления трека программой "TRACKFINDING" достаточно было наличие искр на треке хотя бы в 3-х камерах из 6-ти в блоке I, 4-х из 7-ми в блоке II и 3-х из 6-ти в блоке Ш. Поэтому можно было

3

отбирать события, для которых эти требования удовлетворялись независимо от того, была или не была искра в исследуемой камере. По таким событиям подсчитывались величины $N_{\rm XY}$, $N_{\rm XO}$, $N_{\rm YO}$, $N_{\rm OO}$ по следующим признакам:

a) N_{XY} - есть искра на треке как в горизонтальной Х, так
и в вертикальной У плоскостях,

- б) N_{×O} есть искра в X, но нет в У,
- в) N_{VO} есть искра в У, но нет в Х,
- г) N₀₀ нет искр ни в Х,ни в У плоскостях.

Простые вычисления позволяют определить эффективность возникновения искры в зазоре искровой камеры Е_{дар} и эффективности Е_х и Е_у съёма информации датчиками в Х и У плоскостях камеры из системы уравнений:

$$\begin{cases} N_{xy} = E_x \cdot E_y \cdot E_{gap} \cdot N ,\\ N_{xo} = E_x \cdot (1 - E_y) \cdot E_{gap} \cdot N ,\\ N_{yo} = (1 - E_x) \cdot E_y \cdot E_{gap} \cdot N ,\\ N_{oo} = (1 - E_x) \cdot (1 - E_y) \cdot E_{gap} \cdot N \end{cases}$$

исключая N - число прошедших частиц.

При восстановлении траекторий также требовалось, чтобы хотя бы одна из двух повернутых камер как в блоке П, так и в блоке Ш позволяла установить, что треки в X и У плоскостях этих блоков являются проекциями одного и того же пространственного. Эффективность установления пространственного соответствия треков Е^Q в блоке определялась решением следующих уравнений:

 $\begin{cases} N_{1} = \varepsilon_{1} \cdot N & , \\ N_{2} = \varepsilon_{2} \cdot N & , \\ N_{12} = \varepsilon_{1} \cdot \varepsilon_{2} \cdot N & , \\ E^{R} = 1 - (1 - \varepsilon_{1}) \cdot (1 - \varepsilon_{2}) & , \end{cases}$

где N₁₂ - число событий, когда пространственное соответствие устанавливалось по обены повернутым камерам блока одновременно, а N₁ и N₂ - по одной из них.

Эффективность восстановления траекторий событий определялась следующим образом:

 $E = E_I \cdot E_{II} \cdot E_{III} \cdot E_{II}^R \cdot E_{III}^R$, где E_I, E_{II}, E_{III} — вероятность появления не менее чем 3, 4, 3 искр на треке в блоках I,П и Ш соответственно, с учетом корреляции между регистрацией искр в X и У плоскостях, E_{II}^R и E_{III}^R вероятность установления пространственного соответствия между треками в X и У плоскостях в блоках П и Ш.

Моделирование событий методом Монте-Карло с помощью сложной программы, учитывающей, в частности, влияние фоновых искр в камерах, также осуществлялось для определения эффективности восстановления треков. Однако сравнение этих двух методов, проведенное на части экспериментального материала, не выявило каких-либо заметных несоответствий в вычисляемых эффективностях. Это объясняется высокой эффективностью восстановления траекторий частиц(~98%), получаемой из-за хорошего режима работы спектрометра (невелико число случаев, когда за время памяти камер черев спектрометр проходит более одной частицы) и нежестских критериев поиска и восстановления треков.

3. Геометрическая эффективность

Размеры и расположение последней пары пропорциональных камер P.C., через которые должны проходить траектории отобранных событий^{/2/}, не позволяли регистрировать все события упругого П⁻р-рассеяния в выбранных интервалах переданных четырехимпульсов -t

- 5

(см. рис.2). Определение геометрической эффективности регистрации событий при каждом t осуществлялось программой "GEOMEFF" по найденным событиям рассеяния.

Поскольку геометрическая эффективность $E_{g}(t)$ при данном t зависит от импульса и параметров траектории первичного пиона и положения вершины рассеяния, для каждого события определялась парциальная эффективность $\mathcal{E}_{i}(t)$. Поворот траектории отобранного события на угол \mathcal{P} вокруг трека первичного пиона (разыгрываем по равномерному закону) осуществлялся так, чтобы угол рассеяния Θ и импульс вторичного пиона P_{π} , определяемые по новым трекам, сохранялись. Число случаев п, когда новая траектория проходила через последнюю пару камер Р.С., и число разыгранных событий n_{o} = IOO позволяли определять эффективность регистрации такого события

$\varepsilon_i(t) = n/n_0$

Вэвешенная геометрическая эффективность регистрации событий при данном t определялась по формуле

 $E_{g}(t) = N(t) \cdot \left(\sum_{i=1}^{N(t)} \frac{1}{E_{i}(t)}\right)^{-1},$

где N(t) - число найденных событий при переданном импульсе t

Геометрическая эффективность определялась также методом Монте-Карло. Исходными данными при этом служили реальные параметры траекторий и импульсов первичных пионов, зарегистрированных в специальных измерениях. Эффективности, полученные обоими методами, хорошо между собой согласовывались, что указывало на отсутствие заметного эффекта из-за возможного неточного значения истинных параметров пучка при рабочих измерениях.

4. Эффективность регистрации событий процессором Аналоговое решающее устройство (процессор) разрешало запуск искровых камер только тогда, когда угол рассеяния, определяемый при помощи пропорциональных камер Р.С. либо в Х,либо в У плоскости, был больше заданного. Наличие или отсутствие сигнала разрешения на запуск, вырабатываемого процессором независимо в Х и У плоскостях, записывалось на магнитную ленту в виде чисел "О" или "I" соответственно. Эффективность регистрации событий процессором определялась " DESEFF " с помощью этой информации и траекторий отобранных событий /2/.

Для каждого фиксированного угла рассеяния Θ_X , определяемого в плоскости X, подсчитывались числа событий $N_{Xy}(\Theta_X)$ и $N_y(\Theta_X)$, когда выполнялись следующие условия:

I) $N_{xy}(\Theta_x)$ - есть "I" и в X,и в У плоскостях,

2) N_y(Θ_X) - есть "I" в У и либо "О", либо "I" в Х плоскостях. Аналогично для угла Θ_у подсчитывались величины

I) M_{Xy}(Oy) - есть "I" и в X,и в У плоскостях,

2) M_X(Oy) - есть "I" в X и либо "О", либо "I" в У плоскостях.

Эффективности вырабатывания процессором сигнала разрешения в плоскостях X и У в зависимости от соответствующих проекций угла рассеяния $\mathcal{E}_{X}(\Theta_{X})$ и $\mathcal{E}_{y}(\Theta_{y})$ (см. рис. 3) определялись по следующим формулам:

$$\mathcal{E}_{x}(\Theta_{x}) = N_{xy}(\Theta_{x}) / N_{y}(\Theta_{x}),$$

$$\mathcal{E}_{y}(\Theta_{y}) = M_{xy}(\Theta_{y}) / M_{x}(\Theta_{y}).$$

Эффективность регистрации любого события, имеющего углы рассеяния Θ_X и Θ_V , была равна:

$\mathcal{E} = 1 - [1 - \mathcal{E}_{\mathbf{x}}(\Theta_{\mathbf{x}})] \cdot [1 - \mathcal{E}_{\mathbf{y}}(\Theta_{\mathbf{y}})]$

Но, зная эффективность регистрации каждого события E_i(t) при данном t , нетрудно получить исходное число событий N'(t) :

6

$$N'(t) = \sum_{i=1}^{N(t)} \frac{1}{\xi_i(t)}$$

где N(t) - число найденных событий рассеяния при переданном импульсе t .

Эффективность регистрации событий процессором

 $\mathcal{E}(t) = N(t)/N'(t)$ при $-t \simeq 0,002 (ГэВ/с)^2$ была равна 0,75 и быстро возрастала, достигая I при $-t \simeq 0,008 (ГэВ/с)^2$

5. Некоторые другие поправки, внесенные при вычислении дифференциального сечения

Кроме основных поправок, упомянутых выше, необходимо было определить ряд других поправок.

Потери событий, вызванные неточностью определения Вершины рассеяния Z_{int} , находились с помощью программы "ZCUT". Неточность в определении вершины рассеяния $\overline{\Delta Z}$ зависила от угла рассеяния Θ по закону:

$$\overline{\Delta z} \sim \overline{\Delta R} / \theta$$
.

где $\overline{\bigtriangleup R}$ - точность "сшивания" треков блоков I и II в центре мишени. Она определялась по данным измерений, в которых регистрировались траектории частиц пучка, проходящих через спектрометр без взаимодействий. Для каждой точки рассеяния в области водорода вводилась ошнока $\overline{\bigtriangleup 2}$, разыгрываемая по Гауссу. Число событий, в которых определяемая таким образом точка рассеяния оказывалась вне выбранной области мишени/2/, возрастало с уменьшением угла Θ , но составляло не более IO% вблизи минимального угла $\Theta_{\rm min}$.

Зависимости распределений фоновых событий на постороннем веществе при отсутствии водорода (пустая мишень) и его наличии (полная мишень) от t -неадекватны.Поэтому данные,полученные при пустой мишени,вычитались из данных, полученных при полной мишени, с учетом многократного рассеяния на водороде. Следует упомянуть, что также вводились поправки на многократное рассеяние^{/3,4/} и угловое разрешение спектрометра ^{/5/} ($\triangle \Theta = 0, I4$ мрад), поглощение частиц, случайные антисовпадения и т.д.

6. Заключение

Авторы считают своим долгом поблагодарить дирекцию ИФВЭ за предоставленную возможность работы на ЭВМ ICL-I906 и дирекцию ЛВЭ ОИЯИ за постоянное внимание и поддержку.

Мы также пользуемся случаем выразить признательность В.Д.Апокину, А.А.Деревщикову, Ю.А.Матуленко и В.Л.Соловьянову за помощь и полезные обсуждения при проведении данной работы.

Рис.І. Схема экспериментальной установки.

Рис.2. Геометрическая эффективность спектрометра.

8

Рис.3. Эффективность регистрации событий процессором в каждой плоскости в зависимости от угла рассеяния. Суммарная эффективность $\mathcal{E} = 1 - (1 - \mathcal{E}_x) \cdot (1 - \mathcal{E}_y)$

Литература

I. G.T.Adylov et al. JINR , E1-7934, Dubna, 1974. 2. Г.Т.Адылов и др. Сообщение ОИЯИ, I-8251, Дубиа, 1974.

H.A.Bethe Phys. Rev., <u>89</u>, 1256, 1953.
V.Fano Phys. Rev., <u>52</u>, 286, 1954.
A.M.Cormack Nucl. Phys., <u>52</u>, 286, 1964.

Рукопись поступила в издательский отдел

6 сентября 1974 г.