

В.Г.Аблеев*, В.А.Бодягин*, Г.Г.Воробьев, Р.Дымаж, С.А.Запорожец, В.И.Иноземцев, А.А.Номофилов, Н.М.Пискунов, И.М.Ситник, Е.А.Строковский, Л.Н.Струнов, А.Филипковски**, В.И.Шаров

ДИФРАКЦИОННОЕ РАССЕЯНИЕ АЛЬФА-ЧАСТИЦ С ИМПУЛЬСОМ 17,9 ГэВ/с НА ЯДРАХ ВОДОРОДА И ГЕЛИЯ

Направлено в журнал "Ядерная физика"

١,

1982

^{*} НИИЯФ МГУ, Москва.

^{**}ИЯИ, Варшава.

1. ВВЕДЕНИЕ

При изучении механизма рассеяния ионов высоких энергий и исследовании свойств адронной материи возникает вопрос о количественном согласии результатов опыта и расчетов по обычной дифракционной теории многократного рассеяния /ДТМР/ ^{/1,2}, в которой предполагается, что конституентами сталкивающихся ядер являются только нуклоны, не возбуждающиеся на промежуточных стадиях процесса рассеяния. Настоящая работа посвящена ответу на этот вопрос.

В наших исследованиях $^{/3-5/}$ дифференциальных сечений упругого и квазиупругого aC_- , aAl_- , aCu-рассеяния в дифракционной области при 17,9 ГэВ/с было обнаружено, что отклонения расчетов по ДТМР от эксперимента достигают десятков процентов. Подобные эффекты наблюдались и в недавних экспериментах по pd- и dd-упругому рассеянию на встречных пучках в ЦЕРНе $^{/6,8/}$, а также в исследованиях упругого ра-рассеяния $^{/7/}$, где они связывались с поправками на неупругое экранирование к ДТМР.

В настоящей работе представлены результаты измерений дифференциальных сечений ap- и aa-рассеяния при 17,9 ГэВ/с и их сравнение с теоретическими расчетами в рамках ДТМР /без ряда приближений, которые приходилось использовать при расчетах aC-, aAl-, aCu-рассеяния/. Предварительные данные сообщались ранее $^{/4,9/}$.

В разделе 2 приведены результаты работы и кратко описана процедура их получения. В разд.3 они сравниваются с результатами расчетов и обсуждаются причины выявленных расхождений.

2. ПОЛУЧЕНИЕ ДАННЫХ

Измерения выполнены на пучке альфа-частиц с интенсивностью /1-5/ 10⁵ частиц/с, выводимом из синхрофазотрона за время 0,3-0,5 с. Использовался магнитный спектрометр "Альфа", схема которого приведена на <u>рис.1</u>. Устройство спектрометра и организация его работы на линии с ЭВМ БЭСМ-4, описаны в работах/10,4,5/

В настоящем эксперименте использовалась криогенная мишєнь^{/11}, наполняющаяся водородом/0,847±0,001 г/см²/ или гелием /1,494±0,002 г/см²/. Количество вещества вдоль пути частиц в пустой мишени составляло 0,11 г/см².

1

<u>Рис.1.</u> Схема спектрометра. S_i - сцинтилляционные счетчики / S_8 и SB_i использовались для определения заряда/, А - сцинтилляционный счетчик с отверстием ϕ 5 см в центре; PC_i - пропорциональные камеры с расстоянием между сигнальными проволочками 2 мм / PC_{i+4} измеряли горизонтальную(X) и вертикальную(Y) координаты/, T - криогенная мишень, АМ - анализирующий магнит.

Из сфокусированного на мишень пучка совпадениями $M = s_1 \cdot s_2 \cdot s_4 \cdot \overline{A} \cdot K$ / K соответствует одновременному лоступлению сигналов не более чем с одной проволоки в каждой из плоскостей камер PC_{1,2} / выделялись т.н. мониторные частицы, треки которых имели нужные координатные и угловые параметры относитель-но оси установки.

Запись события на магнитную ленту производилась, если угол рассеяния в мониторной частицы в мишени превышал заданное значение $heta_0$ и поступал сигнал хотя бы от одной из пропорциональных камер $PC_{\theta,7}$, расположенных за магнитом. Условие $\theta > \theta_0$ проверялось специальными цифровыми процессорами, сопряженными с камерами PC_{1.9.4}. Для каждого события в ЭВМ передавалась координатная информация от пропорциональных камер, а также данные о потоке мониторных частиц, поступлении сигналов от сцинтилляционных счетчиков установки, амплитудах сигналов со счетчиков, используемых для определения заряда частиц. Для контроля за качеством работы установки, получения ее характеристик и констант, необходимых для восстановления треков, около 10% от общего числа событий записывалось без отбора случаев рассеяния. Смена условий записи производилась по командам ЭВМ с достаточно коротким периодом, что обеспечивало корректное определение характеристик спектрометра.

Угловое разрешение спектрометра, найденное при облучении 'пустой' мишени, составляло $\sigma\theta = 0,75$ мрад, импульсное $-\sigma p/p = 0,8$ %. События рассеяния в мишени и на веществе ближайших к ней пропорциональных камер хорошо разделялись /<u>рис.2</u>/.

Методика обработки данных, вычисления дифференциальных сечений и введения поправок к ним, подробно была описана в рабо-

<u>Рис.2</u>. Распределения по координате Z точки взаимодействия *а*-частиц в районе мишени для двух диапазонов углов рассеяния /ось Z направлена по пучку/. Стрелками обозначены границы района мишени.

Рис.3. Распределение по углу отклонения рассеянных альфа-частиц анализирующим магнитом. $\Delta \theta_{23}$ отклонение угла поворота от среднего значения. Стрелками обозначены принятые границы области "упругого пика", соответствующей интервалу импульсов P₀ +350 MэB/c / P₀ - импульс пучковых альфа-частиц/.

тах^{/4,5/}. Для определения дифференциальных сечений отбирались события, удовлетворяющие следующим критериям: треки до и после мишени существуют, они хорошо "сшиваются" в районе мишени, величина угла отклонения частицы анализирующим магнитом соответствует области "упругого пика" /<u>рис.3</u>/. Число событий рассеяния на ядрах мишени находилось с помощью обычной процедуры вычитания фона, измеренного в экспозициях с пустой мишенью. Оно поправлялось на геометрическую эффективность установки /рассчитанную методом Монте-Карло с учетом реальных координатных и угловых распределений пучка/, а также на аппаратурную эффективность спектрометра и поглощение частиц в веществе установки. Поскольку распределение амплитуд сигналов со счетчиков SB₁ близко к распределению Ландау, вводилась поправка на примесь Таблица l

θ.	-t	dr no	([]3B/c) ⁻²
мрад	(ГэВ/с) ²	H ₂	Нө
Mpai 6,65 7,35 8,05 8,75 9,45 10,15 10,85 11,55 12,25 12,95 13,65 14,35	0,0142 0,0173 0,0208 0,0245 0,0286 0,0330 0,0377 0,0427 0,0481 0,0537 0,0597 0,0660	$ \begin{array}{r} 1 \\ 588 \\ \pm 21 \\ 528 \\ \pm 18 \\ 426 \\ \pm 14 \\ 363 \\ \pm 12 \\ 306 \\ \pm 10 \\ 266 \\ \pm 9 \\ 243 \\ \pm 8 \\ 194 \\ \pm 7 \\ 162 \\ \pm 6 \\ 131.0 \\ \pm 4.8 \end{array} $	$\begin{array}{r} 4130 & \pm & 190 \\ 3015 & \pm & 150 \\ 2555 & \pm & 120 \\ 1855 & \pm & 90 \\ 1525 & \pm & 80 \\ 1160 & \pm & 70 \\ 874 & \pm & 35 \\ 591 & \pm & 26 \\ 474 & \pm & 21 \\ 322 & \pm & 17 \\ 248 & \pm & 15 \\ 165 & \pm & 12 \end{array}$
15,05 15,75 16,45 17,15 17,85 18,55 19,25 19,25 19,95 20,65 21,35 22,05 22,75 23,45 24,15 24,85 25,55 26,55	0,0726 0,0795 0,0867 0,0942 0,1021 0,1103 0,1187 0,1275 0,1366 0,1461 0,1558 0,1658 0,1658 0,1762 0,1869 0,1979 0,2092 0,2208	$102,3 \pm 4,1$ $82,1 \pm 3,5$ $66,3 \pm 2,9$ $48,4 \pm 2,2$ $38,4 \pm 1,9$ $27,6 \pm 1,6$ $19,6 \pm 1,2$ $17,6 \pm 1,1$ $10,8 \pm 0,9$ $8,9 \pm 0,8$ $5,1 \pm 0,6$ $3,67 \pm 0,50$ $3,08 \pm 0,50$ $2,18 \pm 0,50$ $1,44 \pm 0,47$ $1,31 \pm 0,47$ $0,80 \pm 0,32$	129 ± 11 94 ± 10 72 ± 8 59 ± 7 54 ± 7 40 ± 6 30 ± 5 $31,5 \pm 4,8$ $30,8 \pm 4,7$ $16,3 \pm 3,7$ $19,3 \pm 4,3$ $31,9 \pm 4,9$ $10,1 \pm 3,4$ $18,3 \pm 5,0$ $10,6 \pm 5,0$ $7,1 \pm 3,6$

однозарядных частиц, равная $N_d(\theta) \cdot W_{d \to a}$ /где $N_d(\theta)$ - число зарегистрированных дейтронов в области упругого пика для данного угла рассеяния, а $W_{d \to a} \approx 19\%$ - вероятность того, что однозарядная частица даст в счетчике SB_1 сигнал с амплитудой больше порога разделения однозарядных и двухзарядных частиц/. Величина этой поправки в области дифракционного конуса менялась в зависимости от угла рассеяния от 5% до 20%. Ошибки в ее определении включены в полную статистическую ошибку сечений. Были учтены также эффекты, связанные с конечным угловым разрешением установки и кратным ядерным рассеянием в мишени /суммарный эффект этих поправок в области дифракционного конуса не превышал 10%/.

В табл.1 представлены результаты наших измерений дифференциальных сечений. Приведенные погрешности включают только статистические ошибки измерений и ошибки, связанные с дискретным характером координатной информации от пропорциональных камер. Систематические погрешности нормировки сечений, включавшие погрешность в определении эффективности спектрометра и поглощения частиц в веществе установки /~0,6%/, погрешность в определении импульса пучка /~0,7%/ и оценку примеси событий с рождением пионов /~2%/, не превышали 3%.

В табл.2 приведены параметры упругого *а*р- и *аа*-рассеяния

 $\frac{d\sigma}{dt}(0), B = \frac{d}{dt} \left(\ln \frac{d\sigma}{dt} \right)|_{t=0}, \sigma_{tot} = \sqrt{\frac{16\pi}{1+\rho^2}} \frac{d\sigma}{dt}(0), \sigma_{el} = \int_{0}^{\infty} \frac{d\sigma}{dt}(t) dt = \frac{d\sigma}{dt}(0)/B.$ Они определены путем подгонки экспоненты $\frac{d\sigma}{dt}(t) = \frac{d\sigma}{dt}(0) \cdot \exp(-B|t|)$ к экспериментальным данным при малых |t|. /При этом из данных табл.1 был вычтен небольшой, <3%, вклад от кулоновских эффектов, найденный по формуле Бете/12/. Согласно оценкам по ДТМР, вкладом от квазиупругого *аа* -рассеяния в области, где проводилась подгонка, сказалось возможным пренебречь/.

Таблица	2
---------	---

Па	раметры упр	угого а р - и	i aa -pa	ссеяния		
Ми- шень	t-интервал /ГэВ/с/ ²	i <u>d</u> (0) dt мб/ГэВ/с/ ⁻⁸	В ? /ГэВ/с/ [?]	^σ tot ² мб	^σ еl мб	χ ² /ст.св.
Н 0, Не 0,	02-0,12 014÷0,042	1116 <u>+</u> 42 9560 <u>+</u> 570	33,2 <u>+</u> 0,6 64,9 <u>+</u> 2,0	142,3 <u>+</u> 2,3 426 <u>+</u> 13	7 33,6 147,5	<u>+</u> 1,3 1,34

Использованные при вычислении σ_{tot} значения $\rho_{aA} = \frac{\text{Ref}_{aA}(0)}{\text{Im}f_{aA}(0)}$

получены нами в расчетах по ДТМР: $\rho_{aa} = -0,18$, $\rho_{ap} = -0,28$ /последнее хорошо согласуется с величиной $\rho_{ap} = -0,30\pm0,12$, полученной в измерениях при 4,13 ГэВ/нуклон $\gamma_{13}/.$

Ошибки параметров в табл.2 получены с учетом статистических ошибок дифференциальных сечений, приведенных в табл.1, систематических ошибок их нормировки и погрешностей, связанных с неопределенностью в значении абсолютной величины импульса пучковых частиц / $P_0 \leq 0,7\%$ /. В ошибку σ_{tot} не включен вклад погрешностей определения величины ρ^2 .

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ. СРАВНЕНИЕ С РАСЧЕТАМИ ПО ДТМР

Указанные в табл.2 оценки величин σ_{tot} , В, $\sigma_{e\ell}$ для ap- и aa- упругого рассеяния близки к значениям, полученным при 2,1 ГэВ/^{14/}. Если учесть, что для aa -рассеяния В-пара-метр несколько возрастает с увеличением энергии и переданного импульса^{7/}, то наше значение В $_{ap}$ согласуется с величинами параметра наклона pa -рассеяния, полученными при 4,13 ГэВ/^{13/} и при 45-400 ГэВ^{7/}. Однако отмеченная совокупность данных по параметру наклона pa-рассеяния значительно отличается от величины $B_{pa} = 44,0\pm0,1$ /ГэВ/с/², полученной при 18,6 ГэВ/с^{15/}.

Результаты настоящих измерений дифференциальных сечений ар-и аа-рассеяния сравнены с выполненными нами расчетами по простой модели ДТМР при обычных /10/ параметризациях нуклоннуклонной амплитуды и ядерной плотности ⁴ Не.

Плотность основного состояния ⁴Не бралась в виде

$$|<0|\mathbf{r}_1...\mathbf{r}_4>|^2 = \prod_{j=1}^4 \rho(\mathbf{r}_j); \quad \rho(\mathbf{r}_j) = (\frac{1}{\pi R^2})^{3/2} \exp(-\mathbf{r}_j^2/R^2).$$

Здесь $\rho(\mathbf{r}_j)$ - одночастичная плотность, Rвзят равным 1,37 фм^{/18/} Для амплитуды NN-рассеяния использовалась параметризация

$$f(t) = \frac{\sigma_{NN}(1+\rho_N)}{4\sqrt{\pi}} \exp(B_{NN}t/2),$$

где σ_{NN} , ρ_{NN} , B_{NN} - соответственно полное сечение, отношение вещественной части амплитуды рассеяния ыперед к мнимой, параметр наклона дифракционного конуса для упругого NN -рассеяния, определенные экстраполяцией экспериментальных значений ^{/ 28}/.

$$\sigma_{NN} = 41,5 \text{ MG}, \rho_{NN} = -0,35, B_{NN} = 7,5 / \Gamma_{9B/c} / ^{-2}$$

При импульсе 4,5 ГэВ/сN σ_{NN} и В_{NN} для pp-и pn-рассеяния близки, поэтому усреднение по изоспинам слабо влияет на peзультаты расчетов. Кулоновские эффекты /включая кулон-ядерную интерференцию/ для ap-и aa -рассеяния в исследуемой области t малы и не учитывались в расчетах.

На <u>рис.4</u> результаты расчета приведены вместе с экспериментальными данными.

Для упругого ap-рассеяния экспериментальные точки в большей части дифракционного конуса, при $/0,03 \le t \le 0,12/$ ГэВ²/с², лежат ниже расчетной кривой примерно на 15%; при |t| > 0,17 ГэВ²/с² экспериментальные величины превышают расчетные. Такое поведе-

ние отношения экспериментальных значений dσ/dt к рассчитанным по ДТМР напоминает ситуацию, наблюдавшуюся при исследовании Рα-упругого рассеяния в области 45-400 ГэВ/7/

Для суммы упругого и квазиупругого aa-рассеяния экспериментальные значения $d\sigma/dt$ больше расчетных почти во всем интервале измерений; в области дифракционного конуса расхождение составляет примерно 10-15%; вблизи минимума упругого рассеяния /|t| ~ 0,1 ГэВ²/с²/ оно доходит до 25-30%; в области второго максимума упругого рассеяния экспериментальные точки в пределах ошибок совпадают с расчетной кривой. Похожее превышение экспериментальными сечениями расчетных по ДТМР в области дифракционного конуса мы наблюдали и для суммы упругого и квазиупругого рассеяния альфа-частиц с импульсом 17,9 ГэВ/с на ядрах C, Al, $Cu^{/3.5/}$.

.

Отмеченный характер отклонений, имеющих в области дифракционного конуса разные знаки для *ар-* и *аа-*рассеяния, не удается объяснить в рамках простой модели ДТМР, не учитывающей образования возбужденных состояний нуклонов на промежуточных стадиях их многократного перерассеяния в сталкивающихся ядрах /неупругую экранировку/.

Мы проанализировали влияние на величину расчетных дифференциальных сечений ряда эффектов, связанных с возможными изменениями параметризации NN-амплитуды и плотности распределения нуклонов в ядре ⁴Не.

Можно подобрать такие наборы параметров NN-амплитуды и ядерной плотности ⁴He, при которых расчеты по ДТМР неплохо описывают в отдельности наши экспериментальные значения сечений либо для $\alpha \alpha$ -рассеяния ¹¹⁷, либо для αp -рассеяния в области дифракционного конуса. Однако подобрать значения этих параметров, при которых расчеты удовлетворительно описывали бы данные как по αp -, так и по $\alpha \alpha$ -рассеянию, не удается.

Учет спиновозависимых членов в амплитуде NN-рассеяния существен для описания ри-рассеяния облизи дифракционного минимума при энергии протонов < 1 ГэВ/с^{/18/}. Однако при переходе к большим энергиям и меньшим переданным импульсам влияние зависящих от спина эффектов уменьшается.

Учет короткодействующих корреляций при расчете сечений ар рассеяния ^{/19/} и введение двух гауссоподобных составляющих одночастичной плотности при расчете ^{/20/}сечений аа -рассеяния /обе плотности хорошо описывают формфактор ⁴Не / не дали значительного улучшения согласия расчетов и эксперимента.

Поправки к расчетам по ДТМР /на неэйкональность, фермидвижение нуклонов в ядре и другие/, вычисленные для *ар*-рассеяния при нашей энергии методом Уоллеса ^{/21/}, почти полностью компенсируют друг друга. По-видимому, это справедливо и для *аа* -рассеяния.

Были проведены расчеты дифференциальных сечений упругого рассеяния по модели с микроскопическим оптическим потенциалом^{/19}, учитывающей нейэкональные эффекты /штрих-пунктирные линии на рис.4/. При |t| < 0,13 ГэВ²/с² результаты этих расчетов для *а*р-рассеяния практически совпадают с расчетами по ДТМР и лишь при |t| > 0,17 ГэВ²/с² приводят к некоторому улучшению согласия с экспериментом. При высоких энергиях к лучшему согласию с экспериментальными данными по сравнению с простыми расчетами по ДТМР приводят расчеты, так или иначе учитывающие эффекты образования возбужденных состояний нуклонов на промежуточных стадиях их многократного рассеяния в сталкивающихся ядрах /неупругую экранировку/ ^{/8,22-26/}. Однако достаточно последовательный учет эффектов неупругой экранировки при энергии в несколько ГэВ/N непрост ввиду аномальных свойств амплитуд рассеяния возбужденных нуклонов^{/27/}, кроме того, в этой энергетической области, по-видимому, сравнимую роль играют разные типы возбуждений нуклонов. Это не позволяет использовать в расчетах приближения, которые обычно допускают при более высоких энергиях.

Авторы выражают благодарность А.В.Тарасову и А.Малецки за полезные дискуссии, Л.А.Слепец, М.И.Шумакову за участие в подготовке и проведении измерений, И.У.Христовой за помощь на разных этапах проведения эксперимента и анализа данных, З.П.Мотиной и Р.Н.Петровой за большую помощь в проведении эксперимента и оформлении статьи.

Авторы благодарны коллективам отделов Лаборатории высоких энергий ОИЯИ за обеспечение хорошей работы ЭВМ и синхрофазотрона. Авторы признательны руководству лаборатории за поддержку и обеспечение возможностей проведения эксперимента.

ЛИТЕРАТУРА

- Glauber R.J. In: Lectures in Theor.Phys. (ed. W.E.Brittin). Interscience, N.Y., 1959, vol. 1, p.315; Ситенко А.Г. Укр.физ.журн., 1959, 4, c.152.
- Czyz W., Maximon L.C. Ann.Phys., 1959, 52, p.59; Czyz W. Report No.697/PL/PH, Krakow, 1970.
- Аблеев В.Г. и др. Доклад 448/А6-5 на XVIII Междунар. конф. по физике высоких энергий. Тбилиси, 1976. /См. также его обсуждение в обзорах В.А.Царева /А1-1/, А.Б.Кайдалова /А1-27/, П.Зелинского /А6-6/ в кн.: Труды XVIII Междунар. конф. по физике высоких энергий. ОИЯИ, Д1,2-10400, Дубна, 1977.
- 4. Аблеев В.Г. и др. ОИЯИ, Р1-10565, Дубна, 1977.
- 5. Аблеев В.Г. и др. ОИЯИ, 1-82-174, Дубна, 1982.
- 6. Царев В.А. Доклад Р1а в кн.: Proc. XIX Int. Conf. on High Energy Phys., Tokyo, 1978.
- 7. Bujak A. et al. Phys.Rev., 1981, D23, p.1895.
- 8. Goggi G. et al. Nucl.Phys., 1979, B149, p.381.
- 9. Аблеев В.Г. и др. В кн.: Proc. of the Int.Conf. on Nucl. Phys., 1980, Berkeley, California. Abstracts, vol.1, p.71.
- 10. Аблеев В.Г. и др. ПТЭ, 1978, 2, с.63.

9

- 11. Борзунов Ю.Т., Голованов Л.Б., Цвинев А.П. ПТЭ, 1974, 4, с.32.
- 12. Bethe H. Ann. Phys. (N.Y.), 1958, 3, p.190.
- 13. Безногих Г.Г. и др. ЯФ, 1978, 27, с.710.
- 14. Jaros J.A. et al. Phys.Rev., 1978, C18, p.2273.
- 15. Bruton P.C. et al. Nucl. Phys., 1978, B142, p.365.
- 16. Czyz W., Lesniak L. Phys.Lett., 1967, 24B, p.227.
- 17. Магзумов Э.Ж., Марков В.И., Пантюшин А.А. Препринт ИФВЭ 81-01, Алма-Ата, 1981.
- Auger J.P., Gillespie J., Lombard R.J. Nucl. Phys., 1976, A262, p.372.
- 19. Dymars R., Malecki A. Phys.Lett., 1977, B66, p.413.
- 20. Malecki A., Satta L. Nuovo Cim., 1978, 21, p.457.
- 21. Wallace S.J. Phys.Rev., 1975, C12, p.179.
- 22. Копелиович Б.З. и др. ОИЯИ, Е2-81-631, Дубна, 1981.
- 23. Wallace S.J., Alexander Y. Phys.Rev.Lett., 1977, 38, p.1269.
- 24. Ikeda M. Phys.Rev., 1972, C6, p.1608.
- 25. Burg J.P. et al. Nucl. Phys., 1981, B187, p.205.
- 26. Аблеев В.Г. и др. ЯФ, 1981, 34, с.769.
- 27. Веребрюсов В.С., Пономарев Л.А. ЯФ, 1980, 32, с.558.
- 28. Benary O. et al. Part.Data Group, UCRL-20000NN, Berkeley, 1970.

Рукопись поступила в издательский отдел 6 мая 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	р.	00	к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	к.
Д 6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	p.	50	к.
Д3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	р.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-120 36	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	р.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	р.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря~ женных частиц, Дубна, 1980 /2 тома/	8	ρ.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к.
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	ρ.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	p.	50	к.
Д10,†1-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	p.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к,
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	×.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- Физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	р.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индек	с Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
	_

19. Биофизика

Аблеев В.Г. и др. Дифракционное рассеяние альфа-частиц с импульсом 17,9 ГэВ/с на ядрах водорода и гелия

Измерены, с погрешностью нормировки не более 3%, абсолютные значения дифференциальных сечений упругого αp и суммы упругого и квазиупругого $\alpha \alpha$ -рассеяния для альфа-частиц с импульсом 17,9 ГэВ/с в интервале квадратов переданных 4-импульсов (0,01< |t| < 0,2) ГэВ²/с². Такие измерения в энергетической области в несколько ГэВ/нуклон выполнены впервые. Определены полные сечения, параметры наклона дифракционного конуса и полные упругие сечения для αP – и $\alpha \alpha$ -рассеяния. Полученные данные сравнены с расчетами, выполненными в рамках дифракционной теории многократного рассеяния Глаубера-Ситенко. Наблюдено отклонение расчетых дифференциальных сечений от экспериментальных, которое в области дифракционного конуса составляет 10-15% и имеет разные знаки для αP – и $\alpha \alpha$ -рассеяния.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

1-82-332

Ableev V.G. et al. Diffraction Scattering of 17.3 GeV/c Alpha-Particles from Hydrogen and Helium Nuclei

The absolute differential cross sections for ap elastic scattering and for the sum of elastic and quasielastic αa scattering have been measured at a momentum of 17.9 GeV/c in the four-momentum transfer region (0.01 < |t| < 0.2) GeV²/c² with normalization errors less than 3%. Such measurements in the energy region of a few GeV have been performed for the first time. The total cross sections, diffraction cone slope parameters and total elastic cross sections for ap and αa scattering have been obtained. The results are compared with the calculations carried out in the frames of the Glauber-Sitenko diffraction multiple scattering theory. The deviation of the calculated differential cross sections from the experimental ones is observed. In the region of the diffraction cone the deviation has a different sign for ap and αa scattering and amounts to 10÷15%.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод Л.Н.Барабаш.