

СООбщения Объединенного института ядерных исследований дубна

1-81-838

1981

В.Р.Гарсеванишвили,¹ Д.В.Герсамия,¹ В.В.Глаголев, М.И.Джгаркава,¹ П.Зелински,² З.Р.Ментешашвили,¹ Д.Г.Мирианашвили,¹ М.С.Ниорадзе,¹ Т.Семярчук,² И.Степаняк,² В.Н.Стрельцов, А.М.Худжадзе¹

ПРОВЕРКА МАСШТАБНЫХ СВОЙСТВ РЕЛЯТИВИСТСКОЙ ВОЛНОВОЙ ФУНКЦИИ ДЕЙТРОНА НА ОСНОВЕ АНАЛИЗА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Сотрудничество: Варшава-Дубна-Тбилиси

¹ Институт физики высоких энергий ТГУ, Тбилиси. ² Институт ядерных исследований, Варшава, ПНР.

1. ВВЕДЕНИЕ

Обнаружение в последнее время во взаимодействиях ядер высоких энергий ряда специфических закономерностей /см., например, обзорм^{/1-6/} и цитированную там литературу/, не находящих удовлетворительного объяснения в рамках традиционных нерелятивистских методов ядерной физики, привело к интенсивному обсуждению возможностей распространения релятивистских методов физики частиц на процессы с участием атомных ядер. Наряду с исследованием свойств вторичных частиц с целью обнаружения в их спектрах закономерностей, характерных для адрон-адронных взаимодействий /распределения по множественностям рожденных частиц, масштабные свойства спектров и т.д./, ведутся поиски в этих процессах проявлений кварковых степеней свободы на ядерном уровне /см., например, ^{/7-11/}/.

В настоящей работе на примере нескольких процессов с участием релятивкстского дейтрона мы обсудим масштабно-инвариантную параметризацию волновой функции дейтрона^{/12/} и ее возможности. Основой подхода будет служить квазипотенциальный формализм^{/13/} в переменных "светового фронта"^{/14-16/}, в котором в явном виде прослеживается характерная для адронной физики высоких энергий "неэквивалентность" продольных и поперечных степеней свободы /см., например,^{/17/} /. Вопросы, связанные с аналогичной релятивизацией волновых функций более сложных ядер, рассматриваются в работах ^{/18/}.

2. МАСШТАБНО-ИНВАРИАНТНАЯ ПАРАМЕТРИЗАЦИЯ РЕЛЯТИВИСТСКОЙ ВОЛНОВОЙ ФУНКЦИИ ДЕЙТРОНА

Мы будем описывать релятивистский дейтрон с помощью релятивистского обобщения /12/

$$\Phi_{R}(\mathbf{x}, \vec{p}_{\perp}) = C_{R} \left[\frac{\vec{p}_{\perp}^{2} + m^{2}}{\mathbf{x}(1-\mathbf{x})} - a_{R} \right]^{-1} \left[\frac{\vec{p}_{\perp}^{2} + m^{2}}{\mathbf{x}(1-\mathbf{x})} - \beta_{R} \right]^{-1}$$
 /2.1/

известной волновой функции Хюльтена. Здесь C_R - нормировочный хозффициент; a_R и β_R - варьируемые парамедры. Переменная х определена следующим образом: $x = \frac{1}{2} + \frac{p_0 + p_z}{P_{d,0} + P_{d,z}}$, p_{μ} - от-носительный 4-импульс нуклонов внутри дейтрона, $P_{d,\mu}$ - полный 4-импульс дейтрона, m - масса нуклона. /Некоторые другие по-

пытки релятивистского обобщения волновой функции дейтрона см. в работах^{/19—24/}/. Волновая функция /2.1/ записана в произвольной системе отсчета при произвольных импульсах движения нейтрона как целого и внутреннего движения составляющих его нуклонов.

В системе покоя дейтрона при импульсах его внутреннего движения, удовлетворяющих условию $|\hat{\mathbf{p}}|/m \ll 1$, волновая функция /2.1/ переходит в известную нерелятивистскую волновую функцию Хюльтена:

$$\Phi_{NR}(\vec{p}) = C_{NR}(\vec{p}^2 + \alpha_{NR}^2)^{-1}(\vec{p}^2 + \beta_{NR}^2)^{-1}.$$
 (2.2/

Переходя к нерелятивистскому пределу в выражении /2.1/ и пренебрегая энергией связи дейтрона в числителе выражения для переменной х, получим следующую связь между параметрами вол-новых функций Ф_{р.} и Ф_{N.D.}:

$$a_{R} = \frac{m_{d}}{m} (2m^{2} - a_{NR}^{2}); \quad \beta_{R} = \frac{m_{d}}{m} (2m^{2} - \beta_{NR}^{2}).$$
 /2.3a/

Здесь m_d - масса дейтрона.

Если мы будем полностью пренебрегать энергией связи в выражении для \mathbf{x} , то из условия перехода волновой функции $\Phi_{\mathbf{R}}$ в нерелятивистском пределе в функцию $\Phi_{\mathbf{NR}}$ получим следующую связь между параметрами:

$$a_{R} = 4(m^{2} - a_{NR}^{2}); \quad \beta_{R} = 4(m^{2} - \beta_{NR}^{2}).$$
 /2.36/

Нормируя волновую функцию /2.2/ условием

$$\int d\vec{p} |\Phi_{NR}(\vec{p})|^2 = 1,$$
 /2.4/

получим выражение для нормировочного коэффициента Сир:

$$C_{NR} = \frac{1}{\pi} (a_{NR} + \beta_{NR})^{3/2} a_{NR}^{1/2} \beta_{NR}^{1/2} . \qquad (2.5)$$

Для нормировки волновой функции /2.1/ необходимо знать, вообще говоря, вид всех взаимодействий внутри двухчастичной составной системы ^{/14,15/}. Предполагая, однако, что квазипотенциал взаимодействия не зависит от 4-импульса дейтрона как целого, получим следующее условие нормировки:

$$\int_{0}^{1} \frac{dx}{x(1-x)} \left(d\vec{p}_{\perp} | \Phi_{R}(x, \vec{p}_{\perp}) |^{2} = 1. \right)$$
 (2.6/

Подставляя в это условие нормировки волновую функцию /2.1/, получим выражение для нормировочного козффициента C_R :

$$C_{R} = \frac{a_{R} - \beta_{R}}{\pi^{1/2}} [f(a_{R}, \beta_{R}) + f(\beta_{R}, a_{R})]^{-1/2}, \qquad (2.7)$$

где

$$f(a_{R}, \beta_{R}) = \frac{4[m^{2}(a_{R}-\beta_{R})+a_{R}(4m^{2}-a_{R})]}{(a_{R}-\beta_{R})a_{R}^{3/2}(4m^{2}-a_{R})^{1/2}} \times \times \operatorname{arctg}(\frac{a_{R}}{4m^{2}-a_{R}})^{1/2} - \frac{1}{a_{R}},$$

Выпишем здесь также связь в нерелятивистском пределе между нормированными волновыми функциями Φ_R и Φ_{NR} , полученную с учетом формул /2.3a/ и /2.3b/:

$$\Phi_{\rm R}({\bf x}, {\bf p}_{\perp}) \rightarrow 2^{1/4} {\rm m}^{1/2} \Phi_{\rm NR}({\bf p}),$$
 /2.8a/

$$\Phi_{R}(\mathbf{x}, \vec{p}_{\perp}) \rightarrow 2^{-1/2} \Phi_{NR}(\vec{p}).$$
 (2.86/

3. НЕКОТОРЫЕ ПРСЦЕССЫ С УЧАСТИЕМ ДЕЙТРОНОВ ВЫСОХИХ ЭНЕРГИЙ С выходом спектаторных нуклонов в конечном состоянии

Рассмотрим процесс столкновения дейтрона с протоном, когда в конечном состоянии рождается некоторая система адронов. Мы будем предполагать, что во взаимодействии с протоном участвует один из нуклонов дейтрона, а другой является спектатором. Распределение спектаторных нуклонов в данном процессе имеет вид

$$E_{sp} \frac{d\sigma}{dP_{sp}} \sim \frac{\lambda^{1/2} (s_{NN}, m^2, m^2)}{\lambda^{1/2} (s, m^2, m^2)} \sigma_{in} (s_{NN}) \left| \frac{\Phi_R(x, p_{\perp})}{1 - x} \right|^2.$$
 /3.1/

Здесь в - обычная мандельстамовская переменная для системы дейтрон-протон; в_{NN} - аналогичная переменная для системы "взаимодёйствующий нуклон дейтрона - протон".Эти переменные связаны между собой:

$$s_{NN} = s(1-X_{sp}) + m^2 - \frac{\dot{P}_{sp,\perp}^2 + m^2}{X_{sp}}$$
 /3.2/

 σ_{in} (s_{NN}) - неупругое интегральное сечение нуклон-нуклонного взаимодействия в данном канале; m_d - масса дейтрона; $\lambda(x,y,z) = (x-y-z)^2 - 4yz$. Переменная X_{sp} определена следующим образом:

$$X_{sp} = (E_{sp} + P_{sp,z}) / (E_d + P_{d,z} + E_p + P_{p,z}).$$
 /3.3/

Здесь E_{sp} , E_d , E_p и $P_{sp,z}$, $P_{d,z}$, $P_{p,z}$ являются энергиями и z - компонентами импульсов спектаторного нуклона и сталки-

вающихся дейтрона и протона соответственно. Отметим, что переменная $X_{\rm sp}$ обладает свойством масштабной инвариантности и является лоренц-инвариантной при преобразованиях систем отсчета вдоль оси столкновения /оси z /.

Аргументы волновой функции $\Phi_{R}(x, \vec{p}_{\perp})$ связаны с переменными X_{sp} и \vec{P}_{sp} :

$$x = 1 - (1 + \frac{E_p + P_{p,z}}{E_d + P_{d,z}}) X_{sp}$$
, /3.4/

 $\vec{p}_1 = -\vec{P}_{sp,1}$ в системе отсчета, где $\vec{P}_{d,1} = 0$. Из этих формул следует, что, наблюдая экспериментально за распределениями компонент импульсов спектатора, можно получить информацию о внутреннем движении нуклонов внутри релятивистского дейтрона.

Для сравнения теоретических расчетов с экспериментальными данными использовались результаты, полученные на однометровой водородной пузырьковой камере ОИЯИ, облученной дейтронами с импульсом 3,3 ГэВ/с^{/25/},и на накопительных кольцах ЦЕРНа со встречными дейтрон-протонными пучками с импульсами 26 ГэВ/с^{/26/}. При анализе волновая функция релятивистского дейтрона выбиралась в виде /2.1/. С экспериментальными данными сравнивались импульсные распределения нуклонов-спектаторов:

$$\frac{d\sigma}{dP_{sp}} = 2\pi \frac{P_{sp}^2}{(P_{sp}^2 + m^2)^{1/2}} \int_{-1}^{1} d\cos\theta_{sp} (E_{sp} \frac{d\sigma}{dP_{sp}}). \qquad (3.5)$$

Для сравнения релятивистской параметризации /2.1/ с нерелятивистской волновой функцией Хюльтена /2.2/ рассматривались распределения нуклонов-спектаторов в системе покоя дейтрона. Значения параметров $a_{\rm R}$ и $\beta_{\rm R}$ рассчитывались по формулам /2.3a/ и /2.36/ из значений $a_{\rm NR}^{=}$ 0,0456 ГэВ/с и $\beta_{\rm NR}^{=}$ 0,26 ГэВ/с/^{28/} нерелятивистской волновой функции Хюльтена и приведены в табли-це.

Таблица

	а _R ,/ГэВ/с/ ²	$\beta_{\rm R}/\Gamma_{\rm 9B/c/^2}$	χ^2/Np
Расчет по формуле /2.3а/ Расчет по формуле /2.36/	3,521 3,526	3,390 3,264	
d +p → p+(pπ¯)+ p sp Система покоя дейтрона	3,522+0,006	3,383 <u>+</u> 0,033	11/32
d+p→p+(pπ ⁻)+p _{sp} Система встречных пучков	3,513 <u>+</u> 0,005	3,476+0,019	28/14

Рис.1. Распределение по импульсу нейтрона-спектатора в счстеме покоя дейтрона в реакции $d+p \rightarrow p + p + n_{sp}$. Расчет с использованием волновой функции / -----/ и нерелятивистской волновой функции /- - -/.

Рис.2. Распределение по импульсу протона-спектатора в системе покоя дейтрона в реакции $d+p \rightarrow p + (p\pi) + p_{sp}$.

На <u>рис.1</u> приведено распределение нейтронов-спектаторов в системе покоя дейтрона в процессе прямого развала дейтрона d+p → p+p + n_{sp} при импульсе налетающего дейтрона 3,3 ГэВ/с^{/25/}Сечение упругого протон-протонного рассеяния бралось равным 24 мб^{/27}/Сплошная кривая соответствует теоретическому расчету на основе релятивистской волновой функ-

ции /2.1/ с параметрами $a_{\rm R}$ = 3,521 /ГэВ/с/² и $\beta_{\rm R}$ = 3,390 /ГэВ/с/² (χ^2 /Np =27/20), пунктирная кривая - расчету на основе нерелятивистской волновой функции /2.2/ с параметрами $a_{\rm NR}$ = 0,0456 ГэВ/с и $\beta_{\rm NR}$ = 0,26 ГэВ/с (χ^2 /Np=65/20). Видно,что в области импульсов $P_{\rm sp}$ < 0,2 ГэВ/с релятивистская волновая функция несколько лучше описывает данные, чем нерелятивистская. На <u>рис.2</u> приведено импульсное распределение протонов-спектаторов в системе покоя

дейтрона в реакции d+p→p+(pπ)+p_{вр} при энергии √s=52 ГэВ. На <u>рис.3</u> приведено импульсное распределение протонов-спектаторов в системе встречных пучков в той же реакции при той же энергии /26/Кривые на рис.2 и 3 соответствуют теоретическому расчету на основе волновой функции /2.1/. Сечение $\sigma_{in}(s_{NN})$ дифракционной диссоциации нейтрона n+p→(pπ⁻)+p при рассматриваемых энергиях бралось постоянным и равным 185 мкб /26/Значения параметров α_р и β_р, полученные путем фитирования экспериментальных данных. и соответствующие значения χ^{2}/Np приведены в таблице, из которой видно, что в рассматриваемой области импульсов параметры релятивистской волновой функции дейтрона практически не зависят от импульса падающего дейтрона. Этот факт можно рассматривать как указание на то, что в довольно широком диапазоне энергий в волновой функции дейтрона Фр нет никакой другой зависимости от энергий, кроме зависимости от масштабно-инвариантной переменной х.

4. РОЖДЕНИЕ 7-МЕЗОНОВ В ПРОТОН-ДЕЙТРОННОМ СТОЛЖНОВЕНИИ

Рассмотрим рождение π^- -мезонов в протон-дейтронной реакции $^{/1,29/}$ p+d $\rightarrow \pi^-$ (180°) + X*. В импульсном приближении дифференциальное сечение этого процесса имеет вид

$$\frac{2\mathbf{E}_{\pi}}{\sigma_{pd}} \frac{d\sigma_{pd}}{d\vec{p}_{\pi}} \approx 4\pi \frac{\sigma_{pp}}{\sigma_{pd}} \int \frac{\mathbf{p}_{sp}^{2} d\mathbf{p}_{sp} dz}{(\mathbf{p}_{sp}^{2} + \mathbf{m}^{2})^{1/2}} \frac{\lambda^{1/2} (\mathbf{s}_{NN} \mathbf{m}^{2}, \mathbf{m}^{2})}{\lambda^{1/2} (\mathbf{s}, \mathbf{m}^{2}, \mathbf{m}^{2})} \times |\frac{\Phi_{R}(\mathbf{x}, \mathbf{p}_{\perp})}{1 - \mathbf{x}}|^{2} \rho(\mathbf{x}_{Np}, \mathbf{p}_{\pi, \perp}).$$
(4.1/

Здесь σ_{pd} - полное сечение pd -рассеяния, равное 74 мб; σ_{pp} - полное сечение pp-рассеяния, равное 43 мб.

В системе покоя протона аргументы волновой функции дейтрона связаны с переменными интеграции следующим образом:

$$x = 1 - (1 + \frac{m}{E_d + P_d}) X_{sp}$$
, /4.2/

$$X_{sp} = \frac{P_{sp}z + (P_{sp}^{2} + m^{2})^{1/2}}{E_{d} + P_{d} + m},$$
 (4.3/

$$p_{\perp} = p_{sp,\perp} - p_{sp} (1-z^2)^{1/2}.$$

$$(4.4)$$

$$3gec_{b} = p_{sp} |p_{sp}|, z = \cos \theta_{sp}.$$

* Расчеты этого процесса в рамках нерелятивистского формализма и с помощью других релятивизаций волновой функции дейтрона проводились и ранее /1,30-32/. Величина $\rho(\mathbf{x}_{NP}, \mathbf{p}_{\pi, \perp})$ является дифференциальным сечением рождения π^- -мезонов в реакции $p+p \rightarrow \pi^- + X$, она параметризована согласно /1,30-32/

$$\rho (\mathbf{x}_{NP}, \mathbf{p}_{\pi, \perp}) = \frac{\mathbf{E}_{\pi}}{\sigma_{pp}} \cdot \frac{\mathrm{d}\sigma_{pp}}{\mathbf{p}_{\pi}^{2} \cdot \mathrm{d}\mathbf{p}_{\pi} \, \mathrm{d}\Omega_{\pi}} = \mathbf{F} (\mathbf{x}_{NP}) \exp \{\mathbf{a}_{6}[-\mathbf{p}_{\pi, \perp} + \mathbf{p}_{\pi, \perp}\mathbf{x}_{NP} \cdot (\mathbf{p}_{\pi, \perp})^{2} \mathbf{x}_{NP} / \mathbf{m}]\}, \qquad (4.5)$$

где

$$F(x_{NP}) = a_1 exp(-a_2 x_{NP})[1 + exp[(x_{NP} - a_3)/a_4]]^{-1}(1 - x_{NP})^{a_5}.$$
 (4.6)

Значения параметров а1,..., а6 :

81 =	0,92 <u>+</u> 0,3;
8, =	3,9+0,9;
a	0,65+0,03;
ລິ =	0,083+0,005;
a_ =	0,69+0,17;
ລິ=	6.12+0.04

 $P_{\pi,\perp}$ - поперечный импульс π^{-1} -мезона в рр-столкновении; переменная $x_{\text{мр}}$ определена следующим образом:

$$\mathbf{x}_{NP} = \mathbf{p}_{\pi, \parallel} / \mathbf{p}_{\pi, \max}$$
 /4.7/

Здесь $p_{\pi,i}$ - продольный импульс π^{-} -мезона; $p_{\pi,max}$ - максимальный импульс π^{-} -мезона, допускаемый кинематикой процесса. Переменные $p_{\pi,\perp}$ и \mathbf{x}_{NP} связаны с переменными интеграции p_{sp} и z соотношениями

$$\mathbf{p}_{\pi,\perp} = \mathbf{p}_{\pi} \mathbf{p}_{sp} \left(1 - z^2 \right)^{1/2} \left[\mathbf{A}^2 + \mathbf{p}_{sp}^2 (1 - z^2) \right]^{-1/2}$$
 (4.8/

$$\mathbf{x}_{NP} = 2p_{\pi} \mathbf{A} [\mathbf{A}^{2} + \mathbf{p}_{sp}^{2} (1 - z^{2})]^{-1/2} (\mathbf{B} - \mathbf{A}) \times$$

$$\times \{\mathbf{A}\mathbf{C} + \mathbf{B} [\mathbf{C}^{2} - 4\mathbf{m}_{\pi}^{2} (\mathbf{B}^{2} - \mathbf{A}^{2})]^{1/2} \}^{-1},$$
(4.9/

 p_{π} - импульс π^{-1} -мезона; m_{π} - его масса. А , В и С определены следующим образом:

$$A = P_{d} - p_{sp} z,$$

$$B = E_{d} + m - (p_{sp}^{2} + m^{2})^{1/2},$$

$$C = m_{d}^{2} - 2m^{2} + m_{\pi}^{2} + 2mE_{d} - 2(E_{d} + m)(p_{sp}^{2} + m^{2})^{1/2} + 2P_{d} p_{sp} z.$$
(4.10)

Границы кинематической области, по которой происходит интегрирование в /4.1/, определяются из условия/32/:

$$(P_{d} + p_{p} - p_{sp} - p_{\pi})^{2} \ge 4m^{2}$$
, (4.11/

и равны

$$\frac{z - a(z^2 - z_0^2)^{1/2}}{b - z^2 c} \le p_{sp} \le \frac{z + a(z^2 - z_0^2)^{1/2}}{b - z^2 c}, \qquad (4.12)$$

$$z_0 \leq z \leq 1.$$
 (4.13)

Здесь введены обозначения:

$$a = 2m(E_{d} + m - E_{\pi})d,$$

$$b = 2(E_{d} + m - E_{\pi})^{2}(P_{d} - p_{\pi})^{-1}d,$$

$$c = 2(P_{d} - p_{\pi})d,$$

$$d = (m_{d}^{2} - 2m^{2} + m_{\pi}^{2} + 2mE_{d} - 2E_{d}E_{\pi} + 2P_{d}p_{\pi} - 2mE_{\pi})^{-1},$$

$$z_{0} = \frac{(a^{2} - 1)^{1/2}}{mc}$$

На <u>рис.4</u> приведено импульсное распределение кумулятивных *п* -мезонов, рожденных в реакции d+p - *π*⁻(180°)+X. пересчитанное из соответствующего распределения в системе покоя дейтрона (p+d - *π*⁻(0°)+X) при импульсе налетающего протона 8,4 ГзВ/с^{29/}. Кривая соответствует расчету на основе релятивистской волновой функции со значениями параметров $a_{\rm R}$ = 3,515 /ГэВ/с/² и $\beta_{\rm R}$ = 3,384 /ГэВ/с/². Видно, что учет релятивистского внутреннего движения нуклонов внутри дейтрона не дает удовлетворительного описания экспериментальных данных.

Отметим, что в эксперимен $p_{d} \rightarrow \pi^{-}(180^{\circ})+X$ те^{/29/} по образованию кумулятив- $P_{p}=8,4 \ \Gamma_{9}B/c$ ных π^{-} -мезонов в pd-столкновении регистрировались только π^{-} мезоны, вылетевшие под углом 180° в системе покоя дейтрона.

67

Рис.4. Спектр кумулятивных π^{-} мезонов в системе покоя протона в реакции $p + d \rightarrow \pi^{-}(180^{\circ}) + X$. При этом вклад в сечение рождения π^- -мезонов дает как столкновение налетающего протона с квазисвободными нуклонами дейтрона, так и процессы столкновения протона с дейтроном как целым. Теоретический расчет, проведенный в данной работе, учитывает только первый механизм. Корректное сравнение теоретических расчетов в импульсном приближении с экспериментальными данными состояло бы в том, что из всех событий с вторичными π^- -мезонами, летящими назад в системе покоя дейтрона, были бы отобраны те, которые сопровождаются выходом спектаторных нуклонов. /Обсуждение проблемы идентификации спектаторных нуклонов см., например, в /26//. Разница в спектрах таких π^- -мезонов и всех π^- -мезонов, летящих назад, дала бы возможность отобрать именно те частицы, которые рождаются за счет других механизмов. Эти частицы и можно было бы назвать истинно кумулятивными.

5. ЗАКЛЮЧЕНИЕ

Мы рассмотрели релятивистскую параметризацию волновой функции дейтрона в рамках квазипотенциального формализма в переменных "светового фронта". В нерелятивистском пределе эта волновая функция дейтрона переходит в известную волновую функцию Хюльтена, что позволяет установить связь между параметрами релятивистской и нерелятивистской волновых функций. Отметим, что рассматриваемая релятивистская волновая функция обладает определенными масштабными свойствами по переменной х и удовлетворительно описывает экспериментальные данные по распределениям нуклонов-спектаторов в довольно широком диапазоне энергий дейтрона. Однако описать удовлетворительно спектры кумулятивных π -мезонов в рамках импульсного приближения не удается. Это еще раз указывает на необходимость выхода за рамки импульсного приближения и учета других, более сложных, механизмов образования частиц.

Авторы выражают глубокую благодарность Н.С.Амаглобели, А.М.Балдину, С.Б.Герасимову, А.Н.Горбунову, Т.И.Копалейшвили, Р.М.Лебедеву, В.А.Матвееву, Р.Г.Салуквадзе, А.Н.Тавхелидзе, А.Фридману, К.У.Хайретдинову за плодотворные обсуждения.

ЛИТЕРАТУРА

- 1. Балдин А.М. ОИЯИ, Р2-6867, Дубна, 1972.
- 2. Heckman H. In: Proc. of the Int. Conf. on High Energy Phys. and Nucl.Struct., Uppsalla, 1973.
- Лексин Г.А. Лекции на III Школе физики ИТЭФ. Атомиздат, М., 1975.

- 4. Zielinski P. JINR, D1,2-10400, Dubna, 1977, p.A6-6.
- 5. Steiner H. In: Proc. of the Int. Conf. on High Energy Phys. and Nucl.Struct., Zürich, 1977.
- 6. Балдин А.М. ЭЧАЯ, 1977, 8, с.429.
- 7. Kalogeropoulos T.E. et al. Phys.Rev.Lett., 1974, 33, p.1965; In: Proc. of the VI Int.Conf. on High Energy Phys. and Nucl.Struct., Santa Fe, 1975.
- 8. Шахбазян Б.А. ЭЧАЯ, 1973, 4, с.811.
- 9. Fairly G.T., Squires E.J. Nucl. Phys., 1975, 93B, p.56.
- 10. Matveev V.A., Sorba P. Lett.Nuovo Cim., 1977, 20, p.443.
- 11. Матвеев В.А. СИЯИ, Р2-12080, Дубна, 1978.
- 12. Гарсеванишвили В.Р., Мирианашвили Д.Г., Ниорадзе М.С. ОИЯИ, P2-9859, Дубна, 1976; Aladashvili B.S. et al. JINR, E2-11760, Dubna, 1978.
- Logunov A.A., Tavkhelidze A.N. Nuovo Cim., 1963, 29, p.380; Кадышевский В.Г., Тавхелидзе А.Н. В сб.: Проблемы теоретической физики, посвященном Н.Н.Боголюбову в связи с его 60-летием. "Наука", М., 1969.
- 14. Гарсеванишвили В.Р. и др. ТМФ, 1975, 23, с.310.
- 15. Гарсеванишвили В.Р., Матвеев В.А. ТМФ, 1975, 24. с.3.
- 16. Garsevanishvili V.R. In: Recent Development in Relativistic Quantum Field Theory and its Applications. Lectures at the XIII Int. Winter School of Theor.Phys., Karpacz, 1976.
- 17. Matveev V.A., Muradian R.M., Tavkhelidze A.N. Lett. Wuovo Cim., 1972, 5, p.907; Мурадян Р.М. ОИЯИ, P2-6762, Дубна, 1972.
- Гарсеванишенли В.Р. и др. ТМФ, 1977, 33, с.276; Aladashvili B.S. et al. CRN preprint CRN/HE 80-1, Strasbourg, 1980; JINR, E1-80-243, Dubna, 1980.
- 19. Bertocchi L., Tekou A. Nuovo Cim., 1974, 21A, p.223.
- 20. Шапиро И.С. ОИЯИ, Д-9920, Дубна, 1976.
- 21. Буров В.В., Лукьянов В.К., Титов А.И. ОИЯИ, Д-9920, Дубна, 1976.
- 22. Buck W., Gross F. Phys.Lett., 1976, 63B, p.286; Buck W., Gross F. Preprint WM-78-9, Williamsburg, 1978.
- 23. Стрикман М.И., Франкфурт Л.Л. Материалы XII Зимней школы ЛИЯФ, Л., 1977.
- 24. Blankenbecler R., Schmidt I. Phys.Rev., 1977, D15, p.3321.
- 25. Aladashvili B.S. et al. Nuci.Phys., 1975, 868, p.461; J.Phys.G: Nucl.Phys., 1976, 3, p.1225; Аладашвили Б.С. и др. ЯФ, 1978, 27, с.704.
- 26. Mantovani G.C. et al. Phys.Lett., 1976, 64B, p.471; Phys.Lett., 1976, 65B, p.401.
- 27. Benary O. et al. UCRL-20000NN, A compilation, 1970; Hansen J. et al. CERN-HERA 70-2, A compilation, 1970.

28. Fridman A. Fort. der Phys., 1975, 23, p.243.

- 29. Балдин А.М. и др. ЯФ, 1974, 20, с.1201.
- 30. Герасимов С.Б., Гиордэнеску Н. ОИЯИ, Р2-7687, Дубна, 1974.
- 31. Буров В.В., Титов А.И. ОИЯИ, Р2-9426, Дубна, 1975. 32. Лобов Г.А. и др. ЯФ, 1977, 25, с.182.

Рукопись поступила в издательский отдел 28 декабря 1981 года.