

Объединенный институт ядерных исследований дубна

22/11-82

1-81-733

Ю.А.Батусов, В.М.Сидоров, Ц.П.Спасов, Д.Тувдендорж, Х.М.Чернев, Р.А.Эрамжян

исследование реакции поглощения *л*-мезонов ядрами ⁷Li

Направлено в ЯФ

Институт ядерных исследований и ядерной энергетики, София, БНР ² Институт физики и математики, Улан-Батор, МНР.

Настоящая работа является продолжением предыдущих исследований/1.2/ в которых в фотоэмульсии, загруженной ядрами ⁷Li, проводились поиски новых изотопов водорода (⁴H, ⁵H, ⁶H) и нейтронных ядер (³n, ⁴n) в процессах захвата остановившихся π^{-} мезонов ядрами лития. В фотоэмульсионной камере были зарегистрированы и проанализированы реакции поглощения медленных отрицательных пионов ядрами с вылетом одной заряженной частицы /1/ и реакции двухлучевого типа без нейтральной частицы, то есть двухлучевые коллинеарные каналы /2/. Вклад в выделенные однои двухлучевые события от реакций захвата пионов ⁷Li не был обнаружен, и поэтому удалось определить лишь верхние границы относительной вероятности образования этих необычных ядер, которые не превышают 1,2·10⁻³. Эта оценка не противоречит результатам работы /3/.

При поглощении медленных отрицательных пионов ядрами ⁷Li возможны также каналы двухлучевого типа с испусканием одного нейтрона:

-		7.	3	3	/1	1
π	+	'L1 →	⁻H +	-H + n,	71	/

$$\pi^{-} + {}^{7}Li \rightarrow {}^{2}H + {}^{4}H + n,$$
 /2/

$$\pi^{-} + {}^{7}Li \rightarrow p + {}^{5}H + n.$$
 /3/

Такие реакции можно попытаться выделить в результате обработки зарегистрированных двухлучевых событий на ЭВМ по программам геометрической реконструкции и кинематического анализа ядерных реакций в фотоэмульсии/4/ С этой целью в фотоэмульсионных камерах, одна из которых была наполнена ядрами ⁷Li /32 мг/см²/, а другие - собраны из стандартных слоев /1/ было зарегистрировано, измерено и проанализировано на ЭВМ 2984 двухлучевых события, образованных в результате захвата *ж*-мезона ядрами в фотоэмульсии, 1986 в слоях с ⁷Li и 998 в стандартной эмульсии.

Методические вопросы, связанные с изготовлением фотоэмульсионных камер, постановкой эксперимента, а также проведением просмотра фотоэмульсионных слоев и измерениями, подробно рассмотрены в работах^{/1,2/}.

После обработки выделенных двухлучевых событий на ЭВМ производился отбор однозначных решений по величине χ^2 . События считались принадлежащими к реакциям /1-3/, если значение $\chi^2 \leq 4$.

1

Рис.1. Кинематически допустимая область корреляции двух тритонов, образованных в реакции π^{-7} Li \rightarrow ³H ³H n /1/. Точками отмечены пробеги частиц в камере с литиевым на-полнением, а крестиками – в стандартной эмульсии.

В результате проведенного анализа было получено, что для реакции $\pi^{-7}\text{Li} \rightarrow {}^{3}\text{H} {}^{3}\text{H} {}^{n}$ /1/ таких событий в слоях с ${}^{7}\text{Li}$ было 21, в стандартной эмульсик -11, для реакции $\pi^{-7}\text{Li} \rightarrow {}^{2}\text{H} {}^{4}\text{H}\text{n}$ /2/ в камере с литием - 44 и 18 в стандартной и для реакции $\pi^{-7}\text{Li} \rightarrow p {}^{5}\text{H}\text{n}$ /3/ соответственно 64 и 30 событий.

Сравнение отнормированных чисел событий, зарегистрированных в стандартной эмульсии, с числом событий в камере с ⁷Li показывает, что рассмотрение только одних распределений по величинам χ^2 в фотоэмульсии, загруженной ⁷Li, не дает возможности от-

делить реакции /1-3/ от случайного фона. Поэтому был проведен дополнительный анализ выделенных событий, основанный на построении корреляционной зависимости пробегов двух вторичных частиц в кинематически допустимой области рассматриваемых реакций. Пример такой корреляционной плоскости для реакции π^{-7} Li \rightarrow ³H³Hn /1/ представлен на рис.1. Если разбить всю плоскость, ограниченную кривыми Далица /рис.1/, на четыре равных по плошади участка /1-1У/. то из рисунка видно. что на участке IV сосредоточено 11 событий реакции /1/, выделенных в камере с литиевым наполнением, и только одно решение для стандартных слоев: на остальных участках число событий в обычных и заполненной ⁷Li камерах близки друг к другу. Полученный результат дает возможность оценить границы относительной вероятности реакции /1/. предполагая. что минимальное число событий выделенной реакции равно 9. а максимальное -21. Используя полученные экспериментальные данные и результаты обработки камер с литием, приведенные в 1,2, находим, что относительная вероятность реакции π^{-7} Li \rightarrow ³H ³H n /1/ равна

 $/0,6 \pm 0,2/\cdot 10^{-2} \le W(\pi^{-7} \text{Li} \rightarrow {}^{3}\text{H}{}^{3}\text{Hn}) \le /1,3\pm 0,3/\cdot 10^{-2}$

Такой же анализ был проведен и для реакций /2/ и /3/. Оказалось, что выделить эти каналы подобным образом невозможно. Поэтому была оценена только верхняя граница относительной вероятности образования ⁴H и ⁵H в реакциях π^{-7} Li \rightarrow ²H ⁴Hn /2/ и π^{-7} Li \rightarrow p⁵Hn /3/. На 90-процентном уровне достоверности она не превышает 1,2.10⁻³.

Исходя из ядерной структуры ${}^{7}\text{Li}$, можно предположить, что одним из возможных механизмов поглощения медленного π^- -мезона литием с образованием в конечном состоянии двух тритонов может служить процесс прямого захвата пиона на кластере [${}^{4}\text{He}$]. Из данных работы ${}^{5/}$ следует, что вероятность канала захвата π^- -мезона ядром ${}^{4}\text{He}$ с испусканием трития составляет /19,4+ ±1,8/% от полного числа захватов пионов в гелии. Схематически такой процесс представлен на <u>рис.2</u>. В этом случае кинетическая энергия одного из тритиев и нейтрона должны соответствовать кинематике двухчастичного развала ядра ${}^{4}\text{He}$ при захвате отрицательного пиона, а угол между ними должен быть близок к 180°.

Экспериментально полученные энергетические спектры нейтрона, быстрого тритона и распределение углов между ними хорошо согласуются с этими предсказаниями /см. рис.3,4/*. К тому жу рас-

^{*}Кривые, приведенные на рисунках, представляют собой фазовый объем, стрелки – значение кинетической энергии для двухчастичного развала гелия по реакции π⁻⁴Не→⁸На, а заштрихованная часть – события реакции /1/, принадлежащие участку IV рис.2.

Рис.2. Схема захвата л</sub>-мезона на малонуклонной ассоциации [⁴He].

пределение кинетической энергии вторичного медленного тритона из реакции /1/ /рис.36/, отсутствие каких-либо корреляций этого тритона с нейтроном /рис.46/ и быстрым тритоном /рис.4а/ также соответствуют предполагаемой схеме захвата *п*-мезона кластером [⁴He]: в каждом событии реакции /1/ тритон с меньшей энер-

гией имеет характерные энергетические и угловые параметры, соответствующие нижней вершине схемы <u>рис.2</u>.

Предполагая, что процесс захвата π^- -мезона ядром ⁷Li в реакции π^{-7} Li \rightarrow ³H³H в /1/ происходит по схеме <u>рис.2</u>, а импульсное распределение кластера [⁴He] совпадает с экспериментально определенным импульсным распределением ядер медленного трития /<u>рис.3в/</u>, можно промоделировать этот процесс. Полученные в результате моделирования распределения приведены на <u>рис./3-4/</u>. Видно, что они вполне удовлетворительно согласуются с экспериментальными данными.

Таким образом, из рассмотрения всей совокупности полученных экспериментальных данных следует, что величина относительной вероятности реакции /1/ равиа

$$/0,6+0,2/\cdot10^{-2} \leq W(\pi^{-7}\text{Li} \rightarrow ^{8}\text{H}^{8}\text{Hn}) \leq /1,3+0,3/\cdot10^{-2}$$

Энергетические и угловые распределения вторичных частиц, образованные в реакции/1/, качественно согласуются с оценками, выполненными в предположении, что захват π^{-} мезонов ядрами ⁷Li в этой реакции происходит на малонуклонном кластере [⁴He].

Верхняя граница относительной вероятности образования ядер ⁴Н и ⁵Н в реакциях π^{-7} Li \rightarrow ²H ⁴Hn /2/ и π^{-7} Li \rightarrow ⁵Hn /3/ на 90-процентном уровне достоверности не превышает 1,2 ·10⁻³.

Рис.3. Энергетическое распределение: нейтрона /а/, быстрого тритона /б/ и медленного тритона /в/. образованных в реакции 7-7Li - 3H Hn 111. Сплошная гистограмма - эксперимент; заштрихованная часть события реакции /1/, принадлежащие области IV рис.1; пунктир - расчет по кластерному механизму рис.2: кривая - фазовый объем. Стрелками обозначена кинематическая энергия для двухчастичного развала гелия по реакции π^{-4} He \rightarrow ³Hn.

<u>Рис.4.</u> Распределение углов между: а/ быстрым тритоном и нейтроном; б/ медленным тритоном и нейтроном и в/ деумя тритонами, образованными в реакции π^{-7} Li \rightarrow ³H³Hn /1/ /обозначения те же, что и на рис. 3/.

5

ЛИТЕРАТУРА

Батусов Ю.А. и др. ЯФ, 1977, 26, с. 249.
Батусов М.А. и др. ОИЯИ, 1-80-766, Дубна, 1980.
Sennhaser V. et al. Phys.Lett., 1981, 103, р. 409.
Агагабян Н.М. и др. ОИЯИ, 10-5891, Дубна, 1971.
Block М.M. Phys.Rev.Lett., 1963, 11, р. 301.