

Объединенный институт ядерных исследований дубна

C 346.461

1-81-214

3250/1-81

А.И.Аношин, А.М.Балдин, В.Б.Любимов, М.И.Соловьев, М.К.Сулейманов

СВОЙСТВА π^{-12} С -ВЗАИМОДЕЙСТВИЙ В ЗАВИСИМОСТИ ОТ КУМУЛЯТИВНОГО ЧИСЛА π -МЕЗОНОВ, ИСПУЩЕННЫХ В ЗАДНЮЮ ПОЛУСФЕРУ ЛАБОРАТОРНОЙ СИСТЕМЫ КООРДИНАТ

Направлено в ЯФ

1. ВВЕДЕНИЕ

Экспериментальные данные по кумулятивному рождению частиц ^{/1/} позволили обнаружить ряд универсальных характеристик этого интересного явления. Особого внимания заслуживают: масштабная инвариантность, универсальность зависимости сечений образования различных частиц от кумулятивного числа, очень слабая зависимость сечения от ароматов кумулятивных частиц. Эти характеристики находят естественное объяснение в теории жестких столкновений и представляют собой проявление кварковых степеней свободы ядер. Дальнейшее их изучение интересно с точки зрения построения теории жестких процессов на основе квантовой хромодинамики.

Целью настоящей работы является изучение корреляционных явлений, сопровождающих кумулятивное образование частиц.

Ранее было обнаружено ²², что характеристики множественного образования частиц на ядрах оказываются связанными с наличием или отсутствием среди продуктов столкновения кумулятивных пионов. Изучались следующие характеристики: средняя множественность (\overline{N}), средний угол испускания ($\overline{\theta}$) в лабораторной системе координат /л.с.к./, средний импульс в л.с.к. (\overline{P}) и средняя быстрота в системе центра масс /с.ц.м./ пион-нуклон (\overline{Y}^*) в зависимости от наибольшего кумулятивного числа пиона ($n_{C}^{max} = max\{n_{Ci}\}$) среди всех пионов, образовавшихся во взаимодействии, где

 $n_{Ci} = \frac{E_i(1 - \cos\theta_i)}{M_N} .$

Здесь: Е , θ_i - энергия и угол испускания в л.с.к. i-го π -мезона соответственно, M_N - масса нуклона. Применявшийся в $^{/2/}$ критерий отбора кумулятивных взаимодействий $n_C^{\max} \ge 0.6$ можно расширить. Дело заключается в том, что возникающий в результате жесткого столкновения быстрый кварк может адронизироваться не только в один кумулятивный пион, но и в кумулятивную струю. Поскольку кумулятивное число является аддитивным параметром, то представляет интерес изучить сечение кумулятивного эффекта и другие характеристики множественного рождения в зависимости от

$$n_{C} = \sum_{i=1}^{N_{\pi}b} n_{Ci},$$

121

/1/

где N_{π_b} - число π -мезонов, испущенных в заднюю полусферу /ЗП/ л.с.к. / π_b -мезоны/.

При этом выполняется естественный признак по короткодействующим корреляциям в пространстве быстрот $\Delta Y = |Y_i - Y_j| < 2$ / Y_i и Y_j - продольные быстроты i -го и j-го π_b -мезона/, который выделяет пионы, обязанные своим происхождением быстрому партону.

В настоящей работе изучение проводилось раздельно для событий с числом $\pi_{\rm b}$ -мезонов $N_{\pi_{\rm b}}=1~$ и $N_{\pi_{\rm b}}\geq 2$.

Работа выполнена на основе экспериментальных данных, полученных при облучении 2-метровой пропановой пузырьковой камеры ЛВЭ ОИЯИ на ускорителе ИФВЭ. Использовано 8642 π^{-12} С-взаимодействий / Р $_{\pi^{-}}$ = 40 ГэВ/с/, отобранных по стандартным критериям, принятым для пропановой пузырьковой камеры ^{/3/}. Сюда не включались взаимодействия π^{-} -мезона с квазисвободными нуклонами ядра углерода*.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ ПО π_b^{\pm} -МЕЗОНАМ

На рис. 1/а, б, в/ приведены зависимости значений Р. $\bar{ heta}$ и N соответственно от n_C для π_b -мезонов отдельно для событий с $N_{\pi_b} = 1$ и $N_{\pi_b} \ge 2$. Как видно из рисун-ков, наименьшее значение n_C для случая $N_{\pi_b} \ge 2$ соответствует $n_C^{min} \simeq 0.4$, в отличие от случая $N_{\pi_b} = 1$, где $n_{C} = m_{\pi} / M_{N} / m_{\pi}$ - масса π -мезона/. Значение $\tilde{\theta}$ возрастает с увеличением n_{C} в области $n_{C} < 0.6$ /область 1/, при даль-нейшем увеличении n_{C} величины $\frac{\partial}{\partial} \approx const$ для всех случаев /область II/, причем в области II $(\bar{\theta}_{\pi b}^{+} = \bar{\theta}_{\pi b}^{-})_{N_{\pi b} \geq 2}$ $\simeq (\overline{\theta}_{\pi_b})_{N_{\pi_b}} = 1$. В I области для событий с $N_{\pi_b} = 1$ HOCTE $R_{N} = \bar{N}_{\pi_{h}^{+}} - \bar{N}_{\pi_{h}^{-}} \simeq 0$, аво II-й области R_N>0 увеличивается при возрастании n_{C} до $n_{C} \leq 1,4$, при дальнейшем росте п_с величина R_N уменьшается. Для событий с N_{π b} ≥ 2 также наблюдаются две области по n C для величины R / C R ~0 и $R_N > 0$ /, но, в отличие от случая $N_{\pi_b} = 1$, соответствующие области по оси n_C сдвинуты на величину, равную 0,40,т.е. на величину п $_{\rm C}^{\rm min}$ для событий с N $_{\pi_b} \ge 2$. Для поведения значений $\bar{\rm P}$ характерно совпадение $\bar{\rm P}_{\pi_b}$ для событий с N $_{\pi_b}$ =1 величиной $\mathbf{\tilde{P}}_{tot}$ для событий с N_{π⊾}≥2, где

<u>Рис.1</u>. Зависимость средних импульсов P /a/, средних углов вылета $\bar{\theta}$ /б/ и средних множественностей \bar{N} /в/ π_b – мезонов от значения величины n_C /см. текст/.

^{*} Отобранные события соответствуют сечению σ_{in} =/87,5+1,0/ мб.

$$\vec{P}_{tot} = (\vec{N}_{\pi_b} + \vec{P}_{\pi_b} + \vec{N}_{\pi_b} + \vec{P}_{\pi_b})_{N_{\pi_b} \ge 2} .$$

Отметим, что

$$\min\{(\vec{P}_{\pi_{b}})_{N_{\pi_{b}}=1}\} = \frac{m_{\pi}c}{2} ,$$

$$\min\{(\vec{P}_{\pi_{b}}^{+})_{N_{\pi_{b}}\geq2}\} = m_{\pi}c .$$
 (4/

131

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ ПО п. - МЕЗОНАМ

В число π_a -мезонов /т.н. мезонов "сопровождения"/ не включались π_b -мезоны, а также π -мезоны с наибольшим значением импульса в данном событии.

На рис.2 /а-г/ приведены зависимости от $n_{\rm C}$ средних значений P, θ , N и Y* соответственно для $\pi_{\rm a}$ -мезонов отдельно для событий с $N_{\pi \rm b} = 1$ и с $N_{\pi \rm b} \ge 2$.

Из этих рисунков видно, что $\bar{N}_{\pi^+a} > \bar{N}_{\pi^-a}$ как для событий с $N_{\pi_b} = 1$, так и $N_{\pi_b} \ge 2$, причем $(\bar{N}_{\pi_a})_{N_{\pi_b}=1} < (\bar{N}_{\pi_a})_{N_{\pi_b}} \ge 2$. Значение разности $R_p = \bar{P}_{\pi^-a} - \bar{P}_{\pi^+a} > 0$ при $n_c < 0.6 (N_{\pi_b} = 1)$ и при $n_c < 1(N_{\pi_b} \ge 2)$; $R_p \ge 0$ при $n_c \ge 0.6$ $(N_{\pi_b} = 1)$ и при $n_c \ge 1$ $(N_{\pi_b} \ge 2)$. Разность $R_{\theta} = \bar{\theta}_{\pi^+} - \bar{\theta}_{\pi^-} > 0$ при $n_c < 0.6 (N_{\pi_b} = 1)$ и при $n_c < 1 (N_{\pi_b} \ge 2)$; $R_{\theta} \ge 0$ при $n_c \ge 0.6$ $n_c > 0.6 (N_{\pi_b} = 1)$ и при $n_c \ge 1$ $(N_{\pi_b} \ge 2)$. Величина \bar{Y}^* соответствует области фрагментации нуклона, причем разность $R_{Y^*} = \bar{Y}_{\pi_a}^* - -\bar{Y}_{\pi_a}^* + > 0$ при $n_c \le 1 (N_{\pi_b} = 1)$ и $N_{\pi_b} \ge 2)$, а при $n_c > 1$ величина $\bar{R}_{Y^*} = 0$. В первом приближении величины $\bar{N}_{\pi_a}, \bar{P}_{\pi_a}, \bar{\theta}_{\pi_a}$ и $\bar{Y}_{\pi_a}^*$ можно считать независимыми от n_c /см. по этому поводу /2//.

4. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ ПО ЛИДИРУЮЩИМ *т*-мезонам

На рис.3/а,б/ представлены зависимости \vec{P} и $\vec{\theta}$, соответственно, от n_C при $N_{\pi_b} \ge 2$, для "лидирующих" π -мезонов. Лидирующими считались π -мезоны (π_L), которые одновременно удовлетворяли следующим двум условиям:

a/
$$P_{\pi_{L}} = \max\{P_{\pi^{+}}, P_{\pi^{-}}\},$$

б/ $x_{\pi_{L}}^{*} > 0,2,$ где $x_{\pi^{-}}^{*}$ - фейнмановская переменная, опре-

<u>Рис.2</u>. Зависимость $\overline{P}/a/$, $\theta'/б/$, $\overline{N}/B/$ и $\overline{Y}*/г/$ от п_с для π_a -мезонов.

Видно, что в первом приближении величины $\vec{P}_{\pi \pm}$ и $\vec{\theta}_{\pi \pm}$ можно считать независимыми от n_{C} .

5. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ ПО ПРОТОНАМ

Зависимости \overline{P} , $\overline{\theta}$ и \overline{N} от n_{C} для протонов в событиях с разным числом π_{b} -мезонов представлены на рис.4/а,б,в/. /Импуль-

5

Рис.3. Зависимость \vec{P} /а/ и $\vec{\theta}$ /б/ лидирующих π -мезо-нов от n_{C} .

сы P_p заключены в интервале 0,140 < $P_p < 1,000$ ГэВ/с/. Отметим, что в области $n_C < 0,6$ для событий с $N_{\pi_b} = 1$ с ростом n_C значения \bar{N} увеличиваются, а $\vec{\theta}$ и \vec{P} несколько уменьшаются. В области $n_C > 0,6$ величины \bar{N} -const и $\bar{P} \simeq {\rm const}$, а $\vec{\theta}$ можно считать не зависящими от n_C лишь в первом приближении, причем в этой области значения \bar{P} , $\vec{\sigma}$ и \bar{N} для протонов, испущенных из событий с $N_{\pi_b} \simeq 1$ в пределах ошибок совпадают с аналогичными для протонов из событий с $N_{\pi_b} \ge 2$. На рис.5/а,6/ показаны угловые распределения протонов с импульсами 0,200
 $P_p \le < 0,700$ ГэВ/с отдельно для событий с $n_C \ge 0,6$ /рис.5а/ и с

Для событий первой группы в угловых распределениях протонов наблюдается нерегулярность с пиком в районе $\theta \approx 60^{\circ}$.

6. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Совокупность полученных результатов указывает на существование по крайней мере двух различных механизмов, ответственных

Рис.4. Зависимость $\overline{P}/a/$, $\overline{\theta}/b/$ и $\overline{N}/b/$ протонов от n_C / • для событий с N_{nb}=1.0-N_{nb} \geq 2).

за испускание $\pi_{\rm b}$ -мезонов. Роль этих механизмов различна в I и II областях, где

$$(n_{C} < 0.6, N_{\pi_{b}} = 1)$$
 I область,
 $(n_{C} < 1.0, N_{\pi_{b}} \ge 2)$
 $(n_{C} \ge 0.6, N_{\pi_{b}} = 1)$ II область,
 $(n_{C} \ge 1.0, N_{\pi_{b}} \ge 2)$

Характер зависимости θ для π_b -мезонов от π_C в I области указывает на то, что на объяснение механизмов, действующих в ней, еще могут претендовать представления о перерассеянии и каскад-

<u>Рис.5.</u> Угловые распределения протонов в л.с.к. для событий с $n_C \gtrsim 0,6/a/$ и $n_C < 0,6/6/$.

ном размножении частиц, в то время как в области II эти представления неприменимы. Для поведения \vec{P} характерно то, что величины $\vec{P}_{\pi_{\rm b}}$ для событий с $N_{\pi_{\rm b}} = 1$ совпадают со значе-

нием $\vec{P}_{tot} = (\vec{N}_{\pi_b} + \vec{P}_{\pi_b} + \vec{N}_{\pi_b} - \vec{P}_{\pi_b})$ для событий с $N_{\pi_b} \ge 2$, т.е. со значением импульса сообщаемой группы π_b -мезонов при заданной величине n_c .

В наших работах ^{/2,4,6.′} было показано, что в кумулятивных π^{-12} С -взаимодействиях значения средних множественностей, углов испускания вторичных заряженных частиц больше, а значения их средних импульсов меньше, чем во всех остальных событиях. Это может быть объяснено тем, что в кумулятивных событиях взаимодействие осуществляется с мишенью, масса которой больше массы нуклона /флуктоном, кластером и т.д./.

Увеличение множественности π_b -мезонов приводит к увеличению множественности π_a -мезонов, что указывает на возрастание вклада фрагментации мишени в генерацию π_a -мезонов.

Независимость свойств π_a - и лидирующих мезонов от n_C может служить указанием на то, что взаимодействует лишь один из валентных кварков налетающего π -мезона с мишенью, другой является кварк-спектатором.

Данные настоящей работы согласуются с выводом, сделанным ранее ^{/2,5/} об анизотропии в угловом распределении протонов /наличие максимума под углом $\theta \approx 60^{\circ}$ /. Это явление заслуживает тщательного изучения, т.к. анизотропия может быть обусловлена движением в ядерном веществе цветного заряда того кварка из налетающего пиона, который не участвовал в жестком столкновении, обусловившем кумулятивный эффект.

Авторы благодарны коллективу сотрудничества по обработке снимков с 2-метровой пропановой камеры ОИЯИ за помощь в получении и обработке экспериментального материала и обсуждения, а также Б.Н.Калинкину за полезные обсуждения и замечания.

ЛИТЕРАТУРА

- Балдин А.М. Краткие сообщ. по физике, 1971, №1, с.35; Балдин А.М. ЭЧАЯ, 1977, т.8, в.3, с.429; Ставинский В.С. ЭЧАЯ, 1979, т.10, в.5, с.449; Балдин А.М. и др. IV Международный семинар по проблемам физики высоких энергий. ОИЯИ, Д1,2-9224, Дубна, 1975.
- 2. Аношин А.И. и др. ОИЯИ, Р1-80-716, Дубна, 1980.
- 3. Абдурахимов А.У. и др. ЯФ, 1972, т. 16, с. 989; Ангелов Н. и др. ЯФ, 1977, т. 25, с. 1013.
- 4. Ангелов Н. и др. ЯФ, 1979, т.29, в.5, с.1227.
- 5. Аношин А.И. и др. ОИЯИ, Р1-80-332, Дубна, 1980.
- 6. Аношин А.И. и др. ЯФ, 1980, т.31, в.3, с.668.

Рукопись поступила в издательский отдел 31 марта 1981 года.

8

9

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индек	с Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д1,2-9224	IV Международный семинар по проблемам физики высоких энергий. Дубна, 1975.	3	n.	60	к.
A-9920	Труды Международной конференции по избранным вопросам структуры ядра. Дубна, 1976.	3	p.	50	к.
Д9-10500	Труды II Симпозиума по коллективным методам ускорения. Дубна, 1976.	2	р.	50	к.
Д2-10533	Труды X Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3	р.	50	к.
Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	р.	00	к.
Д17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	р.	00	к.
Д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	D.	50	к.
ДЗ-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	D.	00	к.
Д13-1 <mark>1807</mark>	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	к.
P18-12147	Труды III Совещания по использованию ядерно-физиче- ских методов для решения научно-технических и народно- хозяйственных задач. Дубна, 1978.	2	D	20	
Д1,2 -12 450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
P2-12462	Труды V Международного совещания по нелокальным теориям поля. Алушта, 1979.	2	D.	25	к.
Д-12831	Труды Международного симпозиума по фундаментальным проблемам теоретической и математической физики. Дубна, 1979.	4	D.	00	ĸ
Д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979	2		00	
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	-	P.	00	A.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований Аношин А.И. и др. Свойства π^{-12} С -взаимодействий 1-81-214 в зависимости от кумулятивного числа π^{-} -мезонов, испущенных в заднюю полусферу лабораторной системы координат

На снимках с 2-метровой пропановой камеры, облученной π^- -мезонами с $P_{\pi^-}=40$ ГэВ/с, отобраны π^{-12} С-взаимодействия и изучены различные характеристики этих взаимодействий в зависимости от аддитивного порядка кумулятивности n_C для π_b -мезонов, ис-пущенных в заднюю полусферу лабораторной системы координат. Изучение проводилось раздельно для случаев с числом этих мезонов $N_{\pi} = 1$ и $N_{\pi} \ge 2$. Оказалось, что по всем исследуемым характеристикам /таким, как средние импульсы в л.с.к., средние углы вылета в л.с.к., средние быстроты в с.ц.м. пион-нуклон и средние множественности/ выделяются две области по n_C ; $/n_C < 0.6$, $N_{\pi_b} = 1/$, $/n_C < 1$, $N_{\pi_b} \ge 2/$ – I область и $/n_C \ge 0.6$, $N_{\pi_b} = 1/$, $/n_C \ge 1.0$, $N_{\pi_b} \ge 2$) – II область. При росте n_C во II области наблюдается постоянство изучаемых характеристик π^{\pm} -мезонов и протонов. В угловых распределениях протонов в событиях с $n_C \ge 0.6$

Anoshin A.I. et al. Properties of π^{-12} C-Interactions 1-81-214 Versus the Cumulative Number of π -Mesons Emitted into the Backward Hemisphere the Laboratory System

Pictures from 2 m propane bubble chamber exposed in the beam of π^- mesons with 40 GeV/c momentum have been scanned and different characteristics of π^{-12} C-interactions have been studied versus the additive order of cumulativity n_C for π_b -mesons emitted into the backward hemisphere in the laboratory system (1.s.). The study has been performed individually for $N_{\pi b}=1$ and $N_{\pi b} \ge 2$. According to the characteristics studied (such as average momenta in the l.s., average emission angles in the l.s., average rapidities in the pion-nucleon c.m.s. and average multuplicites), two n_C regions are separated: region I ($n_C < 0.6$, $N_{\pi b} = 1$), ($n_C < 1.0$, $N_{\pi b} \ge 2$) and region II ($n_C \ge 0.6$, $N_{\pi b} = 1$), ($n_C \ge 1$, 0, $N_{\pi b} \ge 2$)Constancy of the investigated characteristics of π^{\pm} -mesons and protons is observed as n_c increases in region II. Some structure (peak at an angle of $\theta = 60^{\circ}$) is observed in the angular distributions of protons for the events with $n_C \ge 0.6$.

Preprint of the Joint Institute for Nuclear Research. Dubna 1981