942 объединенный институт ядерных исследований лаборатория ядерных проблем

1 - 8073

ГУЛКАНЯН Грант Рубенович

ИССЛЕДОВАНИЕ РЕАКЦИЙ ОБРАЗОВАНИЯ 77-МЕЗОНОВ И ПИОН-ПИОННОЕ ВЗАИМОДЕЙСТВИЕ ПРИ НИЗКИХ ЭНЕРГИЯХ

Специальность 01.04.01 - экспериментальная физика

А втореферат диссертации на соискание ученой степени кандидата физико-математических наук

(Диссертация написана на русском языке)

Работа выполнена в Лаборатории ядерных проблем Объединенного института ядерных исследований. Дубна.

Научный руководитель:

кандидат физико-математических наук С.А.БУНЯТОВ.

Официальные оппоненты:

доктор физико-математических наук И.М. ГРАМЕНИЦКИЙ, доктор физико-математических наук А.А.АНСЕЛЬМ.

Ведущее научно-исследовательское учреждение -Институт физики высоких энергий, Серпухов.

Автореферат разослан " 1974 года. Защита диссертации состоится " 1974 г., в часов на заседании Ученого Совета Лаборатории ядерных проблем ОИЯИ.

С диссертацией можно ознакомиться в библиотеке Объединенного института ядерных исследований.

Ученый секретарь Совета кандидат физико-математических наук

D.A. BATYCOB

ГУЛКАНЯН Грант Рубенович

ИССЛЕДОВАНИЕ РЕАКЦИЙ ОБРАЗОВАНИЯ 77 - МЕЗОНОВ И ПИОН-ПИОННОЕ ВЗАИМОДЕЙСТВИЕ ПРИ НИЗКИХ ЭНЕРГИЯХ

Специальность 01.04.01 - экспериментальная физика

А втореферат диссертации на соискание ученой степени кандидата физико-математических наук

(Диссертация написана на русском языке)

Объениненный пистиал CHOMME ECHOROPORT **BHG RHOTEH**

Изучение пион-пионного взеимодействия имеет вежное значение для понимения физики сильных взеимодействий. Имеющиеся в настоящее время сведения о фазах пион-пионного рассеяния, полученные из изучения процессов с участием -мезонов, весьма неполны/1.В первур очередь это относится к S-волновым февем $\pi\pi$ -рессеяния в облести энергий $M_{\chi\pi} < 0.6$ Гев, где экспериментельные денные значительно отличаются друг от друга. Еще большая неопределенность получается при экстраполяции фев к пороговой области, при попытках определения низкознергетических параметров – длин $\pi\pi$ -рессеяния.

n and a second second

Энечения S-волновых длин $\pi\pi$ -рассеяния a_o и a_2 , полученные при енелизе резличных экспериментельных денных, приведены в табл. I. Как видно из теблицы, в настоящее время существует большая неопределенность в значениях S-волновых длин $\pi\pi$ -рассеяния: -0,8 $\lambda_{\pi} < a_o < 0,8$ λ_{π} ; -0,2 $\lambda_{\pi} < a_2 < 0,2$ λ_{π} .

Важным источником информации о длинах $\pi\pi$ -рассеяния являются реакции $\pi N \rightarrow \pi\pi N$ вблизи порога и $K \rightarrow 3\pi$ -распады. Необходимо подчеркнуть, что, как следует из анализа данных по этим реакциям, изучение одного канала реакций $\pi N \rightarrow \pi\pi N$ вблизи порога или $K \rightarrow 3\pi$ -распадов не может дать надежных сведений о пион-пионном взаимодействии.

До выполнения настоящей работы экспериментальные денные по реакциям $\pi N \rightarrow \pi \pi N$ вблизи порога существовали только для одного канала/13, 3/

$$\pi^- \rho \to \pi^+ \pi^- n . \tag{I}$$

Таким образом, необходимо было изучить другие каналы реакций $\pi N \rightarrow \pi \pi N$, в частности, реакции $\pi + \rho \rightarrow \pi \pi N$, относительно которых экспериментальные данные при энергиях ниже $T_{\pi} < 300$ Мэв полностью отсутствовали.

Настоящая работа посвящена исследованию реакций $\pi N \rightarrow \pi \pi N$ вблизи порога и $K \rightarrow 3\pi$ -распадов, с целью определения S -волновых длин $\pi\pi$ -рассеяния. Работа выполнена в Лаборатории ядерных проблем ОИЯИ. Основные результаты опубликованы в работах/14-20/ и докладывались на научных семинарах Лаборатории ядерных проблем, Лаборатории высоких энергий ОИЯИ, на научной сессии ОЯФ АН СССР по физике элементарных частиц в 1973 г., на 16-ой и 17-ой международных конференциях по физике высоких энергий (Чикаго, США, 1972 г.; Лондон, Англия, 1974 г.), на 2-ой международной конференции по здементарным частицам (Экс-ан-Прованс, Франция, 1973 г.) и на 4-ой международной конференции по экспериментальной мезонной спектроскопии (Бостон, США, 1974 г.).

Диссертация состоит из четырех глав.

В <u>первой главе</u> диссертации изложена постановка эксперимента, методика поиска и идентификации событий неупругого взаимодействия π^+ -мезонов с протонами в фотозмульски:

> $\pi + p \rightarrow \pi + \pi + n$ $\pi + p \rightarrow \pi + \pi^{\circ} p$ $\pi + p \rightarrow \pi^{\dagger} \gamma^{\circ} p$

(3)

(4)

В эксперименте использовались эмульсионные камеры, составленные из стандартных эмульсионных слоев НИКФИ БР толщиной 600 µ. Четыре камеры размерами IOxIOx6,5 см³ и три камеры размерами 20xIOx4,5 см³ облучались π⁺-мезонами с энергией 240[±]8 Мэв и 290[±]8 Мэв, образованными на выведенном пучке протонов с энергией 670 Мэв на синхроциклотроне ЛЯП ОИЯИ.

Поиск событий, принадлежащих реакциям (2)-(4), проводился по остановкам π^+ -мезонов. Найденные по остановкам следы π^+ -мезонов прослеживались до точки взаимодействия. При просмотре общего объема 185 см³ эмульсии найдено 22000 остановок π^+ -мезонов. После прослеживания треков π^+ -мезонов зарегистрировано 12400 неупругих взаимодействий π^+ -мезонов с протонами и ядрами в фотоэмульсии; из них отбирались так называемые "водородоподобные" события без явного признака взаимодействия на ядре (без следа ядра отдачи или элеитрона в центре звезды), содержащие, помимо вторичного π^+ -мезона, еще один след, который оканчивался в камере; было найдено 700 таких событий. События измерялись и обрабатывались на ЭВМ по программе геометрической реконструкции и кинематического анализа событий в фотозмульсионных камерах/20/.

Среди отобранных событий было 7 событий с двумя вторичными π^+ -мезонами при энергии $T_{\pi} \sim 230$ Мав. При энергии $T_{\pi} \sim 275$ Мав был найден один случай с двумя вторичными π^+ -мезонами. Остальные события анализировались по кинематике реакций (3)-(4). Числа событий, удовлетворяющих кинематике реакций (2)-(4) при энергиях $T_{\pi} \sim 230$ Мав и $T_{\pi} \sim 275$ Мав, приведены в табл. 2. Отметим, что ни одно из событий, удовлетворяющих кинематике реакций (3) или (4), не удовлетворяло кинематике этих реакций одновременно.

При определении полных сечений реакций (2)-(4) учитывались поправки, связанные с эффективностью поиска остановок π^+ -мезонов, прослеживания треков и определения первичного потока π^+ -мезонов. Для каждого типа реакций определялась геометрическая эффективность камер по методу Монте-Карло.

Одним из важных вопросов при определении сечений взаимодействия с протонами в фотоэмульсии является учет вклада взаимодействий на ядрах в фотоэмульсии в исследуемые нами процессы. Нами была выработана методика, позволяющая определить этот вклад при помощи анализа событий, содержащих явный признак взаимодействия на ядре (след ядра отдачи или электрона в центре звезды). В результате ана-

лизе найдено, что вклед фоновых событий длн реакций (I), (2) с двумя вторичными π -мезонами составляет (20[±]5)%, а для реакций (3), (4) с одним вторичным π -мезоном - (50[±]15)%.

Измеренные значения сечений реакций (2)-(4) приведены в табл. 2.В указанных ошибках учтена неопределенность в оценке фона. Там же для сравнения приведены сечения при знергии $\mathcal{T}_{\pi} \sim 300$ Мэв, полученные в ЦЕРНе^{/21/}. На рис. I и 2 приведены имеющиеся данные по сечениям реакций (2) и (3) в области знергий до 400 Мав. Полученные нами сечения указывают на то, что с увеличением энергии вблизи порога мезонообразования сечение $\mathfrak{T}(\pi + \pi + n)$ растет эначительно медленнее, чем сечение $\mathfrak{T}(\pi + \pi * n)$.

Во <u>второй главе</u> диссертации провнализированы данные по реакциям π N → ππN вблизи порога.

Энение сечений двух кенелов реекций (I), (2) вблизи пороге позволяёт определить отношение $X = |F_{ii}| / |F_{>i}|$ модулей изотопически-инвериентных амплитуд реекций $\pi N \rightarrow \pi \pi N$ на пороге в состояниях P_{ii} и $P_{>i}$. Параметр X игреет существенную роль в низкоэнергетической теории реекций $\pi N \rightarrow \pi \pi N$ (Грибов, Ансельм, Анисович)/25/. В этой теории возможность определения длин $\pi \pi$ -рессеяния связывается с обнаружением эффектов перерассеяния π -мезонов в конечном состоянии; эти эффекты существенным обрезом зависят от параметре X. Используя измеренное неми значение сечения реекций (2) при энергии 230 Мэв и имеющиеся значения сечений реекции (I) вблизи порога и учитивая связь емплитуд этих кенелов с изотопически-инвериентными емплитудеми, неходим;

 $|F_{ff}| = 0,36^{\pm}0,03 \ \pi_{\pi}$; $|F_{5f}| = 0,20^{\pm}0,05 \ \pi_{\pi}$; $\chi = 1,8^{\pm}0,4$. Полученное значение параметра χ показывает, что приближение, применявшееся ранее в работах^{/2,3/} с цельв определения разности длин $\pi\pi$ -рассеяния ($a_{o} - a_{2}$) из данных по реакции (I), несправедливо. В этих реботах в кведрете матричного элементе реакции (I) учитывались только линейные по относительным импульсам конечных частиц члены. Однако при значении X = I,8 вклад линейных членов слишком мал; и нужно учитывать члены более высокого (второго и третьего) порядка.

В настоящей работе проведено вычисление кубических по относительным импульсам членов в амплитуде реакций $\pi N \rightarrow \pi \pi N$ и по полученным формулам прознализированы экспериментальные данные по реакции (1) в области энергий (200+260) Мэв (всего 486 событий). Анализ проведен методом максимального правдоподобия. Для вычитания вклада фоновых событий при оценке параметров методом максимального правдоподобия был применен способ, предложенный в работе^{/26/}. В результате анализа получен простой вид для квадрата матричного элемента реакции (1), удовлетворительно описывающий всю совокупность экспериментальных данных:

 $|M|^2 - l + C(\kappa_{l2}^2 - \frac{1}{2}E)$, C = 3,720,6, (5) где κ_{l2} есть относительный импульс конечных π -мезонов, E выделенная энергия (в единицах массы π -мезона). Найдена зависимость полного сечения реакции (I) от энергии:

 $\sigma = \rho^2 E^2$, $\rho^2 = 0.38^{\pm}0.05$ мбн (6) На рис. 5 экспериментальные одномерные распределения реакции (1), из которых был исключен вклад фоновых событий, сравниваются с теоретическими распределениями. На рис. 4 приведены экспериментальные значения и теоретическая зависимость от энергии полного сечения реакции (1).

При значении X =I,8 эффекты перерассаяния пионов в конечном состоянии малы, и определить длины $\pi\pi$ -рассаяния из имеющихся данных не удается. На рис. 6 показан результат вычисления суммарного вклада линейных, квадратичных и кубических членов, содержащих дли-

6

ну $\pi\pi$ -рассеяния a_o , в одномерные распределения реакции (I). Этот вклад не превышает (5+7)% (при $|a_o| \leq I$). Таким образом, для обнаружения зффектов перерассеяния пионов в конечном состоянии в определения длины рассеяния a_o потребуется статистика, примерно на два порядка превышающая имеющуюся.

Изучение реакций $\pi N \rightarrow \pi \pi N$ представляет интерес также с точки зрения другой низкоэнергетической теории – теории "мягких" пионов. В работах Вайнберге/27/, Олссона и Тернере/28/ показано, что вблизи порога в процесс $\pi N \rightarrow \pi \pi N$ основной вклад дает диаграмма одномезонного обмена и что,измерив сечения реакций $\pi N \rightarrow \pi \pi N$, можно в принципе определить неизвестный параметр пион-пионной вершины ξ , определяющий вклад нарушающего киральную симметрию члена в эффективный лагранжиан процесса $\pi \pi \rightarrow \pi \pi$.

Определить однозначно параметр È только из данных по полным сечениям реакции (I) не удается^{28/}. Используя также полученное нами значение полного сечения реакции (2) при энергии 230 Мав (см. рис. I), находим однозначную величину для È :

 $\xi = 0,25 \pm 0,20$

Однако вопрос о том, насколько справедлива примененная модель для извлечения информации о пион-пионном взаимодействии из данных по реакциям $\pi N \rightarrow \pi \pi N$, требует сравнения более детальных теоретических расчетов с экспериментальными данными по полным и дифференциальным сечениям различных каналов.

Другим объектом применимости теории образования трех сильновзаимодействующих частиц вблизи порога^{25/} являются $K \to 3\pi$ -распады, данные по которым прознализированы с целью определения \mathfrak{S} -волновых длин $\pi\pi$ -рассеяния в <u>третьей главе</u> диссертации. В атот анализ, в отличие от предыдущих, включены наиболее точные данные по всем каналам $K \to 3\pi$: а) данные^{29/} по \sim I,5 млн распадам $K^{\pm} \to \pi^{\pm}\pi^{\mp}($ распределение по графику Далица); б) данные^{30/} по ~0,5 млн распадам $K_L^{\circ} \rightarrow \pi^+\pi^-\pi^\circ$ (энергетический спектр π° -мезона); в) парциальные ширины/ЗІ/ всех каналов $K \rightarrow 3\pi$.

Проанализирован вопрос о степени нарушения правила $|\Delta T| = I/2$ в $K \to 3\pi$ -распадах; определен вклад перехода $|\Delta T| = 3/2$ в амплитуды, парциальные ширины и спектры π -мезонов различных каналов $K \to 3\pi$. Показано, что переход $|\Delta T| = 3/2$ приводит к увеличению вероятности τ -распада на 6+7% и к уменьшению вероятности распада $K_L^{\circ} \to \pi^+\pi^-\pi^{\circ}$ на I3+I5%, наклон в спектре "непохожего" π мезона в τ -распаде уменьшается на I3+I4%, в наклон в спектре π° мезона в распаде $K_L^{\circ} \to \pi^+\pi^-\pi^{\circ}$ увеличивается на 2I+22%. Из анализа, проведенного с учетом кубических по относительным импульсам членов в амплитудах $K \to 3\pi$, получены две допустимые области для S волновых длин $\pi\pi$ -рассеяния a_o и a_2 :

Значение Q_{o} из первого решения ($Q_{o} = 0.59^{\pm}0.07$) находится в хорошем согласии с результатами работ^{/7}, II/.

Исследован вопрос о влиянии членов следующего, четвертого, порядка на полученные значения длин рассеяния и установлено, что если аналитические члены четвертого порядка не аномально велики, то их учет может изменить полученные значения a_o на $\pm 0,2$ λ_{π} и a_2 – на $\pm 0,1$ λ_{π} . Можно надеяться, что дальнейшее увеличение и уточнение экспериментального материала по $\mathcal{K} \rightarrow 3\pi$ распадам позволит решить вопрос о величине аналитических членов четвертого порядка и более точно определить длины $\pi\pi$ -рассеяния.

В последней, <u>четвертой главе</u> диссертации исследовано радиационное рассеяние π^+ -мезонов на протоне с испусканием жестких γ квантов ($E_{\chi} > 50$ Мэв):

$$\pi + \rho \rightarrow \pi + \gamma \rho \tag{4}$$

при энергиях $T_{\pi} \sim 230$ Мэв и 275 Мэв. До выполнения настоящей работы существовала только одна экспериментальная оценка/21/ сечения реакции (4) ($E_{J^*} > 50$ Мэв) при энергии $T_{\pi} \sim 300$ Мэв, которая находилась в согласии с ранними теоретическими расчетами/32, 33/ по модели статического нуклона, не учитывающей излучения протона (рис. 3).

В настоящей работе измерены сечения реакции (4) при энергиях $\mathcal{T}_{\pi} \sim 230$ Мав и $\mathcal{T}_{\pi} \sim 275$ Мав, которые оказались равными (0,45[±]15) и (0,82±0,35) мон, соответственно. Полученные нами экспериментальные значения находятся в хорошем согласии с результатами вычислений по моделям, где учтено излучение протона, - с результатами работы^{/34/} и проведенного нами расчета (рис. 3, пунктир) по модели Мусаханова^{/35/}; это указывают на необходимость учета в теоретических расчетах излучения протона. Отметим также, что из измеренных нами сечений неупругого $\pi^+ \rho$ -взаимодействия следует (см. таблицу 2), что ниже $\mathcal{T}_{\pi} < 300$ Мав радиационное рассеяние π^+ -мезона на протоне с испусканием жестких γ -квантов является главным неулругим каналом $\pi^+ \rho$ -рассеяния и имеет сечение, примерно на порядок превышающее сечение мезонообразовения.

В заключение приводятся основные выводы и результаты:

I) Впервые получены денные о реакциях мезонообразования в $\pi^+ \rho$ -соударениях при энергиях ниже $\mathcal{T}_{\pi} < 300$ Мэв. Измерено сечение реакции $\pi^+ \rho \rightarrow \pi^+ \pi^+ n$ при $\mathcal{T}_{\pi} \sim 230$ Мэв, которое оказалось равным 30^{+18}_{-12} мкбн; оценено сечение этой реакции при $\mathcal{T}_{\pi} \sim 275$ Мав; 26^{+55}_{-20} мкбн. Измерены сечения реакции $\pi^+ \rho \rightarrow \pi^+ \pi^* \rho$ при энергии $\mathcal{T}_{\pi} \sim 230$ Мэв (18^{+12}_{-9} мкбн) и при энергии $\mathcal{T}_{\pi} \sim 275$ Мав (48^{+34}_{-25} мкбн). 2) Впервне измерены сечения радиационного рассеяния π^+ -мезо-

на на протоне с испусканием жестких γ -квантов ($E_{\gamma} > 50$ Мав) при энергиях ниже $T_{\kappa} < 300$ Мав. Показано, что этот процесс является главным неупругим каналом $\pi^+ \rho$ -взаимодействия в области энергий ниже 300 Мав. Сечение этой реакции при энергии $\mathcal{T}_{\pi} \sim 230$ Мав оказалось равным (0,45[±]0,15) мон и при энергии $\mathcal{T}_{\pi} \sim 275$ Мав -

(0,82[±]0,35) мбн, т.е. примерно на порядок больше сечения мезонообразования. Из сравнения полученных экспериментальных эначений сечения реакции $\pi^+ \rho \to \pi^+ \gamma^+ \rho^-$ с предсказаниями различных теоретических моделей сделан вывод о необходимости учета излучения протона.

3) Определены изотопически-инвериентные емплитуды $|F_{44}|$ и $|F_{54}|$ реакций $\pi N \rightarrow \pi \pi N$ на порога; для отношения $X = |F_{44}| / |F_{54}|$ найдено значение $X = I_{4} S^{\pm}O_{4}$. Сделаны предсказания для полных сечений всех каналов $\pi N \rightarrow \pi \pi N$.

4) Вичислены кубические по относительным импульсам члены в амплитуде реакций $\pi N \rightarrow \pi \pi N$ в рамках теории образования трех сильновзаимодействующих частиц вблизи порога и получены формулы для квадрата матричного элемента реакции $\pi^- \rho \rightarrow \pi^+ \pi^- n$ в кубическом приближении.

5) Проведен энэлиэ экспериментэльных дэнных по резкции $\pi^- \rho \rightarrow \pi^+ \pi^- n$ в интервэле энергий $\mathcal{T}_{\pi} = (200+260)$ Мэв с точностью до кубических по относительным импульсэм членов. Получен простой вид для квадрата матричного элемента, который удовлетворительно описывает всю совокупность экспериментальных данных; и определена зависимость полного сечения реакции от энергии.

Вычислен вклад членов, содержащих длину $\pi\pi$ -рассеяния a_o , в одномерные спектры и оценена необходимая для определения a_o статистическая точность экспериментальных данных (несколько десятков тысяч событий).

6) В ражках модели Олссона и Тернера определен параметр теории "мягких" пионов =0,25[±]0,20, определяющий вклад нарушающих киральную симметрию членов в эффективный лагранжиан пион-пионного взаимодействия.

11

~ **IO**

7) Впервые проведен совместный енелиз экспериментельных денных по К -> З т -распадам в рамках теории образования трех сильновзаимодействующих частиц вблизи порога. Исследован вопрос о степени нерушения правила (AT) =I/2 в этих респедех; определен вклад перехода | 47|=3/2 в амплитуды, парциальные ширины и спектры л мезонов различных каналов К-Зл . Из проведенного анализа, с точностью до кубических членов включительно, получены две допустимые области для S-волновых длин лл-рассеяния Q, и Q, :

> $Q_{o} = 0,59^{\pm}0,07 \lambda_{r}$ $a_2 = -0,20^{\pm}0,03 \lambda_{\pi}$ $a_2 = 0,10^{\pm}0,05 \lambda_{\pi}$

 $a_{o} = -0,43\pm0,04$ λ_{π}

8) Резработена система програмы для обработки экспериментельных данных и анализа широкого класса ядерных реакций в фотоамульсионных камерах.

Таблица 2

					19 1 March 19	
Реакция	Фотозі	чульсионн	не ка м е br	l de la companya de la compa	Водоро	одная пу-
	230)±13 Мэв	27	5 ± 15 Мэв	зырько ра,Щ	овая каме- SPH
	число	Сечение	число	Сечение	~300 Мэв	
•	соон- тий		соод- тий	MAUN	ЧИСЛО Собы— Тий	сече- ние, мкбн
$\pi^+ \rho \rightarrow \pi^+ \pi^+ n$	6	30 +18	I	26 <mark>+</mark> 55	2	25 + 2I -16
$\pi^+ \rho \rightarrow \pi^+ \pi^\circ \rho$	5	18 <mark>+12</mark>	4	48 <mark>+34</mark>	9	110 ± 40
π⁺ρ→π⁺γ°ρ	24	420 ± I50	II	820±350	I 8	220 ± 50
(Ey > 50 Мэв)				· · · · · · · ·		

Таблица І

S -волновые длины $\pi\pi$ -рассеяния a_o и a_2 (в единицах λ_{π})

	Q.	az.	Исходная реакция	Ссыл- ки	
I.	<i>a</i> _o - <i>a</i> ₂ =0,25±0,05	•	$π^-p → π^+π^-n$ 2 ($T_{\pi} = 200+245$ Мэв)		
2.	<i>a</i> _o - <i>a</i> _z =0,42±0,10		$\tau^- p \rightarrow \pi^+ \pi^- n$ 3 ($T_{\pi} = 247 \text{ M}_{3B}$)		
3.	2a,+a ₂ =-0,95±0,20	0,19±0,02	π+p→π+π+n (0,72 Гэв/с) π-p→π+π-n (0,4I Гэв/с и I,3 Гэв	4 5 /c)	
4.	<i>a₀</i> =0,52±0,06	<i>a</i> ₂ =0 ,17± 0,02	πΝ→ππΝ Τ _τ <ΙΓэв	6	
5.	0,6±0,25	and a second	$K^+ \rightarrow \pi^+ \pi^- e^+ v$	7	
6.	0,17±0,13		$K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\gamma$	8	
7.	0,67±0,06	0,021±0,004	π ⁻ р→π°π°п (2 Гэв/с)	9	
8.			$x^{-}p \rightarrow \begin{cases} \pi^{+}\pi^{-}n \\ \pi^{-}x^{\circ}p \end{cases} (2,77 \text{ Figs})$	/c) IO	
	-0,05 < a _° < 0,6	-0,I2< <i>a</i> 2<0,04	$ \begin{array}{l} \pi^- \rho \rightarrow \pi^+ \pi^- n \\ (I7,2 \ \Gamma \ni B/c) \\ \pi^+ \rho \rightarrow \pi^+ \pi^- \Delta^{++} \\ (7,I \ \Gamma \ni B/c) \end{array} $		
9.	0 ,6 5 + 0,16		πΝ→ππΝ (7 _π =430 Μэв)	II	
I0.	0,6 ⁺⁰ ,1 -0,2	-0,I±0,I			
	-0,5 <mark>+0,3</mark>	0±0,I	τ·	12	
II.	0,59±0,07	-0,20±0,03	а. К 2		
	-0,43±0,04	0,10±0,05	^μ K→ 3π μ σ	астоя- ая ра- ота	

12

Рис. I. Полные сечения резкции π+ρ→π+π+п Точки: • - настоящая работа; • - /2I/; □ - /22/ Теоретические кривые при разных § получены по формулам работы /28/.

Рис. 2. Полные сечения реакции $\pi^+ p \rightarrow \pi^+ \pi^o p$ Точки: • - настоящая работа; $\triangle - /23/,$ $\circ - /21/,$ = - /24/.

Рис. 4. Энергетическая зависимость полного сечения реакции $\pi^{-} \rho \longrightarrow \pi^{+} \pi^{-} n$.

Рис. 5. Одномерные распределения реакции $\pi^- p \rightarrow \pi^+ \pi^- n$. Безразмерные величины \mathcal{X}_{ij} связаны с относительными импульсами конечных частиц следующим образом: $\mathcal{X}_{ij} \leftarrow \mathcal{K}_{ij} / \sqrt{2\mu_i E}$, где f_{ij}^{t} – приведенная масса пары частиц; индекс "I" относится к π^+ -мезону, "2" – к π^- -мезону, "3" – к нейтрону.

Сплошная гистограмма - эксперимент. Сплошная линия постоянный матричный элемент; пунктир - матричный элемент (5) (см. текст).

Рис. 6. Вклад неаналитических членов, содержащих длину рассеяния *a*, в одномерные распределения, деленные на аналогичные распределения по фазовому объему (при *a*, =[±]I);

зештрихованные области соответствуют неопределенности в параметре X =I,8[±]0,4.

По оси ординат отложена величина отклонения от единицы (в процентах).

CONSIGNED TO A TAM TEP A T-J-R (C C CONSIGNOUS and the second the second and the second I. N.Barash-Schmidt et al. Phys. Lett. 50B, N 1, 1974. 2. Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. RΦ I, 687, I965. 3. I.M.Blair, H.Müller et al. Phys. Lett. 32B, 528, 1970. 4. А.В.Арефьев и др., ЯФ <u>10</u>, 797, 1969. 5. А.В.Арефьев и др. ЯФ <u>8</u>, 631, 1968. 13.54.15克,美水压、玉树麻香炒甜燃料,具2.5 6. М.М.Макаров и др. Phys. Lett. 31B, 666, 1970. 7. A.Zylberztejn et al. Phys. Lett. <u>38B</u>, 457, 1972. are not contract of the 8. E.Beier et al. Phys. Rev. Lett. 30, 399, 1973. 9. G. Villet et el. Труды П Междунеродной конференции по элементарным частицам в Экс-ан-Провансе, 1973. IO. J.L. Basdevant et al. Tam me. II. С.А.Бунятов, В.С.Курбатов, А.К.Лиходед, Г.М.Штәуденмейер. Ho 16, 1286, 1972. 12. П.Э.Волковицкий, Л.Г.Дахно. ЯФ 19, № 1, 1974. 13. Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба. **H**Φ I, 526, I965. 14. Ю.А.Батусов, С.А.Бунятов, Г.Р.Булканян, В.М.Сидоров. Ro <u>18</u>, 86, 1973. 15. Ю.А.Батусов, С.А.Бунятов, Г.Р.Гулканян, В.М.Сидоров, М.Мусаханов, Г.Ионице, Е.Лозняну, В.Михул, Д.Тувдендорж. Препринт ОИЯИ, РІ-7969, Дубна, 1974. 16. Ю.А.Батусов, С.А.Бунятов, Г.Р.Гулканян, В.С.Курбатов, . В.М. Сидоров, -В.А.Ярба, ЯФ <u>18</u>, 829, 1973. 17. П.Э.Волковицкий, Г.Р.Гулканян.Сообщение ОИЯИ Р4-6644,Дубна,1972. 18. С.А.Бунятов, Г.Р.Гулкенян, В.С.Курбатов. ЯФ 17, 1307, 1973. 19. С.А.Бунятов, П.Э.Волковицкий, Г.Р.Гулконян. Препринт ОИЯИ ЕІ-8065, Дубна, 1974.

- Н.М.Агебабян, Ю.А.Батусов, С.А.Бунятов, Г.Р.Гулканян,
 В.М.Сидоров, В.А.Ярба. Сообщение ОИЯИ 10-5891, Дубиа, 1971.
- 21. V.Barnes et al. CERN Report 63-27, 1963.
- 22. J.Kirz, J.Schwarts, R.Tripp. Phys. Rev. 126, 763, 1962.
- 23. M.Arman et al. Phys. Rev. Lett. 29, 962, 1972.
- 24. J.Detoeuf et al. Phys. Rev. Lett. 16, 860, 1966.
- 25. V.V.Anisivich, A.A.Anselm, V.N.Gribov. Nucl.Phys.<u>38</u>, 132,1962. В.В.Анисович, А.А.Ансельм. УФН <u>88</u>, 287, 1966.
- 26. В.С.Курбатов, А.А.Тяпкин, Сообщение ОИЯИ РІ-5234, Дубна, 1970.
- 27. S.Weinberg. Phys. Rev. Lett. 18, 188, 1967.
 - Доклед не XIУ Междунеродной конференции по физике высоких энергий. Вене, 1968.
- M.Olsson, L.Turner. Phys. Rev. Lett. <u>20</u>, 1127, 1968;
 Phys. Rev. <u>181</u>, 2141, 1961.
- 29. W.T.Ford et al. Phys. Lett. <u>38B</u>, 355, 1972.
- 30. R.Messner et al. Proc. XVI Int. Conf. on High Energy Phys., Chicago, 1972.
- 3I. N.Berash-Schmidt et el. Rev. of Mod. Phys., <u>45</u>, No 2, p. 11, 1973.
- 32. P.Carruthers, Phys. Rev., 134, B638, 1964.
- 33. S.C.Bhargava. Nuovo Cim. 58, 815, 1968.
- 34. R.Baier et al. Nucl. Phys. <u>B27</u>, 589, 1971.
- 35. М.М.Мусаханов. ЯФ 19, 630, 1974.
- 36. T.Deahl et al. Phys. Rev. 124, 198, 1961.

Рукопись поступила в издательский отдел 5 июля 1974 года.