

СООбЩЕНИЯ Объединенного института ядерных исследований дубна

1615 2-81

1-80-858

30/15/8

О.Б.Абдинов, А.Т.Абросимов, Н.М.Агабабян, Г.Б.Арутюнов, М.Р.Атаян, А.А.Байрамов, Ю.А.Будагов, Ш.Валкар, Н.Г.Григорян, Г.Р.Гулканян, А.М.Дворник, А.Р.Канецян, Ж.К.Карамян, З.А.Киракосян, С.А.Корчагин, Ю.Ф.Ломакин, А.А.Маилов, Н.Н.Тарасова, В.Б.Флягин, Ю.Н.Харжеев, Д.И.Хубуа

ОБРАЗОВАНИЕ БЫСТРЫХ

ПОЛОЖИТЕЛЬНО ЗАРЯЖЕННЫХ ЧАСТИЦ В ПИОН-УГЛЕРОДНЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ 5 ГэВ/с

1. ВВЕДЕНИЕ

Contraction of the

В последнее время появился ряд работ по исследованию процессов множественной генерации частиц в многонуклонных взаимодействиях ^(1,2). В настоящей работе приводятся результаты исследования пион-углеродных соударений, сопровождающихся образованием только положительно заряженных и нейтральных частиц, т.е. таких соударений, в которых участвуют два и более внутриядерных нуклонов /протонов/. Получение данных о кинематических характеристиках положительных частиц, о корреляциях в их выходах может дать новые сведения о наличии высокоспиновых экзотических связанных состояний в системах π^+ -мезон-протон. Предсказания относительно существования некоторых из них /например, в системе $\pi^+\pi^+$ р с I \geq 5/2/ сделаны в теоретических работах ^(3,5). Отметим, впрочем, что вопрос о существовании резонансов с I \geq 5/2 окончательно еще не является решенным ^{(6/}.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Экспериментальный результат получен на метровой пропановой пузырьковой камере Лаборатории ядерных проблен ОИЯИ /ЛК-200/, экспонированной в пучке π^- -мезонов с импульсом 5 ГэВ/с⁷⁷. При просмотре около 70 тысяч стереофотографий были отобраны такие пион-углеродные взаимодейстеия, в которых среди вторичных частиц не наблюдается отрицательно заряженных, но есть хотя бы одна положительно заряженная, т.е.

$$\pi^{-}C \rightarrow n_{a}\pi^{+} + n_{a}p + n_{a}\gamma + X. \qquad (1)$$

Здесь n_1 и n_2 - количество идентифицированных π^+ -мезонов и протонов соответственно, причем в n_1 включены также неидентифицированные положительно заряженные частицы с импульсами $P > /700 \div 800 / MaB/c; n_3$ - количество зарегистрированных у -квантов; Х - ядро-остаток и нейтральные странные V°-частицы /все измеренные в этой работе величины, если особо не оговорено,

1

^{*} Данные, относящиеся к п₁ =1, т.е. к процессам двойной перезарядки /ДП/, были получены нами ранее^{/8/} на меньшей статисти~ ке, в настоящей работе они будут частично дополнены.

относятся к случаю, когда число V° -частиц равно нулю/. π^- мезоны с импульсами менее 60 ГэВ/с из-за короткого пробега в ПК-200 /менее 3 см/ могут приниматься за протоны. Как было показано нами в работе ^{/8}, примесь таких π^- -мезонов в n_1 не превышает 4%.

Примесь протонов (к) в n_1 определялась по известной методике подсчета δ -электронов. Оказалось, что в процессах /1/ при $n_1 \geq 2$ среди неидентифицированных частиц с $P \geq 1000$ MsB/с основную долю составляют протоны, $\kappa = /60 + 15/8$ *. Отметим, что образование высокоэнергетических протонов в пион-ядерных взаимодействиях наблюдалось также в работах ^{/9,10/}.

3. ТОПОЛОГИЧЕСКИЕ СЕЧЕНИЯ ПРОЦЕССОВ

При вычислении топологических сечений σ учтены эффективный объем камеры и эффективность просмотра событий, введена коррекция на статистическое разделение неидентифицированных частиц в соответствии с результатом предыдущего раздела. В <u>табл.</u> приведены результаты вычисления σ в мб, средних множественностей идентифицированных протонов $<n_p > u$ π° -мезонов $<n_{\pi^{\circ}} >$, причем значения даны отдельно для случаев, когда в процессах /1/ количество зарегистрированных V° -частиц равно нулю (σ V°)

<n<sub>n° ></n<sub>
05 1,60+0,15
02 1,36+0,23
08 1,72 <u>+</u> 0,25
08 1,83 <u>+</u> 0,45
04 2,78 <u>+</u> 0,64
2,15+1,04

Таблица І

Из приведенных здесь сечений и средних множественностей вторичных частиц ранее были определены лишь сечения процессов ДП σ /8/ и σ v /11/, а также средние множественности вторичных протонов в этих процессах. Измеренное нами ранее на меньшей

* Величина к для процессов /1/ с $n_1 = 1$ определялась нами ранее и равна 26% ^{/8/}.

статистике σ_1 в пределах ошибок совладает с ныне полученным сначением $\sigma_1 = /3,04+0,38/$ мб. Величина $\sigma_1^{V^o}$, измеренная в пропан-фреоновой (<A>=22,5) пузырьковой камере при 3,7 ГэВ/с/11/, составляла /0,65+0,19/ мб, что превышает полученное нами значение $\sigma_1^{V^o} = /0,35+0,05/$ мб. Это расхождение частично может быть обусловлено различием в атомных номерах ядер-мишеней и в импульсах первичной частицы.

Для сравнения приведем топологические сечения $\sigma^{\rm M}$, вычисленные нами по каскадно-испарительной модели /КИМ/. Для $n_1 = 1$, т.е. процессов типа ДП, $\sigma_1^{\rm M} = 5,3$ мб, что существенно превышает экпериментальную величину. Модель не описывает также данные при $n_1 > 2$. Например, при $n_1 = 3$ $\sigma_3^{\rm M} = 0,09$ мб, тогда как эксперимент дает $\sigma_8 = /0,33\pm0,05/$ мб.

Отметим, что полное топологическое сечение процессов пионуглеродных взаимодействий без образования отрицательных частиц составляет /7,28+0,41/ мб.

' Средняя множественность π° -мезонов, приведенная в табл.1, определялась по формуле /2/ через среднюю множественность γ квантов, $<n_{\gamma} >$ с учетом их средней эффективности регистрации $<\epsilon_{\gamma}>$, которая в условиях эксперимента равна 0,14.

$$\langle \mathbf{n}_{\eta^0} \rangle \approx \frac{1}{2} \langle \mathbf{n}_{\gamma} \rangle / \langle \epsilon_{\gamma} \rangle$$
 /2/

В <u>табл.2</u> приведены средние множественности вторичных частиц для процессов /1/ при $n_1 \ge 2$ и для сравнения - данные, полученые по КИМ. Экспериментальные величины получены с учетом статистического разделения неидентифицированных положительных частиц.

<n></n>	Эксперимент	Модель
<n<sub>#+></n<sub>	2,28+0,04	2,10+0,01
<n<sub>p></n<sub>	1,02 <u>+</u> 0,07	1,03+0,03
<n_o></n_o>	1,57 <u>+</u> 0,30	2,27+0,05

Таблица 2

Как видно из табл.2, модель по сравнению с экспериментом дает несколько заниженное количество "⁴ -мезонов, столько же протонов и заметно большее количество "° -мезонов.

КИНЕМАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВТОРИЧНЫХ ЧАСТИЦ

В табл.3 приведены средние значения импульсов протонов, $\pi^+ - m$ π^0 -мезонов в МэВ/с, образующихся в процессах /1/ и во всех π^- С -взаимодействиях.

3

Процесс	ДЛ (n ₁ = 1)	$n_1 \ge 2$	Все л С
<p<sub>7+></p<sub>	1035+69	683 <u>+</u> 26	858 <u>+</u> 5
" "P_>	302+8	474 <u>+</u> 41	309 <u>+</u> 1
₽o>	870+50	796 <u>+</u> 40	860+4
δ _n ,%	55+6	48 <u>+</u> 8	53+1

Таблица З

Значения <P_{π+}> и <P_p> для событий с $n_1 \ge 2$ получены с учетом статистического разделения неидентифицированных частиц. Как видно, <P_π> близки друг другу во всех трех категориях процессов. Доля импульса первичной частицы, уносимой π^+ -мезонами, больше всего в процессах ДП и составляет $\eta = /21 \pm 1/8$ в согласии с величиной $\eta = 22 \pm 18$ в работе $^{(11)}$.

В последней строчке табл. 3 приведены число протонов (δ_р), импульсы которых не превышают 300 МэВ/с. Величины δ_р в трех категориях процессов примерно одинаковы и составляют около 50%. Угловое распределение п+-мезонов. образующихся в процессах /1/ в лабораторной системе, показано на рис.1а. Более половины "+-мезонов вылетает вперед под углами меньше 45°; число *п*⁺-мезонов, вылетающих назад, составляет около 12% от их общего числа.

<u>Рис.1.</u> Распределение $\frac{dv}{dx}$ в зависимости от косинуса угла вылета π^+ -мезонов/а/ и протонов /б/.

4

Ŷ

Рис.2. Распределения по эффективным массам *п*+р -систем.

Рис.3. Распределения по эффективным массам $\pi^+\pi^+$ -систем.

Угловое распределение протонов, образующихся в процессах /1/, в задней полусфере, т.е. в области кумулятивного образования протонов, в пределах статистических ошибок близко к изотропному, а в передней полусфере несколько вытянуто вперед /рис.16/.

На этом же рисунке штрих-пунктирными линиями показано угловое распределение протонов, образующихся в процессах /1/, когда $n_1 = 0$. Как видно, в задней полусфере угловое распределение может быть изотропным, а в передней полусфере наблюдается особенность при угле 57°.

На <u>рис.2</u> приведены распределения по эффективным массам системы π^+p из событий с $n_1 \ge 2$; гистограмма – эксперимент, кривая – фон по КИМ. Распределения получены с учетом статистического разделения неидентифицированных частиц. Имеется некоторое превышение числа событий над фоном в районе массы $M_{\pi^+p} \stackrel{\simeq}{=} 1480$ МэВ/с² /отклонение за $\simeq 2,5$ стандартных ошибки/. С целью проверки проявления влияния статистического разделения неидентифицированных частице массы $M_{\pi^+p} \stackrel{\simeq}{=} 1480$ МэВ/с² /отклонение за $\simeq 2,5$ стандартных ошибки/. С целью проверки проявления влияния статистического разделения неидентифицированных частиц были построены распределения по M_{π^+p} при двух крайних предположениях относительно этих частиц: в первом случае все они считались протонами, а во втором – π^+ мезонами. При этом особенность вблизи 148) МэВ/с² также проявляется.

В распределениях по эффективным массам $\pi^+\pi^+$ -систем из процессов /1/ при $n_1 \geq 2$ /рис.3 / каких-либо значимых особенностей не наблюдается.

С целью более лодробного изучения природы наблюдаемого превышения: является ли оно статистической флуктуацией, распадом связанного состояния с массой М_{л+л}=1480 МэВ/с⁸или кинема-

5

тическим отражением распада более сложной системы типа $\pi^+ \pi^+ p$ -исследования будут продолжены на большей статистике.

ЗАКЛЮЧЕНИЕ

Кратко суммируем основные результаты настоящей работы.

1. Измерены топологические сечения процессов /1/ при $n_1 \ge 0$, средние множественности и кинематические характеристики вторичных частиц в этих процессах. Полное топологическое сечение процессов /1/ составляет /7,28+0,41/ мб.

2. Показано, что каскадно-испарительная модель плохо описывает процессы /1/. 1

3. В распределениях по $M_{\pi^+\pi^+}$ и $M_{\pi^+\mu}$ каких-либо значимых особенностей на данном статистическом материале не наблюдается.

ЛИТЕРАТУРА

- 1. Ангелов Н.С. и др. ЯФ, 1977, т.26, с.811;Бацкович С. и др. ЯФ, 1977, т.26, с.1034; ЯФ, 1978, т.28, с.999.
- 2. Абдинов 0.5. и др. ОИЯИ, Р1-11034, Дубна, 1977.
- Григорян А.А., Кайдалов А.Б. Письма в ЖЭТФ, 1978, т.28, с.318~322.
- Hegedüs E. et al. Z.Phys., 1969, 225, p.121-124; Abramovici A. et al. Z.Phys., 1972, 255, p.446-449.
- 5. De Crombrugge M. et al. Ref. TH 2537-CERN, 1978.
- Goldhaber S. et al. In: Int. Conf. on HEP, Dubna, 1964, p.1474-1487; Klein P.R. et.al. Phys.Rev., 1966, 150, No.4, p.1123; Вишневский В.Ф. и др. ОИЯИ, P1-3146, Дубна, 1967; Johnson D. Phys.Lett., 1971, 348, No.5, p.428; Бекетов Г.В. и др. ЯФ, 1978, 28, вып.5/11/, с.1266; Абдивалиев А. и др. ОИЯИ, P1-12126, Дубна, 1979.
- 7. Богомолов А.В. и др. ПТЭ, 1964, 1, с.61.
- 8. Агабабян Н.М. и др. ОИЯИ, Р1-11158, Дубна, 1977.
- 9. Yeager W.M. et al. Phys.Rev.D., 1977, vol.16, No.5, p.1294.
- 1С. Арефьев А.В. и др. Письма в ЖЭТФ, 1974, т.20, 68, с.585; ЯФ, 1978, т.27, 63, с.716.
- 11. Бирюков Ю.А. и др. ЯФ. 1980, 32, с.694.

Рукопись поступила в издательский отдел 26 декабря 1980 года.