

Объединенный институт ядерных исследований дубна

1601/2-81

1-80-853

30/11-8

А.П.Гаспарян, А.П.Чеплаков, Ю.М.Шабельский

РАСПРЕДЕЛЕНИЯ

ПО ЧИСЛУ ВЗАИМОДЕЙСТВУЮЩИХ НУКЛОНОВ В СОУДАРЕНИЯХ РЕЛЯТИВИСТСКИХ ЯДЕР

Направлено в ЯФ

1. ВВЕДЕНИЕ

За последнее время накоплена значительная экспериментальная информация о взаимодействиях релятивистских ядер с ядрами. При импульсах налетающего ядра до 4,5 ГэВ/с на нуклон измерены полные, полные неупругие сечения, а также распределения по электрическому заряду стриппинговых / то есть не взаимодействовавших/ нуклонов, характеризующие вероятности взаимодействия различного числа нуклонов налетающего ядра с мишенью. В связи с изучением механизма ядро-ядерных соударений и поиском таких явлений, как, например, эффекты коллективного взаимодействия, возникает вопрос об интерпретации полученных результатов.

Настоящая работа посвящена вычислению сечений различных когерентных и некогерентных процессов в столкновениях релятивистских ядер с ядрами и сравнению полученных результатов с экспериментальными данными. Рассмотрение ведется на основе модели многократного рассеяния, обобщенной на случай столкновения двух ядер. Величины полных (σ^{tot}), полных неупругих (σ^{inel}) сечений и сечений рождения (σ^{prod}) вторичных частиц /пионов/ вычислялись в рамках такого подхода ранее в работах '1-5', В частности, в'2-5' были получены поправки к наиболее простому "оптическому" приближению /1. Однако в '1-5' не расс-сматривались сечения взаимодействия фиксированного числа нуклонов налетающего ядра с мишенью, позволяющие вычислить из-меряемые на опыте распределения по заряду стриппинговых частиц.

Как будет показано, оптическое приближение $^{1/}$ непригодно для вычисления распределений по числу взаимодействующих нуклонов, хотя оно дает значения σ^{tot} , σ^{inel} и σ^{prod} , не слишком отличающиеся от результатов более точных расчетов. Основные результаты данной работы получены в более точном "экспоненциальном" приближении, оправданном для случая взаимодействия сравнительно легких налетающих ядер A с тяжелой мишенью B. Все формулы при этом имеют структуру не сложнее, чем формулы оптического приближения. Амплитуда упругого AB-рассеяния практически совпадает с полученной в $^{2/}$, а сечения некогерентных процессов получаются такими же,как и в случае предположения о независимости взаимодействий различных нуклонов ядра A с мишенью.

В разделе 2 вычисляется амплитуда упругого рассеяния ядра А на ядре В. Получено экспоненциальное приближение для амплитуды

рассеяния и обсуждаются поправки к нему, существенные при увеличении A /A и B - атомные веса ядер/. Раздел 3 посвящен обсуждению сечений когерентных и некогерентных процессов. В разделе 4 даны распределения по числу взаимодействующих нуклонов /или протонов/ налетающего ядра с мишенью и проводится сравнение результатов расчета с имеющимися экспериментальными данными. Полученные результаты обсуждаются в разделе 5.

2. АМПЛИТУДА УПРУГОГО РАССЕЯНИЯ ЯДРА НА ЯДРЕ

Амплитуда упругого ядро-ядерного рассеяния при высокой энергии в рамках модели многократного рассеяния подробно рассматривалась в работах^{/8,5,6/}.Напомним кратко схему ее получения, имея в виду применение полученных результатов к вычислению сечений как когерентных, так и некогерентных процессов.

Обозначим через А и В соответственно более легкое и более тяжелое из сталкивающихся ядер. Амплитуду АВ-рассеяния с переданным импульсом 4 удобно записать в виде интеграла по прицельному параметру b:

$$F_{AB}(q) = \frac{ik}{2\pi} \left(e^{iqb} \left[1 - S_{AB}(b) \right] d^2 b, \qquad /1/$$

где k - импульс в лабораторной системе,

$$S_{AB}(b) = \langle f | 1 - \Gamma(t_i, s_i) | i \rangle$$
, /2/

 t_i и s_j - соответственно координаты нуклонов в ядрах A и B. Основной гипотезой является предположение об аддитивности фаз/7/, согласно которому фаза AB-рассеяния, $\chi(t_i,s_j)$, равна сумме фаз рассеяния нуклонов ядра A на нуклонах ядра B:

$$1-\Gamma(t_{i},s_{j}) \approx e^{i\chi(t_{i},s_{j})} = 1-\Gamma(t_{i}-s_{j}) \approx 1-\frac{1}{2\pi i k} \int e^{-iq(t_{i}-s_{j})} \int (q) d^{2}q, \qquad (3/2)$$

причем нормировка такова, что мнимая часть нуклон-нуклонной амплитуды

$$\operatorname{Im} f(q=6) = \frac{k}{4\pi} \sigma_{NN}^{\text{tot}} .$$

Пренебрежем нуклон-нуклонными корреляциями в ядрах A и B, тогда плотности этих ядер будут равны произведениям одночастичных плотностей $\rho_A(t_i, t_{zi})$ и $\rho_B(s_j, s_{zj})$. После интегрирования по продольным координатам s_z и t_z из /2/,/3/ получаем

$$\begin{split} \mathbf{S}_{\mathbf{AB}}(\mathbf{b}) &= \int \prod_{i} \rho_{\mathbf{A}}(\mathbf{t}_{i} - \mathbf{b}) d^{2} \mathbf{t}_{i} \prod_{j} \rho_{\mathbf{B}}(\mathbf{s}_{j}) d^{2} \mathbf{s}_{j} \prod_{i,j} [1 - \Gamma(\mathbf{t}_{i} - \mathbf{s}_{j})], \\ \rho(\mathbf{t}) &= \int \rho(\mathbf{t}, \mathbf{t}_{z}) d\mathbf{t}_{z}, \quad \int \rho(\mathbf{t}) d^{2} \mathbf{t} = 1. \end{split}$$

Величину S_{AB}(b) /5/ удобно вычислять в виде суммы вкладов, классифицируемых следующим образом. Рассмотрим вначале только такие произведения $\Gamma(t_{i_1} - s_{j_1})\Gamma(t_{i_2} - s_{j_2}) \ldots \Gamma(t_{i_n} - s_{j_n})$, в которых все индексы i_m , j_m ($1 \le m \le n$) различны. В этом случае выражение /5/ распадается на произведение независимых вкладов, каждый из которых может быть вычислен с помощью /3/, /4/. Коэффициенты при членах с различными значениями п определяются комбинаторикой. В пределе B >> 1 получаем оптическое приближетние не

$$S_{opt}(b) = \sum_{n=0}^{A} (-1)^{n} C_{A}^{n} B^{n} [T_{11}(b)]^{n} = [1 - BT_{11}(b)]^{A},$$
 /6/

где

$$T_{11}(b) = \frac{\sigma}{2} \int \rho_A(t-b) \rho_B(t) d^2 t, \quad \sigma = \sigma_{NN}^{tot} . \qquad /7/$$

В пределе A>> 1

$$S_{opt}(b) = e^{-ABT_{11}(b)}$$
 /8/

в согласии с $^{/1/}$. Выражение /6/ соответствует учету суммы графиков рис.1а.

Рассмотрим теперь более сложные графики, изображенные на <u>рис.16</u>. В них допускается взаимодействие одного и того же нуклона ядра A с несколькими нуклонами ядра B, однако все взаимодействующие нужлоны ядра B различны. Например, первый из графиков <u>рис.16</u> соответствует произведению $\Gamma(t_{i_1} - s_{j_1})\Gamma(t_{i_1} - s_{j_2})$ и дает в $\overline{S_{AB}(b)}$ вклад, равный

$$A \frac{B^{2}}{2} T_{21}(b) = A \frac{B^{2}}{2} (\frac{\sigma}{2})^{2} \int \rho_{A} (t-b) \rho_{B}^{2}(t) d^{2}t.$$
 /9/

Вклад следующего графика <u>рис.16</u> в S_{AR}(b) равен

$$-A\frac{B^{3}}{6}T_{31}(b) = -A\frac{B^{3}}{6}(\frac{\sigma}{2})^{3}\int \rho_{A}(t-b)\rho_{B}^{3}(t)d^{2}t, \qquad /10/$$

а вклад третьего выражается через произведение первых графиков рис.1а и рис.16, т.е. равен $A^2 \frac{B^2}{2} T_{21}(b) T_{11}(b)$. Простая комбинаторная структура позволяет просуммировать вклады графиков рис.1а и рис.16 совместно. В результате имеем

$$S_{expa} (b) = [1 - BT_{11}(b) + \frac{B^2}{2}T_{21}(b) - \frac{B^3}{6}T_{31}(b) + ...]^A = /11/$$

= $[\int \rho_A (t-b) d^2 t [1 - \frac{\sigma}{2}B\rho_B(t) + \frac{1}{2}(\frac{\sigma}{2}B\rho_B(t))^2 - \frac{1}{6}(\frac{\sigma}{2}B\rho_B(t))^3 + ...]^A = (C(b)]^A,$

где

$$C(b) = \int \rho_{A}(t-b) e^{-\frac{\sigma}{2} B \rho_{B}(t)} d^{2}t. \qquad (12)$$

В пределе A>> 1 C(b) принимает вид

$$C(b) = e^{-\int \rho_A (t-b) \frac{1}{2} 1 - \exp \left[-\frac{\sigma}{2} B \rho_B(t) \right] \frac{1}{2} d^2 t}$$
. /13/

Приближение /11/ можно назвать экспоненциальным. Оптическое приближение /6/, /7/ соответствует учету только двух первых членов разложения экспоненты в выражении /12/. Амплитуда упругого AB-рассеяния /1/ с S_{AB} (b) = S_{expn} (b) практически совпадает с полученной ранее в работе /2/.

Рис. І. Вклады в амплитуду упругого АВ - рассеяния.

Рассмотрим поправки к экспоненциальному приближению, показанные на <u>рис.1в</u> и отвечающие учету возможности взаимодействия одного нуклона ядра В с несколькими нуклонами ядра А, Каждая

из таких поправок отличается от соответствующего графика <u>рис.16</u> параметром порядка (A /B)ⁿ, где в равно полному числу взаимодействий минус число взаимодействующих нуклонов ядра В /т.е. числу "повторных" взаимодействий/. Вклады первых трех поправок <u>рис.18</u>, вычисляемые с учетом возможности перерассеяний, представленным на рис.1а,6,соответственно равны

$$S_{12}(b) = [C(b)]^{A-2} \frac{A(A-1)}{2} B(\frac{\sigma}{2})^2 \int \rho_A^2(t-b)\rho_B(t) d^2t , \qquad /14/$$

$$S_{22}(b) = -\{C(b)\}^{A-2} A(A-1)B^2(\frac{\sigma}{2})^2 \int \rho_A^2(t-b)\rho_B(t) d^2t$$
, /15/

$$S_{13}(b) = -[C(b)]^{A-3} \frac{A(A-1)(A-2)}{6} B(\frac{\sigma}{2})^3 (\rho_A^3(t-b)\rho_B(t)d^2t.$$
 /16/

Их следует прибавить к S _{ехол} (b):

$$S_{corr}$$
 (b) = S_{expn} (b)+ S_{12} (b)+ S_{22} (b)+ S_{13} (b) + ... /17/

Учет всех поправок такого и еще более сложного вида приведет к результату, полученному $B^{/3,4/}$.

Но и без поправочных членов приближение /11/ может оказаться полезным. Проведение численных расчетов в экспоненциальном приближении не сложнее, чем в оптическом, однако первое значительно точнее. Оно теоретически оправдано в случае A << B, ксгда вклад учтенных графиков <u>рис.16</u> значительно превышает вклад отброшенных <u>рис.18</u>. По сравнению с результатами работ/3.5/ экспоненциальное приближение выглядит намного проще и применимо при самых малых значениях A.

3. СЕЧЕНИЯ КОГЕРЕНТНЫХ И НЕКОГЕРЕНТНЫХ ПРОЦЕССОВ

Полное, полное упругое и полное неупругое сечения взаимодействия ядер А и В в экспоненциальном приближении получаем, подставляя /11/ в /1/

$$\sigma_{AB}^{\text{tot}} = 2 \int d^2 b \{ 1 - [C(b)]^A \}, \qquad /18/$$

$$\sigma_{AB}^{el} = \int d^2 b \, i \, 1 - [C(b)]^A \, i^2, \qquad /19/$$

$$\sigma_{AB}^{\text{inel}} = \sigma_{AB}^{\text{tot}} - \sigma_{AB}^{\text{el}} = \int d^2 b \left[1 - \left[C(b) \right]^{2A} \right].$$
 (20/

Точность этих формул можно оценить, вычисляя сечения с заменой $S_{expn}(b)$ на $S_{corr}(b)$ /17/.

Представляет интерес также суммарное сечение всех процессов с рождением хотя бы одной вторичной частицы /пиона/:

$$\sigma_{AB}^{\text{prod}} = \sigma_{AB}^{\text{tot}} - \sigma_{AB}^{\text{scat}} = \int d^2 b [1 - J(b)], \qquad (21/2)$$

где через σ_{AB}^{scat} обозначено сечение всех упругих и квазиупругих каналов, т.е. возбуждение или развал одного или обоих сталкивающихся ядер. Сечение σ_{AB}^{scat} можно вычислить, как и для адрон-ядерных соударений /8/, с помощью условия полноты ядерных волновых функций. Действуя по аналогии с вычислениями предыдущего раздела, в экспоненциальном приближении получаем

$$J_{expn}(b) = [I(b)]^{A},$$
 /22/

$$I(b) = \int \rho_{A}(t-b) e^{-\sigma_{NN}^{inel} B \rho_{B}(t)} d^{2}t$$
 (23)

Оптическое приближение соответствует учету первых двух членов разложения экспоненты /23/.

Заметим, что экспоненциальное приближение для $\sigma_{AB}^{\rm prod}$ имеет простую вероятностную интерпретацию. Величина I(b) /23/ совпадает с вероятностью одному из нуклонов ядра А пройти сквозь ядро В без неупругого взаимодействия. Выражение для полного неупругого сечения /20/ не имеет такой интерпретации из-за того, что наряду с некогерентными описывает и "полукогерентные" процессы, в которых одно из сталкивающихся ядер сохраняет свое состояние. Если, однако, вычесть численно малый вклад таких процессов из $\sigma_{AB}^{\rm inel}$. то оставшаяся часть, $\sigma_{AB}^{\rm react}$, также имеет вид, схожий с /21/, /23/:

$$\sigma_{AB}^{react} = \int d^2 b [1 - [D(b)]^A], \qquad (24)$$

$$D(b) = \int \rho_{A}(t-b)e^{-\sigma \cdot B \rho_{B}(t)} d^{2}t . \qquad (25)$$

В табл.1 приведены результаты вычислений сечений σ_{AB}^{tot} и σ_{AB}^{inel} в оптическом /6/ и экспоненциальном /11/ приближениях, а также с учетом лоправок /17/. Там же приведены результаты вычислений σ_{AB}^{react} и σ_{AB}^{prod} в экспоненциальном приближении. Для ядер ²H, ⁴ Не и ¹²С использовалась гауссовская параметризация распределения плотности

$$\rho(\mathbf{r} = \sqrt{\mathbf{b}^2 + \mathbf{z}^2}) = (a^2 / \pi)^{3/2} \exp(-a^2 \mathbf{r}^2),$$

$$a_{2_{\rm H}}^2 = 0.337 \ \phi_{\rm M}^{-2}, a_{4_{\rm He}}^2 = 0.557 \ \phi_{\rm M}^{-2}, a_{12_{\rm C}}^2 = 0.26 \ \phi_{\rm M}^{-2}$$
/26/

Таблица І

A,B	² HC	⁴ HeC	cc	² H Ta	⁴ HeTa	СТа
$\sigma_{\rm opt}^{\rm tot}$ (6)	718	868	1527	4132	4378	5776
$\sigma_{expn}^{tot}(11)$	552	774	1410	3564	4128	5522
$\sigma_{\rm corr}^{\rm tot}(17)$	602	796	1420	3816	4228	5497
$\sigma_{\rm opt}^{\rm inel}$ (6)	542	595	992	2437	2524	3318
σ_{expn}^{inel} (11)	415	513	880	2143	2355	3096
$\sigma_{\rm corr}^{\rm inel}$ (17)	477	548	928	2292	2432	3161
$\sigma_{expn}^{react}(24)$	380	494	846	2033	2305	3027
$\sigma_{expn}^{prod}(21)$	317	429	761	1885	2160	2866

Сечения /в м5 / различных процессов при соударении релятивистских ядер

Для более тяжелых (A> 16) ядер принималось вудс~саксоновское распределение

$$\rho(\mathbf{r}) = \rho_0 \left[1 + \exp\left(\frac{\mathbf{r} - \mathbf{c}_1}{\mathbf{c}_2}\right)\right]^{-1} \mathbf{c}_1 = 1, 12 \ \Phi \mathbf{M} \ \mathbf{A}^{1/3}, \ \mathbf{c}_2 = 0,545 \ \Phi \mathbf{M}.$$
 (27)

Сечения нуклон-нуклонного взаимодействия считались равными

$$\sigma = \sigma_{\rm NN}^{\rm tot} = 42.7 \text{ MG} , \sigma_{\rm NN}^{\rm inel} = 28 \text{ MG} . /28/$$

Как видно из таблицы, различие сечений, вычисленных в оптическом и в экспоненциальном приближениях, довольно значительно. Учет же поправок /17/ меняет результат заметно меньше. Необходимо подчеркнуть, что трудоемкость вычислений в экспоненциальном и в оптическом приближениях практически одинакова и во много раз меньше, чем при использовании более точных /для тяжелых ядер/ формул работ^{/8-5/}.

На <u>рис.2</u> рассчитанные по формулам /24/, /25/ сечения σ_{AB}^{react} сравниваются с экспериментальными данными, которые представлены в виде лунктирной линии, полученной в результате фитирования по формуле

$$\sigma_{AB}^{\text{react}} = \pi R_0^2 (A^{1/3} + B^{1/3} - \beta (A^{-1/3} + B^{-1/3})), \qquad (29)$$

Рис.2. Сечения о AB взаимодействия релятивистских ядер с ядрами. Экспериментальные данные представлены в виде пурчтирной линии, полученной в результате фитирования по формуле /29/. Кружками отмечены рассчитанные по формулам /24/, /25/ величины сечений для различных пар ядер.

где $R_0 = /1,32\pm0,01/$ Фм и $\beta = 0,85\pm0,03$. Выражение /29/ хорошо описывает поведение сечений по всей совокупности экспериментальных данных /см. /9/ /.

4. РАСПРЕДЕЛЕНИЕ ПО ЧИСЛУ ВЗАИМОДЕЙСТВУЮЩИХ НУКЛОНОВ

Функция D(b) /25/ определяет вероятность одному из нуклонов ядра А пройти сквозь ядро В без взаимодействия, когда ядра А и В сталкиваются с прицельным параметром b.Тогда вероятность того, что N_A нуклонов ядра А провзаимодействует, а остальные, A ~ N_A. нет, равна

$$V(N_{A}) = \frac{1}{\sigma_{AB}^{\text{react}}} C_{A}^{NA} (d^{2}b(D(b))^{A-N}A (1-D(b))^{NA}. /30/$$

Среднее число взаимодействующих нуклонов ядра А

$$\langle N_{A} \rangle = \sum_{N_{A}=1}^{A} N_{A} V(N_{A}) = \frac{A \left[\left[1 - D(b) \right] d^{2} b}{\sigma_{AB}^{react}}, \qquad (31/$$

подставляя D(b) в виде /25/ и интегрируя, получаем

$$\int [1 - D(b)] d^2 b = \int [1 - e^{-\sigma B \rho_B(b)}] d^2 b = \sigma_{NB}^{inel} , \qquad /32/$$

т.е.

$$\langle N_A \rangle = \frac{A \sigma_{NB}^{inel}}{\sigma_{AB}^{feact}}$$
 (33)

в соответствии с результатами работ^{/10,11/}. Заметим, что при использовании оптического приближения для функции D(b), как это

делалось в работе $^{/12/}$, величина < N_{A} > не имеет вида /33/, так как не выполняется равенство /32/.

Выражение /30/ служит оправданием модели независимых соударений, в которой считается, что различные нуклоны налетающего ядра взаимодействуют с мишенью незазисимо друг от друга. При этом выражение /30/ имеет место только в экспоненциальном приближении и, в принципе, могут быть найдены поправки к нему. В частности видно, что модель независимых соударений тем более оправдана, чем больше отношение атомных весов ядра мишени к налетатщему ядру.

Из выражения /30/ с помощью простой комбинаторики можно найти распределение по заряду $Z_{\rm g}$ = $Z_{\rm A}$ – Z^* стриппинговых, т.е. невзаимодействовавших нуклонов

Рассчитанные распределения по N_A и Z_{st} для ⁴HeC, ⁴HeTa, CC, CTa, NeTa и FeTa столкновений представлены на <u>рис. 3,4</u>, там же для сравнения приведены имеющиеся экспериментальные данные ^{/14/.} В <u>табл.2</u> представлены значения дисперсий $D_{N_A}^2$ и средних < N_A > распределений по числу взаимодействующих нуклонов. Видно неплохое согласие расчетов и эксперимента.

Интегрируя /30/ и /24/ не по всей области b, а в конечных пределах, можно найти распределения по $N_{\rm A}$ в заданном интервале изменения прицельного параметра. Такие распределения для CC, CTa и NeTa соударений приведены на <u>рис.5,6</u>. При этом как наиболее характерные выделены "центральный" интервал, когда в среднем взаимодействуют почти все нуклоны налетающе-го ядра ($N_{\rm A}$ >~ A), "периферический", когда <N_{\rm A}>~1 и находящий-ся между этими двумя областями "промежуточный" интервал изменения прицельного параметра. Для наглядности на <u>рис.5</u> представлены также распределения по $N_{\rm A}$ без ограничения на прицельный параметр ** / b принимает значения от нуля до бесконечности/. Вероятность наблюдения событий с $N_{\rm A}=12$ в CC соударениях мала /~1,5·10⁻³ /, поэтому "центральный" интервал несколько расшитрен.

Отметим, что имеется возможность выделять на опыте взаимодействия с большими прицельными параметрами. Для этого необходимо после столкновения релятивистского ядра A с мишенью регистрировать в направлении пучка фрагмент с атомным весом

* Здесь Z_A - электрический заряд налетающего ядра A , а Z суммарный заряд провзаимодействовавших нуклонов ядра~снаряда.

** Эти распределения частично повторяют рис.3.

0,03

0 0,02 0,02

10

20

д/

50 NA 40

50

г/ ArTa , д/ FeTa -соударений. Крестики - расчеты работы $^{18/}$, кружки - работы $^{15/}$.

<u>Рис.4.</u> Распределения по стриплинговому заряду $Z_{st} в ^{4}$ НеС, ⁴НеТа, СС и СТа – столкновениях. Пунктирной линией представлены расчеты для легкой (С), сплошной – для тяжелой (Та) мишени. Экспериментальные величины для ⁴НеТа и СТа взаимодействий взяты из работы /14/.

Средние $< N_A > ... лисперсин D_{NA}^2$ распределений по числу взаимодействующих нуклонов и величины средних прицельных параметров в событиях с различным числом взаимодействующих нуклонов /или протонов/ для разных пар сталкивающихся ядер. Экспериментальные значения $< N_A > и D_{NA}^2$ для ²НТа , ⁴НеТа и СТа соударений взяты из работы /14/.

A,B	< N _A >	æ ²	, \$\$			
		D _{NA}	N _A = A	N _A = 1	Z _{st} =0	Z _{st} = Z _A
²HC	I,29	0,20	1,9	3,1	2,6	3,I
*HFe	1,49	0,25	3,1	5,2	3,8	5,2
²HTa	I,62 (I,60 <u>±0,</u> 04)	0,24 (0,24 <u>+</u> 0,02	4,5	7,4	5,I	7,4
⁴ He C	I,98	I,09	I,4	3,7	2,0	3,5
"HeFe	2,52	I,47	2,6	6,1	3,2	5,7
⁴HeTa	2,85 (2,80 <u>+</u> 0,10)	I,49 (I,64±0,0	4, 0	8,2	4,6	7,9
CC	3,47	6,92	0,9	5,0	I,7	4,4
CFe	5,23	14,29	1,8	7,5	2,7	6,8
CTa	6,52 (6,60 <u>+</u> 0,30)	17,42 (16,80 <u>+</u> 1,0	3,2))	9,7	3,9	9,0
NeFe	6,88	33,24	1,3	8,4	2,5	7,5
NeTa	9,06	46,88	2,6	I0,6	3,5	9,8
· · · · · · · · · · · · · · · · · · ·	L			L		

A-1. С помощью формул /24/ и /30/ можно вычислить средний прицельный параметр для событий с различным числом взаимодействующих нуклонов N_A. 8 <u>табл.2</u> приведены значения при N_A = 1 и N_A = A/а также при Z_{st} = Z_A и Z_{st} = 0 / для разных пар ядер. Видно, что взаимодействия ядер, при которых N_A = 1 /или Z_{st} = Z_A / происходят при достаточно больших прицельных параметрах, что соответствует попаданию налетающего ядра в диффузный край ядра-мишени. Таким образом, расчеты указывают на возможность использования релятивистских ядер для изучения состава поверхностного слоя ядра, в частности, решения вопроса

<u>Рис.6.</u> Распределения по N_A в "промежуточных" и "периферических" взаимодействиях ядер СС, СТа и NeTa. Для каждого распределения приведены пределы области изменения прицельного параметра b /Фм/, значение соответствующего сечения σ_{AB}^{teact} /мб/ и среднего числа взаимодействующих нуклонов <N_A>.

об избытке нейтронов на поверхности ядра. Ответ может быть получен при исследовании, например, выхода л⁻-мезонов в ядроядерных столкновениях.

Рассмотрим случай, когда с поверхностными нуклонами взаимодействует протон ядра-снаряда. Известно/16/, что множественности *m*⁻-мезонов в РР-и рв-соударениях при первичных импульсах протона Р_р ~ 2 ГэВ/с резко различаются. Поэтому, сравнивая выходы *m*⁻-мезонов в периферических столкновениях ядер с экспериментальными данными для Рр-и рв-взаимодействий, можно определить долю нейтронов в поверхностном слое ядра-мишени.

5. ЗАКЛЮЧЕНИЕ

Таким образом, модель многократного рассеяния без учета каких-либо коллективных эффектов позволяет неплохо описать не только интегральные сечения ядро-ядерных взаимодействий, но и распределения по числу взаимодействующих нуклонов. Согласие с опытом /с точностью до нескольких процентов/ в величине вероятности взаимодействия всех шести протонов ядра углерода в СТв соударениях указывает на отсутствие /с этой точностью/ трейлинг-эффекта^{/17/}, заключающегося в том, что нуклон передней стенки налетающего ядра ¹² С выбивают нуклоны мищени и как бы расчищают луть нуклонам, следующим за ними. Для дальнейшего исследования этого явления желательно облучить тяжелые мишени более тяжелыми ядрами (²⁰Ne, ⁴⁰Ar...) при энергиях в несколько ГэВ на нуклон.

Авторы благодарят Е.Бартке, А.И.Голохвастова и С.А.Хорозова за полезные обсуждения.

ЛИТЕРАТУРА

1. Czyz W., Maximon L.G.Ann.Phys., N.Y., 1969, 52, p.59.

ł

- Barashenkov V.S., Musulmanbekov Zh.Zh. Acta Phys.Pol., 1979, B10, p.375.
- 3. Андреев И.В., Чернов А.В. ЯФ, 1978, 28, с.477.
- 4. Андреев И.В., Хейн Л.А. ЯФ, 1978, 28, с.1499.
- 5. Пак А.С. и др. ЯФ, 1979, 30, с.102.
- Пак А.С., Ужинский В.В., Цэрэн Ч. ЯФ, 1979, 30, с.343.
- Glauber R.J. High Energy Physics and Nuclear Structure, Amsterdam, 1967.
- 8. Franko V., Glauber R.J. Phys.Rev., 1966, 142, p.1195.
- 9. Heckman H.H. et al. Phys.Rev., 1978, C17, p.1735; Гаспарян А.П. и др. ОИЯИ, 1-12797, Дубна, 1979.
- 10. Bialas A., Bleszynski M., Czyz W. Nucl.Phys., 1976, B111, p.461.
- 11. Shabelski Yu.H. Acta Phys.Pol., 1979, B10, p.1049.
- 12. Хорозов С.А. ОИЯИ, 2-80-142, Дубна, 1980.
- Gasparyan A.P. et al. Paper, submitted to the 16th Int. Cosmic Ray Conf., Kyoto, Japan, 1979, vol.6, p.176.
- 14. Баатар Ц. и др. ОИЯИ, Р1-80-209, Дубна, 1980.
- Bartke J. et al. Proc. Int. Conf. on Nucl. Physics, Berkeley, 1980, p.541.
- Flaminio V. et al. Compilation of Cross Sections p and p Induced Reactions. CERN-HERA, 79-03, 1979.
- 17. Барашенков В.С., Тонеев В.Д. Взаимодействия высокоэнергетических частиц и атомных ядер с ядрами. Атомиздат, М., 1972. Рукопись поступила в издательский отдел 25 декабря 1980 года.
- 14