

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

3499

28/7-80 1-80-244

+

Maroaeb B.B.

ВЫХОД ДЕЙТРОНОВ В ⁴ Нер-ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ 8,6 ГэВ/с

1 - 80 - 244

TAGTONER BB

ВЫХОД ДЕЙТРОНОВ В ⁴Нер-ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ 8,6 ГэВ/с

введение

За последние годы был выполнен ряд экспериментов по исследованию взаимо-

действий нуклонов с ядрами ⁴Не при релятивистских энергиях. Эксперименты проводились в инклюзивной постановке, регистрировались быстрые продукты реакций.

В данной работе использовался пучок ускоренных ядер ⁴ Не импульса 8,6 ГэВ/с, который сбрасывался на 100-сантиметровую водородную пузырьковую камеру. Такая постановка опыта позволила хорошо измерить импульсы фрагментов ядра в ⁴ Нер-взаимодействиях.

Ошибка в величине импульсов, трансформированных в систему покоя ядра, составила /10÷20/ МэВ/с.

Работа посвящена выходу дейтронов, имеющих спектаторные характеристики, что дает возможность судить о существовании d d -ассоциации в ядре ⁴Не.

\$1. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА Анализ результатов основан на 10689 событиях ⁴Нер-взаимодействий /12.09 мкб на событие/. Величина милли-

барн-эквивалента получена на основе топологического сечения двухлучевых взаимодействий ^{/1/}. Реакции с вылетом дейтрона выделялись по результатам кинематического анализа с использованием ионизационных критериев. Визуальная оценка ионизации позволила различать дейтроны от протонов до импульса ~2,3 ГэВ/с. Кроме того, на основании импульсных спектров пионов и нуклонов в реакциях ⁴He+p → d+π + X и ⁴He+p → d+N+X были введены верхние границы импульсов этих частиц, что не внесло существенных искажений в характер спектров, как видно из <u>рис.1</u> и <u>2</u>. Сводка использованных при идентификации событий граничных значений импульсов для различных частиц приведена в табл.1.

С использованием этих дополнительных критериев получены сечения реакций, приведенные в табл.2. В таблицу включены также реакции, имеющие более одной нейтральной частицы /так называемые NOFIT -реакции/.

Величинами, характеризующими достоверность полученных сечений, могут служить, например, известные изотопические соотношения между каналами

 $\frac{\sigma(ddp\pi^{\circ})}{\sigma(ddn\pi^{+})} = 0.63 \pm 0.14; \qquad \frac{\sigma(^{3}\text{Hed}\pi^{\circ})}{\sigma(^{3}\text{Hd}\pi^{+})} = 0.65 \pm 0.22$

3

Т	ať	Бл	И	цa	1 2
_					and the second sec

Рис.1. Импульсное распределение нуклонов в реакциях⁴ Не+р→ → d+ N+X до введения ограничений на импульсы пиона и нуклона /пунктир/ и после введения таких ограничений /сплошная гистограмма/.

Рис.2. Импульсное распределение п-мезонов в реакциях ⁴He + p \rightarrow d + π + X до введения ограничения на импульсы пиона и нуклона /пунктир/ и после введения таких ограничений /сплошная гистограмма/.

	e		Таблица 1	ана се	
P _π	< 1,	,2 ГэВ/с	Р _{3н} > 5,2 ГэВ/с		
PN	· < · 3,	2 ГэВ/с	Р _{3_{не}} < 7,2 ГэВ/с		
Pd	< 5,	2 ГэВ/с	Р _{4_{He} > 7,2 ГэВ/с}		

при теоретическом значении 0,5. Полное сечение каналов с выходом дейтронов оказалось равным 27,8+0,6 мб, а инклюзивное сечение образования дейтронов - 30,3+0,6 мб.

На рис.3 показано распределение импульсов дейтронов для реакций не более чем с одной нейтральной частицей / FIT - каналы/. Основная часть дейтронов сосредоточена в области импульса около $-\frac{m_d}{m_{4He}}$ P_{4He}, т.е. при значении, характерном для фрагментов ядра гелия. Имеется также значительное количество дейтронов меньших импульсов. Мы будем далее их называть медленными.

Причиной появления медленных дейтронов могут служить квазинуклон-нуклонные взаимодействия с протоном-мишенью, родственные реакции срыва. На это, в частности, указывает вид импульс-

Канал	σ, мб	Канал	σ, мб	
³ He d <i>π</i> °	0,15+0,4	$ddp\pi^+\pi^-\pi^\circ$	0,02+0,02	
³ He d $\pi^{\circ}\pi^{\circ}$	*0,06 <u>+</u> 0,03	dppp ^π	0,89 <u>+</u> 0,10	
$\frac{^{3}}{^{3}} \operatorname{Hed} \pi^{+} \pi^{-} \pi^{\circ}$ $\frac{^{3}}{^{3}} \operatorname{Hed} \pi^{+} \pi^{-} \pi^{\circ}$	0,19 <u>+</u> 0,05 0,01 <u>+</u> 0,01	$dppp\pi^-\pi^\circ$	0,25+0,05	
3 H d π^{+}	0,23+0,05	dppn	9,30+0,32	
3 H d $\pi^{+}\pi^{\circ}$	0,15 <u>+</u> 0,04	$dppn\pi^{\circ}$ *	4,49 <u>+</u> 0,23	
ddp	1,41 <u>+</u> 0,13	$dppn\pi^+\pi^-$	1,75+0,15	
ddp π°	0,30 <u>+</u> 0,06	$dppn\pi^+\pi^-\pi^\circ *$	0,13 <u>+</u> 0,04	
ddpπ ^o π ^o	* 0,02 <u>+</u> 0,02	$dpnn\pi^+$	7,50+0,30	
$ddn\pi^+$	0,48 <u>+</u> 0,08	dpnn $\pi^+\pi^+\pi^-$	0,05 <u>+</u> 0,03	
$ddn\pi^+\pi^\circ$	*.0,19 <u>+</u> 0,05	$dnnn\pi^+\pi^+$	0,21+0,05	
$ddp\pi^+\pi^-$	0,19 <u>+</u> 0,05			

*В этих реакциях число π° -мезонов не определено.

5

<u>Рис.4.</u> Импульсное распределение дейтронов в каналах 4 He+p \rightarrow 3 He+d+k π и 4 He+p \rightarrow 3 H+d+k π . Рис.5. Угловое распределение дейтронов-спектаторов в системе покоя ядра ⁴Не для реакции ⁴Не+р→d₂ppn.

то это появление должно быть подавлено в каналах без образования π° - или π^{+} -мезонов. Это предположение подтверждается, так как в каналах с π° или π^{+}

$$\frac{\sigma_{\rm s1}}{\sigma_{\rm tot}} = 0,132 \pm 0,010$$

в то время как в каналах без π° или π^{4}

$$\frac{\sigma_{s1}}{\sigma_{tot}} = 0,017 \pm 0,004$$

и в канале⁴ Нер

$$\frac{\sigma_{\rm s1}}{\sigma_{\rm tot}} = 0,041 \pm 0,020.$$

Здесь как σ_{s1} обозначено сечение выхода дейтронов с импульсом меньше 2,5 ГэВ/с, а как σ_{tot} – полное сечение выбранных реакций. Полное сечение выхода медленных дейтронов равно 2,35+0,17 мб, откуда на FIT -каналы приходится 1,39+0,13 мб, в том числе на реакции с одним π^2 -мезоном 0,86+0,10 мб.

Проведенные методом Монте-Карло расчеты квазинуклон-нуклонных взаимодействий с учетом ферми-движения и фактора потока дали для реакций с медленным дейтроном и одним π -мезоном значение $\sigma = 0,52\pm0,07$ мб, не противоречащее экспериментальным данным.

Что касается быстрых дейтронов, то большая часть из них носит спектаторный характер. Спектатором в данном случае мы называем фрагмент ядра, имеющий наименьший импульс в системе

покоя ⁴He. Отношение между сечениями каналов, в которых дейтрон является спектатором либо нет, равно:

$$rac{sp}{1,93} \pm 0,14$$
,

а для реакции ⁴ Нер → dppn это соотношение равно

$$\frac{\sigma_{\rm sp}}{\sigma_{\rm nosp}} = 1,44 \pm 0,11$$

На <u>рис.5</u> показано распределение по углу вылета дейтроновспектаторов в системе покоя ядра ⁴Не для реакции ⁴Нер \rightarrow dppn. Это угловое распределение близко к изотропному, коэффициент асимметрии A =-0,13+0,05. Добавим, что в канале ⁴Нер \rightarrow ddp угловое распределение дейтронов-спектаторов тоже близко к изотропному и A =-0,15+0,09.

На <u>рис.6</u> показано импульсное распределение дейтронов-спектаторов во всех FIT - каналах. Теоретическая кривая рассчитана на основе теории прямых реакций методом Монте-Карло с использованием данных И.Сика²² по распределению плотности заряда в ядре⁴ Не. В силу справедливости приближений, сделанных в работе³, теоретическая кривая должна описывать как распределение импульсов дейтронов-спектаторов в отдельных каналах, так и суммарное распределение. Сравнение показывает, что имеется хорошее согласие расчета с экспериментальными данными / $\chi^2/N_D =$ = 1,38 в области импульсов P < 0,28 ГэВ/с/.

6

- 7

<u>Рис.7</u>. Диаграммы, соответствующие различным механизмам выхода вторичных нуклонов.

В случае, когда дейтрон вылетает как спек~ татор, остается вопрос: каким образом взаимо-

действуют остальные нуклоны ядра ⁴Не с протоном-мишенью. Уместно рассмотреть две возможности: а/ нуклоны взаимодействуют как виртуальный дейтрон /<u>рис.7а/;</u> б/ идет сильное взаимодействие между протоном-мишенью и двумя неассоциированными нуклонами /<u>рис.76</u>/.

Попытаемся экспериментально различить эти два подхода на примере реакции ⁴ Нер → d_sppn, в которой виртуальный дейтрон, если он существует, разваливается.

Целесообразно сравнить результаты, касающиеся реакции dp \rightarrow ppn, сверхним узлом диаграммы на <u>puc.7a</u>. Известно, что при развале дейтрона доминируют прямые реакции с выходом спектаторного нуклона. Мы получили распределение импульсов нуклонов, являющихся спектаторами в системе покоя виртуального дейтрона. Это распределение показано на <u>puc.8</u> в виде сплошной гистограммы, на том же рисунке приведено распределение импульсов спектаторных нуклонов в реакции dp \rightarrow ppn при 3,3 ГэВ/с ^{/4/} /сплошная кривая показывает теоретический ход этой зависимости/. Из сравнения этих распределений следует, что вероятность существования ассоциации dd в ядре ⁴Не весьма мала, а в реакции ⁴ Нер \rightarrow d_s ppn доминирует механизм, соответствующий диаграмме на рис.76.

ЗАКЛЮЧЕНИЕ В работе проведен анализ выхода дейтронов в ⁴ Нер-взаимодействиях при импульсе 8,6 ГэВ/с. Оценены сечения отдельных реакций и получено импульсное распределение дейтронов. Показано, что появление медленных дейтронов связано, по-видимому, с квазиэлементарными реакциями типа $NN \rightarrow d\pi(\pi)$. В связи с этим можно предположить, что с ростом энергии выход медленных дейтронов будет падать, например, из-за резонансного характера реакции pp $\rightarrow d\pi^+$.

Быстрые дейтроны являются фрагментами ядра ⁴ Не и большей частью спектаторами. Анализ реакции ⁴ Нер $\rightarrow d_s$ p p n показал, что вероятность ассоциации dd в ядре ⁴ Не очень мала, а неспектаторные нуклоны являются продуктами взаимодей-ствия с протоном-мишенью и друг с другом.

<u>Рис.8.</u> Распределение по импульсам самых медленных в системе виртуального дейтрона нуклонов.

ЛИТЕРАТУРА

- 1. Glagolev V.V. et al. JINR, E16-12943, Dubna, 1979.
- 2. Sick I. Lepton Scattering. Presented at Conference on Few Body Systems and Nuclear Forces, Craz, 1978.
- 3. Колыбасов В.М., Лексин Г.А., Шапиро И.С. УФН, 1974, 113, с.238.

4. Aladashvili B.S. et al. Nucl.Phys., 1975, B86, p.461.

Рукопись поступила в издательский отдел 26 марта 1980 года.

8