

Объединенный институт ядерных исследований дубна

3177/2-80

14/7-80

1-80-175

В.Г.Аблеев, В.А.Бодягин, Г.Г.Воробьев, А.И.Демьянов, С.А.Запорожец, В.С.Мурзин, А.А.Номофилов, Н.М.Пискунов, Л.И.Сарычева, Н.Б.Синев, И.М.Ситник, Е.А.Строковский, Л.Н.Струнов, А.Филипковски, В.И.Шаров

ИЗУЧЕНИЕ СПЕКТРОВ ЛИДИРУЮЩИХ ПРОТОНОВ В ОПЫТАХ ПО РАССЕЯНИЮ ПРОТОНОВ С ИМПУЛЬСОМ 6,8 ГЭВ/С НА ПРОТОНАХ И ЯДРАХ С, Al, Cu, Sn, Pb

Направлено в ЯФ

введение

За последнее время значительно возрос интерес к изучению неупругих адрон-ядерных взаимодействий.

Рядом авторов ^{1.3} высказывалось мнение о том, что изучение характеристик инклюзивных сечений рождения лидирующих адронов во взаимодействиях адронов с ядрами, в особенности их зависимости от атомного номера ядра-мишени, импульса и сорта налетающего адрона, сможет сообщить существенно новую информацию о структуре адронов и пространственно-временной картине сильного взаимодействия.

Обилие различных теоретических подходов ^{/2-5/} к проблеме прохождения быстрых адронов сквозь ядра указывает на ее слабую обеспеченность соответствующими экспериментальными данными.

В настоящей работе представлены данные опыта при р₀ = = 6,8 ГэВ/с по дифференциальным сечениям $d^2\sigma/d\Omega dp$ выхода лидирующих протонов из реакции $p + A \rightarrow p + X$. В работе измерялись протоны, вылетающие в интервале импульсов 0,6 \leq p/p₀ \leq 0,95 и углов 16 мрад $\leq \theta \leq 40$ мрад. Такой интервал углов и импульсов был выбран, чтобы регистрировать лидирующие частицы, испытавшие неупругое, некогерентное взаимодействие в ядре-мишени $^{(1)}$.

ЭКСПЕРИМЕНТ

Измерения проводились на синхрофазотроне Лаборатории высоких энергий ОИЯИ.

Пучок протонов с импульсом $p_0 = 6,8$ ГэВ/с и интенсивностью ~ 10⁵ частиц/цикл выводился из ускорителя за время =0,3 с.

Одноплечевой магнитный спектронетр "Альфа" ⁷⁶⁷ работал на линии с ЭВМ БЭСМ-4. Схема расположения аппаратуры на пучке приведена на <u>рис.1</u>. Установка включала в себя многопроволочные пропорциональные камеры /ПК/, сцинтилляционные счетчики (S.A₁) и анализирующий магнит. Блоки ПК имели по две плоскости сигнальных проволок / Х и Y/, шаг намотки 2 мм, общее число сигнальных проволок было около 1200.

При помощи счетчиков S₁, S₂, S₃, включенных в совпадения, счетчика A_1 /с отверстиен/, включенного в антисовпадения, и камер ПК1, ПК2 выделялись частицы пучка, треки которых имели нужные координатные и угловые параметры относительно оси уста-

Объедени алих постятут заселных весте доразный Быба посте на в 1

новки. Счетчики S ₄ ÷S₈ использовались для организации триггера. Камеры ПК1 и ПК2 применялись для определения траекторий частиц, падающих на мишень, ПК3 и ПК4 - для определения траект торий частиц после прохождения мишени. Таким образом, при помощи ПК1, ПК2, ПК3 и ПК4 определялся угол рассеяния 0. При помощи ПК3, ПК4 и ПК5 определялся угол поворота частицы в поле анализирующего магнита, и тем самым вычислялся ее импульс.

Рис.1. Схема эксперимента на выведенном пучке протонов с импульсом $p_0 = 6,8$ ГэВ/с. S, A_1 - сцинтилляционные счетчики; ПК - пропорциональные камеры; М мишень.

Рис.2. Импульсные спектры неупруго рассеявшихся частиц при разных углах рассеяния. О - 19 мрад, • - 25 мрад, • - 31 мрад, • - 37 мрад.

Угловое разрешение спектрометра составляло «1 мрад, импульс» ное «100 МэВ/с. При заданных расстояниях между элементами спектрометра угловой /0÷50 мрад/ и импульсный /4,0÷6,8 ГэВ/с/ аксептансы установки определялись, в основном, размерами ПК4, ПК5 и апертурой анализирующего магнита.

Для эффективного накопления событий в требуемом интервале переданных импульсов использовался специализированный цифро-

вой процессор, сопряженный с камерами ПК1, ПК2, ПК4, при помощи которого отбирались события с углом рассеяния в плоскости Х, θ, ≥16 мрад.

Подавление событий упругого рассеяния достигалось включением в триггер условия "ИЛИ" со счетчиков S_4 , S_5 , S_6 /основная часть упруго рассеявшихся частиц поладала в счетчики S_7 , $S_8/.$

В методических целях часть информации записана с включением в схему "ИЛИ" всех счетчиков $S_4 \div S_8$, что позволило получить данные по улругому рассеянию протонов. Использовались также два типа триггера, обеспечивающих надежное определение эффективности установки.

Переключение по командам от ЭВМ 4 типов триггера выполнялось автоматически, с достаточно коротким периодом /20 циклов ускорителя/, что обеспечивало корректный учет зффективности при возможных изменениях условий эксперимента.

Мишени из CH_2 , C, AI, Cu, Sn, Pb, толщиной – 5% ядерной длины, многократно сменялись в соответствии с программой экспозиции. Для оценки фона велась запись информации, когда мишень отсутствовала.

ОБРАБОТКА ДАННЫХ

При обработке данных использовались, главным образом, следующие критерии отбора событий:

эффективное срабатывание всех ПК;

 хорошее сшивание трека частицы, упавшей на мишень, с треком частицы, вышедшей из мишени;

- z-координата точки рассеяния частицы на угол, больший 16 мрад, должна находиться вблизи / \pm 25 см/ от z-координаты мишени.

Как показала обработка информации, записанной в отсутствие мишени, фон был пренебрежимо мал.

Дифференциальные сечения выхода лидирующих протонов в реактции $p+A \to p+X$ определялись по формуле:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \,\mathrm{d}\mathbf{p}_{-\mathrm{ij}}} = \frac{\bar{\mathrm{N}}_{\mathrm{ij}}}{2\pi \sin\theta_{\mathrm{i}} \cdot \Delta\theta_{\mathrm{i}} \cdot \Delta p_{\mathrm{j}} \cdot \mathrm{F} \cdot \mathrm{n}_{\mathrm{SL}} \cdot \epsilon}$$

где F - поток первичных частиц; п_{яд} - число ядер в мишени/см²; ϵ - коэффициент, учитывающий эффективность спектрометра; θ_i угол рассеяния; $\Delta \theta_i$ и Δp_j - величины интервалов по углу рассеяния θ и импульсу р в ij-й ячейке двумерной гистограммы; \tilde{N}_{ij} - число событий в ij-й ячейке гистограммы, поправленное на коэффициент, учитывающий угловой и импульсный аксептансы установки, который рассчитывался методом Монте-Карло с учетом вида триггера и реальных угловых и координатных распределений пучка. $\frac{d^2\sigma}{d\Omega dp}$ в реакции р $p \bullet p \bullet p + X$ находились по формуле:

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\,\mathrm{d}p} = \frac{1}{2} \left(\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\,\mathrm{d}p_{\mathrm{CH}_{2}}} - \frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega\,\mathrm{d}p_{\mathrm{C}}} \right),$$

a 25 ah				
		Ядро - милен	кь: P	
е, мрад ,Гэв/с	I9 ± 3	25 ± 3	3I ± 3	37±3
3,96 ± 0,42	$0,082 \pm 0,014$			
4,78 ± 0,42	0,17 ± 0,02	0,056 ⁺ 0,0II	0,06±0,02	0,049±0,009
5,60 ± 0,42	0,32 ± 0,04	0,15 ±0,02	0,14±0,02	0,13 ±0,02
6,28 ± 0,28	0,50 ± 0,06	0,23 ±0,03	0,18±0,03	0,18 ±0,03
		Ядро - мишен	т ь: С	
3,96 ± 0,42	0,29 ± 0,02			
4,78 ± 0,42	0,68 ± 0,03	0,33 ±0,02	$0,27\pm0.02$	0,19 ±0,0I
5,60 ± 0,42	I,5 ± 0,06	0,65 ±0,03	0,53±0.03	0,43 ±0,03
6,28 ± 0,28	2,I ± 0,II	I,I ±0,06	0,86±0.04	0,7I ±0,04
		Ядро - мишен	ь: Al	
3,96 ± 0,42	0,44 ± 0,06			
4,78 ± 0,42	I,2 ± 0,13	0,45 ±0,06	0,36±0,05	0,37 ±0,06
5,60 ± 0,42	2,2 ± 0,2	I,I ±0,I	0,87±0,10	0,60 ±0,09
6,28 ± 0,28	4,2 ± 0,4	I,7 ±0,2	I,2 ±0,2	I,I ±0,165
		Ядро - милен	нь: Си	
3,96 ± 0,42	0,73 ± 0,II			
4,78 ± 0,42	I,6 ± 0,2	0,5I ±0,08	$0,56^{\pm}0,08$	0,59 ±0,09
5,60 ± 0,42	2,2 ± 0,2	I,7 ±0,2	0,91±0,13	0,8I ±0,I3
6,28 ± 0,28	5,I ± 0,6	2,1 ±0,3	I,4 ±0,2	I,4 ±0,2
		Ндро - мишен	іь: <i>Sn</i>	
3,96 ± 0,42	0,83 ± 0,14			
4,78 ± 0,42	I,8 ± 0,3	0,87 ±0,13	0,70±0,12	$0,40 \pm 0,10$
5,60 ± 0,42	3,7 ± 0,4	I,4 ±0,18	1,5 ±0,2	1,0 ± 0,2
$6,28 \pm 0,28$	4,I ± 0,7	2,8 ±0,4	3,4 ±0,4	3,2 ± 0,5
	·	Ядро - мишен	кь: Рв	
3,96 ± 0,42	I,0 ± 0,2			+0
4,78 ± 0,42	2,4 ± 0,3	I.2 ±0,2	0,69±0,14	0,59 ±0,14
5,60 ± 0,42	4.0 ± 0,5	2,0 ±0,3	I,7 ±0,3	I,4 ±0,3
6,28 ± 0,28	6.0 ± 0.9	3,I ±0.4	3.8 ±0.5	2.3 ±0.4

РЕЗУЛЬТАТЫ

В табл.1а и на рис.2 приведены абсолютные значения инклюзивных дифференциальных сечений реакций р + A \rightarrow p + X в инт тервале углов рассеяния 16 мрад $\leq \theta \leq 40$ мрад и импульсов 4,0 ГэВ/с $\leq p \leq 6,3$ ГэВ/с.

В табл. Та и на рисунках указаны статистические ошибки.

Таблица 1б

10	барн/ср	в	реакциях	$p + A \rightarrow p + X$	упругого	И	квазиупругого	
an				рассея	ния			

Ядро	Угол рассеяния $ heta$, мрад						
нишень	25 <u>+</u> 3	31+3	37 <u>+</u> 3				
Р	1,1+0,08	0,80+0,06	0,75 <u>+</u> 0,05				
С	10,6+0,2	4,76+0,05	2,96+0,08				
A1	10,8+0,4	4,5+0,3	5,0 <u>+</u> 0,3				
Cu	12,8+0,5	10,5+0,4	6, <u>3+</u> 0,4				
Sn	27,6+1,0	10,5+0,6	7,5 <u>+</u> 0,6				
РЪ	31,3 <u>+</u> 1,1	16,6+0,8	10,5 <u>+</u> 0,8				

<u>Таблица 2</u> Результаты фита d^Pσ/dΩdp по фо

по формуле: $d^2\sigma/d\Omega dp = nA^a$

	Р Гэр/с	n	d	X2/nord		л	d	X2/ner cb
Bandor 67 - Q	4 4,8 5,6 6,3	C,94±0,02 0,22±0,03 0,66±0,07 0,85±0,11	C,46±0,05 G,45±0,04 U,33±C,63 O,37±C,04	1,14/3 3,5/3 5,6/3 15,Q/3	8= 25 minus	0,1.2±0,03 0,24±0,03 0,43±0,06	0,4 ±0,03 0,40±0,03 0,38±0,04	3,8/3 11,5/3 1,3/3
Badin kEzg	4,8 5,6 6,3	C,11±0,02 0,19±0,03 0,25±0,00	0,37±0,05 0,41±0,04 0,50±0,04	I,19/3 3,42/3 9,5/3	Bedmt 5=0	0,56±0,01 0,16±0,03 0,21±0,04	0,50±0,05 0,39±0,05 0,48±0,05	9,1/3 0,24/3 7,5/3

Систематические ошибки, связанные с учетом эффективности и аксептанса установки, не превышают 5%. Примесь реакции р. А. $\pi^+ + X$ в указанный кинематический интервал оценивалась нами на основе работы ⁷⁷ и не превышает 3 ÷ 5% облизи нижней границы выбранного интервала импульсов. Суммарные систематит ческие ошибки не превышают 8 ±10°. С целью контроля корректности определения эффективности и аксептанса установки на материале, набранном одновременно с основным, измерены значения дифференциальных сечений d σ d Ω упругого и квазиупругого рассеяния протонов на ядрах /табл.16/, которые хорошо согласут ются с результатами работ 8.97

Для ядер с A <u>12</u> инклюзивные дифференциальные сечения неупругого рассеяния можно аппроксимировать формулой:

 $d^2 \sigma d\Omega dp = nA^{\alpha}$,

где в и α - подгоночные параметры. Результаты аппроксимации приведены в табл.2, из которой видно, что в данном кинематическом интервале значения показателя степени α в пределах ошибок не зависят от угла вылета и импульса вторичной частицы, а его среднее составляет $\alpha_{6,8}^{-1} = 0, 42 \pm 0, 01$.

Аналогичный результат можно получить из работы 7, выполненной при начальном импульсе протонов р₀ 19,2 ГэВ/с. При том же значении поперечного импульса р_т $\sim p\theta \sim 200$ МоВ/с, что и в нашем опыте, аппроксимируя дифференциальные сечения функцией вида nA^{α} , находим $\dot{\alpha}_{19,2}$ 0,43±0,01.

Авторы благодарят соответствующие службы ЛВЭ за обеспечение хорошей работы ЭВМ и ускорителя. Авторы признательны руководству Лаборатории и научно-экспериментального электронного отдела за поддержку и обеспечение возможностей проведения эксперимента, Л.А.Слепец, З.П.Мотиной, Р.Н.Петровой - за помощь в работе.

ЛИТЕРАТУРА

- В.С.Мурзин, Л.И.Сарычева, ЯФ, 1976, 23, 2, с.383; Демьянов А.И., Мурзин В.С., Сарычева Л.И. Ядерно-каскадный процесс в плотном веществе. "Наука", М., 1977.
- 2. Анисович В.В., Шабельский Ю.М., Шехтер В.М. ЯФ, 1978, 28, 4, с.1063.
- 3. Канчели О.В. Письма в ЖЭГФ, 1973, 18, с.465; Николаев Н.Н. Препринт ИТФ АН СССР, 1975, №18.
- 4. Барашенков В.С., Елисаев С.М. ЯФ, 1973, 18, с.196.
- 5. Kofned-Hansen O. Nucl. Phys., 1973, B54, p.42.
- 6. Аблеев В.Г. и др. ПТЭ, 1978, 2, с.63.
- 7. Allaby J.V. et al. CERN 70-12, 1970.
- 8, Blieden H.R. et al. Phys.Rev., 1975, D11, p.114.
- 9. NN and ND Interactions (Above 0,5 GeV/c) a Compilation. UCRL-20000NN, Geneva, 1970.

Рукопись поступила в издательский отдел

3 марта 1980 года.

7