<u>C 344.1p</u> B-555 СООБЩЕНИЯ объединенного ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна 33.46

1 - 5978

К.П.Вишневская, Нгуен Дин Ты, В.Н.Пенев, Ю.В.Тевзадзе

кинематическая идентификация высокоэнергичных Λ , - κ -частиц и γ -квантов

1971

BM(@KMX JHEPIMH

AA50PAT0PM9

1 - 5978

К.П.Вишневская, Нгуен Дин Ты, В.Н.Пенев, Ю.В.Тевзадзе *

кинематическая идентификация высокоэнергичных $\Lambda^{o}_{,-\kappa}$ -частиц и у-квантов

Объодинеминий слемату, идерных есснедовант ENGINOTERA * Тбилисский государственный университет.

В работе^{/1/} показано, что при высоких энергиях отделение друг от друга с помощью программ кинематической идентификации Λ^0 -, K^0 -частиц и пары е⁺, е⁻ от конверсии γ -квантов затруднено. Средний импульс частиц, рассматриваемых в этой работе, превышал 10 Гэв/с. Однако обусловленные механизмом взаимодействия импульсы Λ^0 -гиперонов, например, могут быть малыми даже при очень высоких энергиях взаимодействующих частиц. Этот факт может увеличить возможности разделения различных гипотез. В настоящей работе нами оценены вероятности кинематической идентификации указанных частиц при различных энергиях.

Все расчёты были проведены с помощью варианта программы ГЕО-ФИТ-1^{/2/} - ГЕОФИТ-2 и программы ФАРФОРС^{/3/}.

§1. Идентификация распадов Л⁰-, К⁰-частиц и конверсии у -квантов

Восстановление геометрической картины события в программе ГЕО-ФИТ-2 происходит точно так же, как в программе ГЕОФИТ-1. Краткое описание ГЕОФИТ-2 приведено в приложении. Кинематическая интерпретация событий распада Λ^0 -, K^0 -частиц и конверсии γ -квантов, а затем и события первоначального взаимодействия происходит (в программе ГЕО-ФИТ-2) с помощью минимизации функционала вида

$$\chi^{2} = \sum_{i, j=1}^{3n} (a_{j} - a_{j}) G_{ij} (a_{j} - a_{j}) + \sum_{k=1}^{L} \lambda_{k} f_{k} (a, y), \qquad (1)$$

где a_{io}, a_{io} – измеренные, а a_{i}, a_{i} –искомые значения параметров, $G_{i,i}$ – элементы матрицы весов измеряемых параметров, у –неизмеряемые параметры, n – число треков, λ_{k} – множители Лагранжа и L-число уравнений связи.

Программа ГЕОФИТ-2 работает по принципу "одновершинного" фитирования, т.е. элементы события – сначала V⁰-частицы и у-кванты, затем "звезда" – идентифицируются последовательно.

При минимизации функционала (1) использовался метод исключения⁴ неизвестных переменных у из уравнений связи. В случае идентификации V⁰ -частиц и у-квантов исключался импульс P₀ этих частиц. При этом остаются три уравнения связи:

$$\beta_{1} = p_{0} \cos \beta_{0} / Qa_{0} - \sum_{i=1}^{2} p_{i} \cos \beta_{i} / Qa_{i},$$
 (2)

$$f_2 = p_0 \sin \beta_0 / Q \alpha_0 - \sum_{j=1}^2 p_j \sin \beta_j / Q \alpha_j, \qquad (3)$$

$$f_{3} = p_{0} tg a_{0}^{\prime} / Q a_{0}^{-} \sum_{i=1}^{2} p_{i} tg a_{i}^{\prime} / Q a_{i}^{\prime}, \qquad (4)$$

an the second second second second

где

$$p_{0} = \left[\left(\sqrt{m_{1}^{2} + p_{1}^{2}} + \sqrt{m_{2}^{2} + p_{2}^{2}} \right)^{2} - m_{0}^{2} \right]^{\frac{1}{2}} -$$
(5)

импульс частицы с массой m_0 , распадающейся на 2 другие частицы, имеюшие массы и импульсы соответственно m_1 , p_1 и m_2 , p_2 ; a_0 , a_1 и β_0 , β_1 - соответственно угол наклона и азимутальный угол для распадающейся частицы (a_0 , β_0) и продуктов распада (a_1 , β_1); $Qa_{0,1} = (1 + tg^2 a_{0,1})^{1/2}$ Направление нейтральной частицы определялось с помощью значений координат точек образования (X_A , Y_A , Z_A) и распада (или конверсии) (X_B , Y_B , Z_B) этой частицы.

$$\beta_0 = \arcsin\left(\left(Y_B - Y_A\right)/r\right) = \arccos\left(\left(X_B - X_A\right)/r\right), \quad (6)$$

где

$$r = ((X_B + X_A)^2 + (Y_B - Y_A)^2)^{\frac{1}{2}},$$

$$fg \ \alpha_0 = (Z_B - Z_A) / r.$$

(7)

•Так же, как в работе^{/5/}, в случае конверсии у-квантов при подсчёте ошибок в углах электрона и позитрона учитывалось среднеквадратичное значение угла поворота e⁺ и e⁻ относительно первоначального направления полета у-кванта

$$\langle \mathbf{Q} \rangle = q \left(m_{\phi} / p_{v} \right) \ln \left(p_{v} / m_{\phi} \right), \tag{8}$$

где m , p_γ - масса электрона и импульс γ-кванта соответственно; q - величина, Зависящая от массы ядра и энергии у -кванта. Импульсы, получаемые ядрами отдачи при конверсии γ-квантов, не учитываются при написании Законов сохранения.

Работа программы была опробована на идентификации распадов V^0 частиц и конверсии γ -квантов, образовавшихся в $\pi^- p$ -взаимодействиях при 2,75 Гэв/с в 2-метровой пропановой пузырьковой камере^{/6/}. Распределение вероятностей χ^2 для K^0 -мезонов, удовлетворительно описываемое теоретической кривой, приведено на рис. 1 а . Среднее значение χ^2 = 2,99±0,4 совпадает с требуемой величиной, равной 3.

Для идентификации продуктов конверсии у -квантов был использован также обобщенный метод⁷⁷ минимизации функционала (1). В этом случае неизмеряемая переменная p_0 входит в уравнения связи, а значит, и в функционал (1) равноправно с измеряемыми. При этом уравнение (5) добавляется к (2)-(4) в качестве четвертого уравнения связи.

Распределение вероятности χ^2 для γ -квантов, образованных в $\pi^- p$ взаимодействиях при 2,75 Гэв/с, приведено на рис. 16. Среднее значение χ^2 =3,25±0,3, что хорошо согласуется со значением χ^2 =3 для теоретического распределения.

\$2. Идентификация "эвезды"

После того, как идентифицированы все распады Λ^0 - и K^0 -частиц и конверсии γ -квантов, программа переходит к кинематической интерпретации всего взаимодействия в целом. Гипотезы, под которые происходит подгонка в случаях образования π -, Λ^0 -, K -, p -, n -, γ -частиц, конструируются в самой программе на основании законов сохранения зарядов и барионного числа. В тех случаях, когда образуется один или 2 γ -кванта, предусмотрена возможность проверки гипотез, в которых считается, чтоэти у -кванты образуются при распаде π^0 -мезона.

> 83. Возможности разделения различных гипотез (л⁰, K⁰, γ) при кинематической идентификации "вилок"

1. Программа ГЕОФИТ-2 была отработана на идентификации моделированных распадов Λ^0 -, K^0 -частиц и конверсии у -квантов. Генерировались распады этих частиц в широком интервале импульсов (от 1 Гэв/с до 40 Гэв/с) при разных значениях среднеквадратичных ошибок в импульсах и углах. Идентификация по программе ГЕОФИТ-2 моделированных распадов показала, что для реальных^{X/} гипотез получаются неискаженные χ^2 -распределения. В этом случае наблюдается также быстрая сходимость итерационного процесса, т.е. законы сохранения соблюдаются с высокой точностью уже на второй-третьей итерации.

2. Для выяснения вопроса разделения Λ^0 -, K^0 -частиц и γ -квантов были рассчитаны кривые вероятности (в%)отличить каждую из этих частиц от остальных в зависимости от их энергии (рис. 2). Λ^0 . K^0 и у подгонялись под кинематику частицы, обозначения которой на рисунках заключены в скобки. Каждая точка этих кривых получена на основании анализа 200-300 событий распада Л⁰-, К⁰-частиц или конверсии у-квантов. Как видно из рис. 2, Л⁰-, К⁰-частицы и у-кванты, имеюшие импульсы больше 15 Гэв/с, по кинематике практически неразличимы между собой. Ко-мезоны в 95% событий отличаются от Л⁰-гиперонов и от у -квантов вплоть до импульсов 10 Гэв/с. Результаты, приведенные на рис. 2, получены в предположении, что все импульсы заряженных частиц измерены с относительной точностью (Др)=5%, а углы (азимутальный и угол наклона) имеют среднеквадратичные ошибки, равные соответственно $<\Delta tga>=0,0107$, < Δ β > =0,0042 радиан. Изменение ошибок в углах и импульсах отражается на эффективности разделения частиц (рис. 3). Особенно сильно кривые разделения зависят от ошибок в определении углов (рис. 36).

Дальнейшие заключения о разделении Λ^0 -, K^0 -частиц и γ -квантов можно получить в том случае, если использовать какую-нибудь дополни-

х/"Реальной" мы называем ту гипотезу, которая совпадает с моделированным распадом.

тельную информацию относительно сечений рождения, вида импульсных распределений частиц, образующихся в конкретном взаимодействии, а также о способности регистрирующего прибора опознавать природу частиц.

Например, на основании данных, полученных при 16 Гэв/с^{/8/}. можно предположить, что в п р-взаимодействиях при Е - = 40 Гэв/с более 90% всех Л⁰-гиперонов будут иметь импульсы меньше Е - =13 Гэв/с. В этом случае, если учесть, что Л⁰- и К⁰-частиц в пропановой 2-метровой камере /6/ будет зарегистрировано примерно одинаковое число, то все частицы, удовлетворяющие кинематике как Λ^0 , так и K^0 -частиц, можно отнести к группе Λ^0 -гиперонов. Число присчитанных к Λ^0 -гиперонам K^0 -мезонов при этом будет составлять (рис. 2.3) ≈10%. Далее, если отбирать "вилки" со следами, имеющими большую длину в камере (l> 30 см). то анализ тормозных потерь частиц распада позволяет отличать **ν** -кванты от V⁰-частиц в значительной части событий. Подвергать кинематической обработке на предмет отделения V⁰-частиц от у -квантов придется лишь около 20% отобранных распадов.

В заключение авторы считают своим приятным долгом выразить благодарность М.И. Соловьеву, Е.Н. Кладницкой, Х.Я. Супичакову, А.У. Абдурахимову за помощь и обсуждение результатов.

Приложение

В программу ГЕОФИТ-1 внесен ряд изменений, которые касаются в основном части программы, занимающейся кинематической интерпретацией всего события. Прежде всего, подпрограмма LAGRG переделана так, что теперь она может минимизировать функционал (1) на основе одного, двух, трех, четырех и пяти уравнений связи. Число уравнений связи задается числом *IFIT*, которое формируется на основании анализа признаков всего события (число V^0 -частиц и γ -квантов) в подпрограмме *HIPOTH*. Здесь же подбирается и гипотеза, соответствующая признакам частиц. Задание гипотезы может производиться и из числового материала, если значение переключателя *IQM* (26) $\neq 0$. Переборки ионизационных признаков частиц, а также формирование числового материала для каждой гипотезы (импульсов, углов и их ошибок) происходит в подпрограмме *KINFIT*.

Расчёты наборов уравнений связи и их производных по параметрам вынесены в отдельную подпрограмму **СОЛЕСТ**.

Направления V⁰-частиц и у -квантов, а также импульсы этих частиц рассчитываются в подпрограмме VOG .

Литература

- 1. Е.Н. Кладницкая, В.Е. Комолова, А.А. Кузнецов, Нгуен Дин Ты и др. Сообщение ОИЯИ, 1-4468, Дубна, 1969, часть 1.
- А.У. Абдурахимов, Нгуен Дин Ты, В.Н. Пенев. Сообщение ОИЯИ, 1-5140, Дубна, 1970.
- Н. Ангелов, Г.И. Копылов, В.Н. Пенев и др. Сообщение ОИЯИ, 1-5449, Дубна, 1970.

4. J.P. Berge et al. UCRL-9097, 1960;

J.P. Berge, F.T. Solmitz, H.D. Taft. The Rev. of sc. instr., v. 32, N5 (1961).

- 5. Л.Н. Гердюков, П.В. Шляпников. Сообщение ОИЯИ, 2722, Дубна, 1966.
- M.P. Balandin, N.G. Borisov, Wan-Yung-chang, R.P. Kukhareva, V.A. Moiseenkö, V.I. Snyatkov, M.I. Soloviev, I.V. Chuvilo. N.I.M., <u>20</u>, 110 (1963).

7. R. Bock. CERN 60-30 (1960); R. Bock, CERN 61-29 (1961). 8. J. Bartke, R. Budde et al. Nuovo Cim., v.24, N5 (1962).

> Рукопись поступила в издательский отдел 4 августа 1971 года.

с**.** ч

Рис. 3. То же, что и на рис. 2. Среднеквадратичная ошибка в импульсах всех частиц принята равной 10%.

Π,

