

0346

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

1 - 5214

Ю.А.Будагов

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ СВОЙСТВ ПРОЦЕССОВ РАСПАДА $K_L^0 - 2\Pi^0, K_L^0 - 2\gamma,$ $K_L^0 - 3\Pi^0, K_L^0 - \Pi^+\Pi^-\Pi^0, K_L^0 - \Pi_{1_V}$ и определение для ср-неинвариантного процесса $K_L^0 - 2\Pi^0$ модуля амплитуды η_{∞}

Специальность 040 - экспериментальная физика

Автореферат диссертации на соискание учёной степени доктора физико-математических наук

Дубна 1970

0.А.Займидорога

И.И.Гуревич

С.Я.Никитин

Ученый секретарь Совета кандидат физико-математических наук

Адрес: г. Дубна, Московской области, Объединенный институт ядерных исследований, Лаборатория ядерных проблем. С диссертацией можно ознакомиться в библиотеке СИЯИ.

Физико-технический институт им. А.Ф.Иоффе АН СССР. Автореферат разослан " _____ 1970 г. Защита диссертации состоится " _____ 1970 г. на заседания Ученого совета Лаборатории ядерных проблем ОИЯИ.

профессор С.С.Герштейн Ведущее научно-исследовательское учреждение:

доктор физико-математических наук, профессор доктор физико-математических наук, профессор

доктор физико-математических наук

член-корреспондент АН СССР,

ного института ядерных исследований. Официальные оппоненты:

Работа выполнена в Лаборатории ядерных проблем Объединен-

Ю.А.Будагов

экспериментальное исследование свойств процессов распада $K_{L}^{0} - 2\Pi^{0}, K_{L}^{0} - 2\gamma$, $K_{L}^{0} - 3\Pi^{0}, K_{L}^{0} - \Pi^{+}\Pi^{-}\Pi^{0}, K_{L}^{0} - \Pi_{1}$, и определение для ср-неинвариантного процесса $K_{L}^{0} - 2\Pi^{0}$ модуля амплитуды η_{∞}

Специальность 040 - экспериментальная физика

Автореферат диссертации на соискание учёной степени доктора физико-математических наук

C5behleselisi 1180 HERDERAK EGGEDINGGETI **GNSMUOTEKA**

1 - 5214

Слабне взаимодействия представляют один из основных разделов современной физики элементарных частиц. Результаты экспериментального исследования процессов этих взаимодействий привели к существенным изменениям представлений о свойствах симметрии. Они дали также толчок глубокому развитию теории слабых взаимодействий.

Многие замечательные успехи в данном направлении были достигнуты благодаря изучению свойств долгоживущих нейтральных К-мезонов и процессов их взаимодействия. Однако полученные результаты не только не уменьшили необходимости проведения дальнейших исследований, но и выдвинули также ряд новых вопросов принципиального характера. Исключительное значение для теории приобрели те из них, которые обусловлены явлением несохранения комбинированной четности в процессах распада К⁰ – мезонов. В ряду других проблем, также представляющих немалый интерес, стоят исследования точности выполнения феноменологических правил отбора и свойств формфакторов, которые включает в себя современная универсальная (V-A)-теория слабых взаимодействий.

Сформулированные выше проблемы могут во многих отношениях найти свое решение в исследованиях свойств различных процессов распада К⁰, -мезонов, которым посвящена реферируемая диссертация.

В результате выполнения целого цикла этих исследований оказалось возможным получить важные новые сведения о свойствах процессов слабых взаимодействий, которые отсутствовали до начала(1966г.) наших исследований, а также новые данные, существенно превосходящие по своей точности полученные ранее в других экспериментах. Диссертация состоит из введения и семи глав; основные результаты кратно сумымрованы в заключение.

: 3

Все материалы, вошедшие в диссертацив, были получены в 1965-69 гг.

Исследования свойств распадов K_{L}^{0} – мезонов, лежащие в ее основе, были выполнены автором совместно с сотрудниками группы пропан-фреоновой пузырьковой камеры Европейского центра ядерных исследований; в диссертации также частично использованы результаты новой методики обработки треков электронов в пузырьковых камерах с тяхелой жидкостью. Эти результаты были получены автором в экспериментах на метровой пропановой пузырьковой камере Лаборатории ядерных проблем при выполнении программы исследований πN -взаимодействий совместно с сотрудниками группы члена-корреспондента АН СССР В.П.Джелепова. Облучение камеры осуществлялось на синхрофазотроне Лаборатории высоких энергий ОИЯИ.

Все материалы, вошедшие в диссертацию, опубликованы в периодической печати и отчетах Лабораторий^(1,3-7,11-13,16, 19-21,26,27,30)

Основные результаты были доложены на международных конференциях в Принстоне (1967г), Гейдельберге (1967г), Москва (1968г), Вене (1968г), Женеве (1969г).

Ниже излагается содержание диссертации.

Во введении дан краткий обзор главных этапов в развитии экспериментальных и теоретических исследований процессов слабых взаимодействий. Перечислен ряд крупных проблем этой области физики элементарных частиц и указаны те из них, в решении которых изучение свойств процессов распадов К⁰_L - мезонов играет особо важную роль.

<u>Первая глава</u> содержит главные соотношения феноменологического анализа процессов распада К⁰_L – мезонов, развитого в работах Ли Ву, Янга и других авторов.В ней кратко перечисляются основные классы моделей, выдвинутых для объяснения эффекта нарушения комбинированной четности в распадах этих мезонов. Даётся сжатое изложение положений и выводов теории, необходимых для анализа и интерпретации полулептонных и нелептонных распадов К⁰ - мезонов, исследовавшихся в диссертации.

<u>Вторан глава содержит описание канала, формирующего пучок</u> K_{L}^{O} - мезонов, и основные параметры этого пучка. Общий вид канала показан на рис.І. Пучок характеризуется высокой степенью коллимации. В месте прохождения через вакуумный канал внутри пузырьковой камеры его поперечный размер составил ϕ 2 см при угловой расходимости $\approx (\pm 10^{-3})$ радиана. Это практически исключило возможность регенерация K_{L}^{O} — K_{S}^{O} внутри рабочего вещества камеры и в материале стенок вакуумного канала, внутренний диаметр которого был равен 4 см. Исследование характеристик распределения протонов отдачи от сопутствующего K_{L}^{O} потоку нейтронного фона показало, что примесь регенерированных K_{S}^{O} – мезонов очень мала и ев можно полностью пренебречь.

На рис.2 показан импульсный спектр $\Phi_{\kappa}(\rho)$ распадающихся в камере K^{0}_{L} -мезонов, рассчитанный с помощью специально разработанного нами варианта программы " $\tau GRIND$ " для восстановления кинематики распада $K^{0}_{L} - \Pi^{+}\Pi^{-}\Pi^{0}(I)$. Средний импульс выведенного пучка K^{0}_{L} - мезонов был равен $\simeq 900$ Мзв/с; это удовлетворяло требованию эффективной регистрации V-квантов в рабочем веществе камеры ($CF_{3}B\tau$) одновременно с их надежным пространственным разделением. Знание спектра $\Phi_{\kappa}(\rho)$ обеспечило возможность моделирования методом Монте-Карло всех условий эксперимента, а также учета фона от распадов K^{0}_{L} - ЗП⁰ с четыръмя конвертировавшими в рабочем объеме фотонами.

σ

Был рассчитан спектр импульсов $\Phi_{M}^{(P)}$ Ко-мезонов, рождающихся на мишени (рис.2), который сравнивался с предсказаниями различных эмпирических формул и термодинамической модели. Полученные результаты нашли важное применение при описании процесса образования К-мезонов протонами на сложных ядрах, и были учтены в расчёте профиля магнитного фокусирующего устройства (HORN) в нейтринном эксперименте 1967-1968гг в ЦЕРН'е, а также в проекте подобного эксперимента на ускорителе ИФВЭ⁽²⁾.

<u>Третья глава</u> посвящена описанию комплекса экспериментальных исследований, целью которых являлось определение модуля амплитуды

$$\int_{\infty} = \frac{A \left(K_{c}^{0} - n^{0} n^{0} \right)}{A \left(K_{c}^{0} - n^{0} n^{0} \right)} = |\gamma_{oo}| e^{i \Phi_{oo}}.$$

Величина | η_{oo} | входит в число основных параметров феноменологического анализа и интерпретации результатов экспериментов по исследованию СР-неинвариантных процессов распада К⁰-мезонов.

Основная идея описываемого здесь опыта состояла в том, чтобы, пропустив пучок K^{O}_{L} - мезонов через вакуумный канал внутри большой пузырьковой камеры, заполненной тяжелым фреоном, регистрировать случаи распада K^{O}_{L} - мезонов по схемам K^{O}_{L} — 2П^O и K^{O}_{L} — 3П^O. Непосредственно на опыте нами была измерена величина отношения вероятностей распадов $\Gamma(K^{O}_{L}$ — 2П^O)/ $\Gamma(K^{o}_{L}$ 3П^O), которая далее была использована для вычисления $\int \eta_{ee}$.

Главная трудность эксперименти связана с необходимостью выделения очень слабого эффекта распада К⁰_L — $2\Pi^0$ — $4\sqrt[7]{}$ среди большого количества распадов К⁰_L — $3\Pi^0$ с четырьмя конвертировавшими в рабочем объеме пузырьковой камеры фотонами.

Для преодоления этой трудности было выполнено всестороннее исследование свойств фона К⁰_L — ЗП⁰ — 4 ¼⁻, а также определена эффективность выделения случаев распада К⁰_L — 2П⁰.

<u>Рис. 2.</u> Распределения по импульсам K_{L}° -мезонов, проходящих через пузырьковур камеру - $\Phi_{\kappa}(P)$ и рождающихся на мишени - $\Phi_{M}(P)$.

Рассмотрим подробнее содержание Ш главы. В начале её сообдаются основные параметры пузырьковой камеры. Объем камеры составляет I200 литров, заполнение - C E Br . Кашера установлена в зазоре электромагнита с напряженностью магнитного поля в ее медианной 27000 гаусс. Большой размернамеры по сравнению с плоскости радиационной длиной фреона (диаметр камеры равен 110 см, глубина её IOO см; радиационная длина фреона Хо = II,4 см) обеспечил регистрацию У-квантов с эффективностью, близкой к 90%. Возможность наблюдения событий и обмера следов частиц в области камеры, затенённой вакуумной трубой, обеспечивалась тем, что к расширительной мембране было прикреплено длинное плоское зеркало. Всего получено 800 000 фотографий: из них 400 000 проанализированы с целью поиска " N N" - событий (N = 2 ÷ 6). Правила отбора строго классифицированы количественно, что необходимо для моделирования эксперимента методом Монте-Карло на всех стадиях его выполнения. В результате было отобрано 17200 событий, из числа которых 3100 относились к категории "4 Л -кандидатов".

Обмер отобранных случаев распада К⁰ – мезонов производился в плоскости, содержащей проекцию снимка в масштабе I/I.7 (уменьшение); точность отсчета в этой плоскости составляла 0,I мм. Результаты измерений обрабатывались с помощью программы геометрической реконструкции событий "DRAT "⁽³⁾, позволяющей определить импульсы (Р), глубинные (λ) и азимутальные углы (\mathcal{G}) ^K-квантов.

В результате тщательных исследований, выполненных независимыми методами, было установлено, что измерения величин P, λ , \mathscr{G} не содержат существенных систематических ошибок, а их погрешности рассчитываются корректно. В таблице I представлена сводка, характеризующая точности определения координат точек конверсий \mathscr{V} -квантов, их глубинных и азимутальных углов и энергий.

9

Таблица І

Параметр	Погрешность
Хи Ү - координаты точек конверсии	<u>+</u> 0,2 MM
Z - координаты точек конверсии	± 2,0 MM
Глубинный угол	240/(Е _{Мэв}) ^{0,8} градусов
Азимутальный угол	115/(Е _{Мэв}) ^{0,8} градусов
Энергия гамма-кванта (по кривизне треков e ⁺ e ⁻ - пары)	± 24%
Энергия гамма-квантов (по полной длине треков ливня)	<u>+</u> 20%
- "- (совместное исполь- зование обоих методов)	± 16%

Эти результаты были использованы при моделировании эксперимента методом Монте-Карло, исследовании свойств фона, а также при расчете эффективности выделения случаев К_с⁰ — 2П⁰ – распадов с помощью применявшейся системы программ обработки.

Измерения энергий $\sqrt[n]{}$ - квантов двумя независимыми методами (а) по кривизне треков "e⁺, e⁻" - конверсионной пары и (б) по полной длине треков ливня согласуются между собой. На рис.3 представлено распределение величин $\chi' = (E_{\alpha} - E_{c})/(\sigma_{\alpha}^{2} + \sigma_{c}^{2})^{1/2}$, где Е и б - значение энергии и погрешности в ней для каждого из методов; сплошной кривой показана ожидаемая (расчетная) форма этого распределения.

При определении энергий $\sqrt[7]{}$ -квантов (E_{γ}) по измерениям радиусов кривизн "e⁺,e⁻"- треков конверсионной пары и учете потерь на тормозное излучение электронов (позитронов) была использована новая методика, разработанная в Лаборатории ядерных проблем ОИЯИ и изложенная в наших работах⁽⁴⁻⁷⁾.

Рис. 3.

Распределение различий $\chi' = (E_a - E_b) / (\delta_a^2 + \delta_b^2)^{1/2}$ величин энергий гамма-квантов, определенных (а) по иривизне треков $e_{,e}^{+}e^{-}$ – пары конверсии, и (б) по полной длине треков ливня; \mathfrak{S} – погрезности величин \mathfrak{E} .

II

учет радиационных потерь (4-7) привел к существенному улучшению точности определения величин E_{δ} в данном эксперименте по сравнению с точностью, получавшейся для программы, которая первоначально основывалась на методе Бэра-Миттнера учета этих потерь. Кинематический анализ состоял в том, что для каждого "4 δ "-события методом χ^2 осуществлялась подгонка (фит) измеренных величин р, λ , \mathscr{G} для δ - квантов к гипотезе X^0 — $2\Pi^0$ — 4δ ; масса M (X^0) являлась свободной переменной; импульс P(X^0) по направлению считался совпадающим с осью пучка K_L^0 -мезонов. В результате фита был получен спектр эффективных масс M(X) (рис.4) для тех "4 δ " - событий, которые прошли также ряд специальных критериев отбора, предназначенных для уменьшения фона без существенной потери эффекта.

Из трех возможных способов объединения четырех $\sqrt[4]{}$ -квантов в два П⁰-мезона в каждом событии удерживалась лишь та комбинация, которой соответствует наибольшая вероятность Р (X^2) в фите. Исследования событий типа $K_L^0 - 2\Pi^0 - 4\sqrt[4]{}$ методом Монте-Карло показали, что в 96% случаев распада $K_L^0 - 2\Pi^0$ величина вероятности P(X^2) для правильного метода объединения $\sqrt[4]{}$ -квантов выше её значения во всех ложных комбинациях. Требовалось, чтобы эта вероятность удовлетворяла условию P(X^2) >10%, и чтобы импульс P(X^0) после фита находился в пределах (0,4+2,0) Гэв/с. Важным дополнительным способом уменьшения фона было также применение критерия отбора по угду между двумя гамма-квантами. В результате было отобрано 30 событий,значения эффективных масс которых после фита находились в интервале (468 + 548) Мэв. . Пределы этого интервала несколько несимметричны относительно значения М (K^0), поскольку отношение эффект/фон благоприятнее в области более высоких значений массы.

часпределение по эффективной массе (ткогограмы) честнуех тирех № -квантов, удовлетворяющих гипотезе распада Х°-> 2П°-> 4 № и прошедших все иритерии отбора; сплошной иривой показако распределение по эффективной массе, полученное в результате применения всей системы обработки к генерированным методом Монте-Карло фоновым случаям К°-> 3 П° с четырымя "конвертировавшими" И - квантами.

12

Кривая на рис.4 описывает фон, полученный в результате применения нашей системы обработки к полученным методом Монте-Карло ~3500 случаям распада К⁰_L - 3П⁰ - 4 ^V. В области М(К⁰) имеется пик, обязанный существованию процесса распада К⁰_L --2П⁰.

Сравнение экспериментального и расчетного распределений на рис.4 показало, что из 30 событий в интервале масс (468+548) Мэв, 15<u>+</u>6 событий обязаны процессу распада К⁰₀ — 2П⁰.

Эффективность детектирования и успешного измерения случаев распада $K_{L}^{0} - 2\Pi^{0} - 4\sqrt[6]{}$ равна 0,38 ± 0,08; вероятность того,что событие " $K_{L}^{0} - 2\Pi^{0} - 4\sqrt[6]{}$ ", измеренное и обработанное по всем программам, применяемым в настоящее эксперименте, будет иметь массу после фита в пределах (468+548) Мэв и будет удовлетворять всем вышеприведенным критериям, равна 0,72±0,03. Отсюда следует, что отношение вероятностей распадов $\Gamma(K_{L}^{0} - 2\Pi^{0}) / \Gamma(K_{L}^{0} - 3\Pi^{0})$ при полном количестве зарегистрированных " $N\sqrt[6]{}$ " - событий 17 200 равно

$$R = \frac{\Gamma (\mathbb{K}^{O_{L}} - 2\Pi^{O})}{\Gamma (\mathbb{K}^{O_{L}} - 3\Pi^{O})} = (3, 2 \pm 1, 5) \ \Pi^{-3}.$$

Дополнительно к описанному выше способу кинематического анализа "4 %" -событий и выделения реакций $K_{L}^{0} - 2\Pi^{0}$ нами был применен также другой метод⁽⁸⁾. Он основывается на введении функции правдоподобия $\mathscr{L}(\mathscr{A})$ для описания всего набора " N%"- событий, зарегистрированных в эксперименте; в качестве параметра \mathscr{A} , определяемого при нахождении максимума $\mathscr{L}(\mathscr{A})$, используется величина отношения $\frac{\Gamma(K_{L}^{0} - 2\Pi^{0})}{\Gamma(K_{L}^{0} - 2\Pi^{0}) + \Gamma(K_{L}^{0} - 3\Pi^{0})}$. Результат этого второго метода дает значение $\mathscr{A} = (3,3\pm2,2) \ 10^{-3}$ в согласии с предылущим способом анализа.

В качестве окончательного результата нами выбрана величина $R = (3,2\pm1,5)10^{-3}$ как более точная. Воспользовавшись величинами, приведенными в таблицах свойств элементарных частиц⁽⁹⁾,

 $\frac{\Gamma(K_{L}^{0} - 3\Pi^{0})}{\Gamma(K_{L}^{0} - "\text{BCC Sapsm."})} = 0,275 \pm 0,011; \ \mathcal{C}(K_{L}^{0}) = 5,4 \pm 0,2)10^{-8} \text{сек};$

 $\frac{\Gamma(K^{0}_{L} -2\Pi^{0})}{\Gamma(K^{0}_{L} - {}^{"} все моды")} = 0,313\pm0,006; ~ \mathcal{C}(K^{0}_{S}) = (8,62\pm0,06)10^{-11} сек,$ $находим | <math>\eta_{oo} |^{2} = (3,5\pm1,7)10^{-6}$, где цитируемая ошибка учитывает статистическую ошибку и погрешности в величинах использованных поправочных коэффициентов. Соответствующее значение модуля есть $|\eta_{oo}| = (1,87 - {}^{0},57) = 10^{-3}.$

Принимая во внимание измеренные в других экспериментах величины $|\eta_{+-}| = (1,90\pm0,05)10^{-3}$, $\Phi_{\pm} = (39,8\pm6,0)^{\circ}$, $R_{e} \in = (1,42\pm0,17)10$, $\Phi_{oo} = (17\pm31)^{\circ}$, а также соотношения $\eta_{\pm} \in e^{+\epsilon'}$ и $\eta_{oo} = \epsilon - 2\epsilon'$, методом γ^{2} нами были определены величины $|\eta_{eo}|$, которые равны: (a) $|\eta_{eo}| = (1,4\pm1,2) 10^{-3}$, если Φ_{e} является свободной переменной, (б) $|\eta_{oo}| = (2,0\pm0,7)10^{-3}$, если фиксировать $\Phi_{e} = (43\pm1)^{\circ}$ в соответствии с условием унитарности и при учете 2π -состояний.

Аналогичный анализ, учитывающий последний результат группы Руббиа⁽¹⁰⁾ для фазы $\varphi_{+-} = (45,5\pm7,1)^{\circ}$, дал $|\eta_{eq}| = (1,7^{+1},0,7)$ 10^{-3} и $|\eta_{oo}| = (2,0\pm0,7)$ 10^{-3} . Величина $|\eta_{uo}|$, измеренная в нашем эксперименте, находится в согласии с приведенными выше значениями $|\eta_{eo}|$; все вместе они в пределах погрешностей измерений совпадают с величиной $|\eta_{+-}|$. Результаты данного эксперимента в их предварительной форме сообщались в работах^(II-I3).

В последней части Ш главы дан краткий обзор результатов экспериментов других авторов, которые исследовали свойства процессов распада К⁰ — 2П⁰, а также точность выполнения С, СР(Т) - инвариантностей в иных процессах.

Содержание Ш главы позволяет сделать следующие выводы:

15

I4

I. Результат нашего эксперимента свидетельствует, что модули амплитуд h_{+-} и η_{co} могут быть равны, а правило отбора по изотопическому спину $|\triangle I| = I/2$ может не нарушаться в процессе распада $K^{O}_{--} = 2\Pi^{O}$. Это восстанавливает модель сверхслабого взаимодействия Вольфенстайна, допускающую переходы с $|\triangle S| = 2$ (типа $K^{O}_{--} = \overline{K}^{O}$) как возможное объяснение нарушения СР-инвариантности в распадах $K^{O'}_{--}$ – мезонов.

2. Выполненный нами анализ методом χ^2 также показывает, что все известные значения величин $[\eta_{+-}], \Phi_{+-}, \Phi_{\infty}$, Re ε и определяемая условием унитарности Φ_{ε} согласуртся с предсказанием модели Вольфенстайна о равенстве модулей амплитуд η_{+-} и η_{∞} .

3. Полученные в других измерениях значения аргументов амплитуд 7 согласуются с предсказанием, следующим из условия унитарности при учете |2П> - состояний.

4. При существующем уровне точности измерений ряд других моделей нарушения СР-чётности также не может быть отвергнут.

<u>В четвертой главе</u> описаны исследования, позволившие определить вероятность весьма редкого процесса распада K^{0}_{L} — 2%. До начала нашего эксперимента были известны только два измерения его относительной вероятности, которые находились в противоречии; Криги и др.⁽¹⁴⁾ получили (1,3±0,6)10⁻⁴, тогда как Кронин и др.⁽¹⁵⁾ получили (7,4±1,6)10⁻⁴.

В результате просмотра свыше 200 000 фотографий и последурщего кинематического анализа отобранных событий типа "2 %" с помощью специально модифицированной нами программы "GRIND" было получено распределение инвариантных масс M(X^O) для событий, которне удовлетворяли гипотезе "X^O — 2 %" (рис.5). В области M(X^O)> 350 Мэв вклад фона мал и им можно пренебречь. С учетом всех потерь и эффективности програмы кинематического анализа на 1100<u>+</u> Рис. 5.

 Распределение по эффективной массе двух гамма-квантов, удовлетворяющих гипотезе распада Х°- 2 У и прошедших все критерии отбора.

17

270 случаев распада $K^0_L \longrightarrow 3\Pi^0$ приходятся 28±8 случаев распада $K^0_L \longrightarrow 2~$ %. Отсюда следует, что

 $M_{1} = \Gamma(K_{L}^{0} - 2\sqrt[6]{}) / \Gamma(K_{L}^{0} - 3\Pi^{0}) = (2,5\pm0,7) \ 10^{-3}.$

Используя определенную нами величину отношения вероятностей рас-

падов $r_2 = \Gamma(K^0_{\perp} - 3\Pi^0) / \Gamma(K^0_{\perp} - "все") = 0,209 \pm 0,011,$ находим $R = \Gamma(K^0_{\perp} - 2\sqrt[6]{}) / \Gamma(K^0_{\perp} - "все") = (5,3\pm1,5) 10^{-4},$ (15)

что согласуется с результатом Кронина^(I5). С учетом нашего значения для r_2 , являющегося наиболее точным измерением этой величины, результат Кронина становится равным (6,7±I,4)I0⁻⁴.

Усреднение результата данного эксперимента с величиной, полученной Крониным, дает наиболее точную из существующих величину отношения

 $\frac{\Gamma (K_{1}^{0} - 2\sqrt[6]{})}{\Gamma (K_{1}^{0} - "BCC")} = (4,5 \pm 0,5) \ 10^{-4} .$

Приводится сравнение указанной величины с предсказаниями для нее, следующими из теории. Использование алгебры токов вместе с гипотезой ЧСАВТ и SU(3) даёт для отношения $\Gamma(K^0_L - 2^{\chi})/\Gamma(K^0_L - "все")$ величину (3,0±I,2) 10⁻⁴. Струминский и Игнатович⁽¹⁸⁾ на основе модели кварков получили соотношения между вероятностями распадов гиперонов и К-мезонов; пользуясь величиной отношения $\Gamma(\Sigma \rightarrow \rho^{\chi})/$ $\Gamma(\Sigma \rightarrow \rho^{\pi^o})$, они предсказали для относительной вероятности распада $K^0_L - 2^{\chi}$ величину, составляющую $\simeq IxI0^{-4}$. Результаты эксперимента находятся в количественном согласии с предсказанием первой модели и качественно не противоречат выводу модели кварков.

<u>В пятой главе</u> излагаются результаты исследования свойств процессов распадов K_{-}^{O} — мезонов по схемам K_{-}^{O} — 3П и K_{-}^{O} — П ψ_{l}^{l} (19,20, 21). В результате совместной обработки данных группами в ЦЕРН'е (где работал автор данной диссертации), Орсэ и Эколь Политехник были измерены отношения вероятностей распадов R = $\Gamma(K^0_{\perp} - 3\Pi^0)/\Gamma(K^0_{\perp} - \Pi^+\Pi^-\Pi^0); R' = \Gamma(K^0_{\perp} - 3\Pi^0)/\Gamma(K^0_{\perp} - \Pi^- BCE заряж.") <math>\overline{R}/\Gamma(K^0_{\perp} - \pi_{\mu} \sqrt{\Lambda})/\Gamma(K^0_{\perp} - \pi_{\mu} \sqrt{\Lambda})$ Г($K^0_{\perp} - \pi e^{\Lambda}$). Полученные результаты сведены в таблицу П; величины

	Таблица П			
Отношение	ЦЕРН	Орсэ	Эк.Полит.	
R	I,80 <u>+</u> 0,I3	I,62 <u>+</u> 0,13	(1,72 <u>+</u> 0,I6)	
R	(0,290 <u>+</u> 0,023)	0,252 <u>+</u> 0,0I4	0,277 <u>+</u> 0,02I	
r	0,71 <u>+</u> 0,05			

в скобках получены с использованием значения отношения

 $\mathbb{R}^{n'} = \Gamma(\mathbb{K}^{0}_{L} - \Pi^{+}\Pi^{-}\Pi^{0}/\Gamma (\mathbb{K}^{0}_{L} - \mathbb{B}_{ce} \operatorname{заряж.})=0,161\pm0,005)^{(22)}.$ Объединяя величины \mathbb{R}, \mathbb{R}' и \mathbb{R}'' , получаем для них методом \bigwedge^{2} следурщие новые значения, являющиеся ещё более точными:

 $R = 1,66 \pm 0,08; \quad R' = 0,26 \pm 0,010; \quad R' = 0,159 \pm 0,0045.$

Согласно'(23), если амплитуда с $|\Delta I| = I/2$ или с $|\Delta I| = 3/2$ является основной в процессе распада K_{L}^{0} — 3П, то отношение R с учетом различия масс П[±] и П⁰ – мезонов равно I,83 . Более усложненные расчеты Девлина⁽²⁴⁾, учитывающие линейные и квадратичные (по переменным для графика Далитца) матричные элементы, предсказывают R = I,7I. Наш результат согласуется с обоими предсказаниями.

Были определены величины абсолютных вероятностей распадов $\mathbb{K}^{0}_{L} \longrightarrow 3\Pi^{0}$, $\mathbb{K}^{0}_{L} \longrightarrow \Pi^{+}\Pi^{-}\Pi^{0}$ и $\mathbb{K}^{0}_{L} \longrightarrow \pi^{0} \mathbb{W}$, рассчитанные методом χ^{2} на основе объединения приведенных результатов для величин \mathbb{R}, \mathbb{R}' и \mathbb{R}'' с новым точным измерением времени жизни \mathbb{K}^{0}_{L} -мезона $\mathcal{C}(\mathbb{K}^{0}_{L})=(5,15\pm0,14)$ 10⁻⁸сек⁽²⁵⁾; результат представлен в таблице Ш.

19

Ta	бли	ца	11

Распад	Относительная вероятность	Абсолютная ве-1 роятность, сек-1x10-6	
$\kappa_{L}^{o} - \pi_{o} \pi_{o} \pi_{o}$	0,209 <u>+</u> 0,0II	4,05 <u>+</u> 0,23	
ко — п+п-по	0,126 <u>+</u> 0,004	2,44 <u>+</u> 0,10	
$K^{O}_{L} \longrightarrow \pi \ell V_{\ell}$	0,665 <u>+</u> 0,012	12,91 <u>+</u> 0,42	_

Эти результати относятся к наиболее точным. Они широко используются другими авторами при нормировке относительных вероятностей распадов К⁰_[— мезонов и проверке выполнения правила отбора $|\Delta I| = I/2$ в распадах К⁴ и К⁰₁ – мезонов.

Выполнена проверка изотопического правила отбора \ΔI \ =I/2, основанная на данных табл.Ш и измеренных другими авторами Бероятностей распадов К[±] мезонов по разным схемам; результаты проверки приведены в таблице IУ.

Таблица ІУ

Предсказание правила	Настоящий экс- перимент	<u>"Эксперимент"</u> "предсказание"
$\frac{\Gamma(K^{0}_{L} - \pi \ell \sqrt{\ell})}{\Gamma(K^{+} - \pi \ell \sqrt{\ell})} = 2,024$	I,94 <u>+</u> 0,08	0,96 <u>+</u> 0,04
$\frac{\Gamma (R_{L}^{0} - 3\pi^{0})}{\Gamma (R^{+} - \pi^{+}\pi^{+}\pi^{-})} = 1,11$	0,90 <u>+</u> 0,06	0,81 <u>+</u> 0,05

Представленные в табл. IУ результаты свидетельствуют, что в распадах К — П ℓv_{ℓ} правило отбора выполняется удовлетворительно, а также указывают на его нарушение в распадах по схеме К — 3П.

Были рассчитаны энергетические спектры П-мезонов в с.ц.м. К⁰ – мезонов, распадающихся по схеме К⁰ — П⁺П⁻П⁰. В линейном приближении по энергии П-мезона для матричного элемента этого процесса рас-

пада определены наклоны прямых линий, аппроксимирующих спектры. Величина наклона спектра П⁹-мезонов *G* = (-0,202+0,034) сравнена со средним значением наклона спектров П[±]-мезонов от распада К[±]-П⁺П⁰П⁰. следующим из экспериментов других авторов. В пределах погрешностей измерений эти наклоны совпадают в соответствии с предсказанием правила |∧ I = I/2. Результаты проверки этого правила показали, таким образом, что наиболее существенно отклоняется от предсказания величина отношения вероятностей распадов К^t и К^O - мезонов по схеме К., Нужно, однако, подчеркнуть коррелированность этой величины с величиной использованного значения времени жизни с (Ko). Правило (al)= = I/2 для К-распадов выполнится, если окажется, что $\mathcal{T}(K_1^0)$ измерено с существенной систематической ошибкой. Действительно, как показывает проведенный нами анализ методом χ^2 , оба правила – полулептонное и нелептонное - | Δ] = I/2 выполняются при значении $\mathcal{C}(K^0_{,})=4,7\pm0,09)10^{-8}$ сек,что примерно на три ошибки ниже значения *C*(K⁰)⁽²⁵⁾.

<u>В шестой главе</u> приведены результаты исследований, позволивпих (определить) отношения вероятностей распадов: (26,27)

$$R_{4} = \frac{\Gamma(K_{L}^{0} - \pi \mu \sqrt{4})}{R(K_{L}^{0} - \pi e \sqrt{4})} = 0,648 \pm 0,030 \text{ M}$$

$$R_{2} = \frac{\Gamma(K_{L}^{0} - \pi e \sqrt{4})}{\Gamma(K_{L}^{0} - \pi e e \text{ saps}.\pi)} = 0,157 \pm 0,01$$

Величина R_2 является одной из двух наиболее точно измеренных в настоящее время; она может быть использована для последующего анализа данных о распадах K_{\perp}^{O} - мезонов с целью получения более точного нового набора значений абсолютных скоростей распадов этих мезонов по различным каналам.

Результат определения величины \mathcal{K}_1 являлся в момент его получения наиболее точным среди других измерений этой величины. Полученное значение R, было использовано для:

а) дополнительного подтверждения выполнения правила отбора [Δ I=I/2 в полулептонных распадах К⁰ и К⁺-мезонов; полученные при этом результаты представлены в таблице У.

<u>Таблица У</u>

Предсказание правила	Результат настояще-	"Эксперимент"
" ^ I=I/2"	го эксперимента	"Предсказание"
$\frac{\Gamma(K^{+} - \pi_{\mu} t^{\prime}) / \Gamma(K^{+} - \pi e t^{\prime})}{\Gamma(K^{0} - \pi_{\mu} t^{\prime}) / \Gamma(K^{0} - \pi e t^{\prime})} = I$	0,98 ± 0,05	0,98 <u>+</u> 0,05

б) нового определения величины отношения формфакторов $\xi(o) = f_{\pm}(o)/f_{\pm}(o)$ в процессах распада $K^{0}_{\perp} - \pi \ell v_{\ell}$ при нулевом переданном 4-импульсе от K^{0}_{\perp} – мезона к лептонной паре. Величины R_{+} и $\xi(o)$ связаны выражением, полученным Кабиббо⁽²⁸⁾ в предположении векторной связи и мю-е-универсальности. Параметризуя энергетическую зависимость формфакторов в виде $f_{\pm}(q_{\nu}^{2}) \simeq f_{\pm}(o) [1 + \lambda \pm q_{\nu}^{2}/m_{\pi}^{2}]$ и полагая выполненной Т-инвариантность (что дает $I_{m} \xi = 0$), находим с помощью соотношения⁽²⁸⁾, что при $\lambda_{+} = 0.02\pm0.015$ ⁽²⁹⁾ и $\lambda_{-} = 0$

≶(0) = -6.36 ± 0,30 или § (0) = -0,22±0,30.

Сопоставление полученного результата $\S(0) = -0,22\pm0,30$ (первое решение должно быть отброшено в силу чрезмерно большой величины $\S(0)$) с данными других опытов, где измерялась величина $\S(0)$, показывает, что в настоящее время ввиду известной противоречивости этих данных невозможно прийти к определенному заключению относительно величины параметра $\S(0)$.

В главе УІ приводится также оценка отношения вероятности рас-

падов

$$\frac{\Gamma(R_{L}^{0} - \pi e \sqrt{3})}{\Gamma(R_{L}^{0} - \pi e \sqrt{3})} = 0,0075 \pm 0,0040,$$

22

впервые полученная в описываемом эксперименте.

Седьмая глава содержит описание метода определения энергий гамма-квантов (Е_у) по полной длине (L) треков электронно-позитрое ного ливня, развивающегося в рабочем веществе пузырьковой камеры⁽³⁰⁾

Был разработан новый способ параметризации соотношения $E_{\chi} = f(L)$. Получены выражения для вычисления величин энергий и их погрешностей E_{χ} и AE_{χ} в широком интервале значений E_{χ} , измеряемых в рассматриваемом эксперименте. Величины E_{χ} и AE_{χ} зависят от зарегистрированной длины треков ливня L и потенциальной длины \mathscr{P} , доступной для наблюдаемого развития ливня:

 $E_{\chi} = \left[2.2I + I,49 \left(I - e^{-\frac{L}{22}}\right)\right] \left(1 + 0,0I9 \frac{L}{9}\right),$ $\Delta E_{\chi} / E_{\chi} = 0,I7 + I7 + 0,3 \frac{E_{\chi}}{9},$ rge [E] = M3B, [L] = [9] = CM.

Объединение результата данного метода определения E_{g} с результатом измерений по кривизне "e⁺e⁻"-треков привело к существенному выигрышу (до 50%) в точности определения E_{g} по сравнению с точностью каждого из методов. Это в свою очередь увеличило эффективность выделения случаев $K_{L}^{0} - 2\Pi^{0} - 4\sqrt[f]{f}$ – распадов из числа фоновых событий $K_{L}^{0} - 3\Pi^{0}$, когда только четыре гамма-кванта конвертируют в камере.

Основные результаты и выводы, полученные в настоящей диссертации, могут быть сформулированы следующим образом:

 Рассчитан и создан канал, формирующий пучок К⁰-мезонов требуемой интенсивности. Пучок характеризуется высокой степенью коллимирования, позволившей исключить регенерацию внутри рабочего вещества камеры и материале стенок вакуумного канала.

2) С помощью I200-литровой пузырьковой камеры, установленной в магнитном поле напряженностью 27 000 гаусс и заполненной фреоном СЕВГ (радиационная длина II,4 см), получено в указанном пучке 800000 фотографий. Из них 400000 были проанализированы с целью исследова-

ния свойств различных процессов распада К, -мезонов.

3) Определено отношение вероятностей распадов $\Gamma(\mathbb{K}^{0}_{L} - 2\Pi^{0})/\Gamma(\mathbb{K}^{0}_{L} - 3\Pi^{0}) = (3.2\pm1,5)I0^{-3}$ и получена величина $|\eta_{oo}\rangle^{2} = (3,5\pm1,7)I0^{-6}$. Этот результат позволил заключить, что (а) в пределах погрешностей измерений величин η_{+-} и η_{oo} возможность их равенства, как этого требует модель сверхслабого взаимодействия, не может быть исключена; (б) правило отбора по изотопическому спину $|\Delta I| = I/2$ в СР-неинвариантном процессе распада $\mathbb{K}^{0}_{L} - 2\Pi$ может не нарушаться.

4) Определена величина отношения вероятностей распадов $\Gamma(K_{L}^{0} - 2\sqrt[4]{5})/\Gamma(K_{L}^{0} - 3\Pi^{0}) = (2,5\pm0,7)10^{-3}$. С учетом измеренной нами относительной вероятности распада $K_{L}^{0} - 3\Pi^{0}$ получено $\Gamma(K_{L}^{0} - 2\sqrt[4]{5})/\Gamma(K_{L}^{0} - 3\Pi^{0}) = (5,3\pm1,5)10^{-4}$. Этот результат является одним из двух известных в настоящее время и хорощо согласующихся измерений величины вероятности весьма редкого процесса распада $R_{L}^{0} - 2\sqrt[4]{5}$. Приведенная величина вероятности удовлетворительно согласуется с предсказаниями теории, основывающимися на применении алгеоры токов, гипотезы ЧСАВТ и SU(3), а также следующими из модели кварков.

5) Определены величины отношений вероятностей распадов: $\frac{\Gamma(K_{L}^{0} - 3\pi^{0})}{\Gamma(K_{L}^{0} - Bce)} = 0,209\pm0,011; \qquad \qquad \frac{\Gamma(K_{L}^{0} - \pi^{\dagger}\pi^{-}\pi^{0})}{\Gamma(K_{L}^{0} - Bce)} = 0,126\pm0,004; \qquad \qquad \frac{\Gamma(K_{L}^{0} - \pi^{\dagger}\mu^{-}\pi^{0})}{\Gamma(K_{L}^{0} - \pi \ell \ell_{L})} = 0,665\pm0,012; \qquad \qquad \frac{\Gamma(K_{L}^{0} - \pi \ell \ell_{L})}{\Gamma(K_{L}^{0} - \pi e^{\ell})} = 0,648\pm0,030$

а также величины абсолютных вероятностей распадов: $W(K_{L}^{0} - 3\Pi^{0}) = (4,05\pm0,23) \ 10^{6} \text{сек}^{-1}; W(R_{C}^{0} - \Pi^{\dagger}\Pi^{\dagger}\Pi^{0}) = (2,44\pm0,10) 10^{6} \text{сек}^{-1}; W(K_{L}^{0} - \pi^{\dagger}W) = (12,91\pm0,42) \ 10^{-6} \text{сек}^{-1}.$

6) В линейном приближении (по энергии П⁰-мезонов) для матричного элемента распада К⁰_L → П⁺П⁻П⁰ определен наклон Q₀⁻⁰,202±0,034 прямой линии, аппроксимирующей энергетический спектр П⁰-мезонов в с.ц.м. К⁰-мезонов.

7) Выполнена проверка правила отбора| I = I/2 в процессах распада К[±] и К^O – мезонов по схемам $K_{3\pi}$ и K_{ℓ_3} . Полученные результаты свидетельствуют, что в K_{ℓ_3} – распадах это правило выполняется удовлетворительно, а также указывают на его нарушение в $K_{3\pi}$ – распадах.

8) Определена величина 3 (0) = -0,22±0,30 отношения формфакторов 5/2 /5/2 при нулевом переданном 4-импульсе от каона к лептонной паре.

9) Получена оценка отношения вероятностей распадов $\Gamma(\mathbb{K}^{0}_{L} - \operatorname{Tet}^{J})$ / $\Gamma(\mathbb{K}^{0}_{L} - \operatorname{Tet}^{J}) = 0,0075\pm0,040$, ранее не определявшаяся.

10) Разработан метод определения энергий $\{ \{ -\kappa \} \}$ по полной длине (L) треков электронно-позитронного ливня, развивающегося в камере. Дан новый способ параметризации соотношения $\mathbb{E}_{\xi} = f(L)$. Объединение методов измерения \mathbb{E}_{χ} по кривизне e⁺e⁻-треков пары конверсии и по полной длине ливня позволило достигнуть точности, превосходящей (до 50%) точность определения величин \mathbb{E}_{χ} каждым из методов в отдельности. Результатом этого было существенное увеличение зффективности выделения случаев распада $\mathbb{R}_{L}^{0} - 2\Pi^{0} - 4\sqrt{}$ среди большого количества фоновых событий $\mathbb{K}_{L}^{0} - 3\Pi^{0}$ с четырьмя конвертировавшими в камере гамма-квантами.

ЛИТЕРАТУРА

- I.Budagov, H.Burmeister, D.C.Cundy, W.Krenz, G.Myatt, F.Nezrick, H.Sletten, G.Trilling, W.Venus, H.Yoshiki. CERN report NPA/Int. 67-20.
- I.Budagov, D.C.Cundy, W.Knight, B.Langeseth, G.Myatt,
 D.Perkins, B.Pattison, C.A.Ramm, S.Tovey, K.-M.Vahlbruch,
 W.Venus, H.Wachsmuth. CERN preprint NPA/Int. 68-18.
- 3. K.Soop. CERN preprint NPA Int. 66-13.
- Ю.А.Будагов,А.Г.Володько,В.Б.Флягин,П.В.Шляпников. Препринт ОИЯИ, Р-1971, Дуона,1965; ПТЭ, № 1, 70 (1966).
- 5. Ю.А.Будагов,А.Г.Володько,В.Б.Флягин,П.В.Шляпников. Препринт ОИЯИ № 2154, Дубна, 1965.
- Ю.А.Будагов,В.П.Джелепов, Р.В.Малышев, В.Б.Флягин, П.В.Шляпников. Препринт ОИЯИ № 2668, Дубна, 1966.
- Ю.А.Будагов, В.Б.Виноградов, А.Г.Володько, Л.Н.Гердоков, В.П.Джелепов, С.В.Клименко, В.Г.Новиков, И.Паточка, В.Б.Флягин, П.В.Шляпников. ПТЭ, № 6, 5 (1967).
- 8. C.Pascaud. These de doctorat d'Etat. Paris, Serie A no.233, Orsay (1966).
- N.Barach-Schmidt, A.Barbaro-Galtieri, Le Roy R. Price, UCRL-8030, Aug. 1968.
- P.Darriulat, K.Kleinknecht, K.Rubbia et al. CERN preprint, 14/VIII (1970), paper no.2.
- I.Budagov, D.C.Cundy, F.Nezrick, G.Myatt et al. X4-collaboration report; Princeton 1967 - Weak Interaction Colloquium, Princeton, USA, Nov. 1967.
- I.Budagov, D.C.Cundy, G.Myatt, F.A.Nezrick, G.H.Trilling et al. 14th Intern. Conf. on H.E.Physics, Vienna, 1968, paper no.377.
- 13. I.Budagov, D.C.Cundy, G.Myatt, F.A.Nezrick, G.H.Trilling et al. CERN preprint, NPA Oct. 1968; P.L. 28B, no.3, 215 (1968).
- 14. L.Creege, J.D.Fox, H.Frauenfelder et al., P.R.L.17,150 (1966).
- 15. J.Cronin, P.Kunz, W.Risk, P.Wheeler, P.R.L. 18, 25 (1967).
- R.Arnold, I.Budagov, D.C.Candy, G.Myatt, F.A.Nezrick et al., CERN preprint, Aug. 1968, 14th Intern.Conf. on H.E.Physics, Vienna, 1968, paper no. 378; P.L. 28B, no.1, 56 (1968).

17. S.Oneda, J.Pati. P.R. 155, 1621 (1967).

- 18. Б.Струминский, Н.Игнатович, Препринт ОИЯМ Р2 2954 (1966).
- 19. I.Budagov, H.Burmeister, D.C.Cundy, W.Krenz, G.Myatt et al., Proceedings of Intern.Conf. on Elementary Particles; p. 279, Heidelberg (1967).
- I.Budagov, H.Burmeister, D.C.Cundy, W.Krenz, G.Myatt et al., N.Cim. 57A, 182 (1968).
- I.Budagov, D.C.Cundy, G.H.Trilling. Proceedings of Intern. Conf. on Elementary Particles, p. 280, Heidelberg (1967).
- 22. H.W.Hopkins et al. P.R.L. 19; 185 (1967).
- 23. G.H.Trilling. Proceedings of the Intern.Conf. on Weak Interactions, ANL-7130 (1965).
- 24. T.J.Devlin. P.R.L. 20, 683 (1968).
- 25. T.J.Devlin et al. P.R.L. 18, 54 (1967).
- 26. I.Budagov, H.W.Hopkins, W.Krenz et al., 14th Intern.Conf. on H.E.Physics, Vienna, 1968; paper no. 242.
- I.Budagov, H.W.Hopkins, W.Krenz et al. P.R.L. 23, no.8, 427 (1969).
- 28. N.Cabbibo. Proceedings of the XIIIth Intern.Conf. on H.E. Physics, Berkeley, California, 1966.
- 29. S.Aronson, K.Wendell, P.R. 175, 1708 (1968).
- R.Arnold. I.Budagov, F.A.Nezrick, W.Venus. CERN preprint, NPA, April 1968; Journal de Physique, 20 (1969).

Рукопись поступила в издательский отдел 2 июля 1970 года