5052

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

1-5052

3K3 HUT. 3AT

А.П. Гаспарян, А.В. Никитин, Ю.А. Троян

AAGODATODHS BUCOKNX HEPTNN

ОБРАЗОВАНИЕ ИЗОБАР В РЕАКЦИИ пр→рр*п*-ПРИ ИМПУЛЬСЕ НЕЙТРОНОВ ОТ 2 ДО 10 ГЭВ/С

А.П. Гаспарян, А.В. Никитин, Ю.А. Троян

ОБРАЗОВАНИЕ ИЗОБАР В РЕАКЦИИ пр→рр*π*-ПРИ ИМПУЛЬСЕ НЕЙТРОНОВ ОТ 2 ДО 10 ГЭВ/С

Направлено в ЯФ

1-5052

Данная работа посвящена изучению реакции

 $np \rightarrow pp\pi$

в 55-сантиметровой пропановой пузырьковой камере Х/.

На рис. 1 представлены импульсные и угловые распределения протонов и π^- -мезонов в лабораторной системе и в с.п.м. реакции (по всей статистике). Видно, что протоны в с.п.м. реакции сколлимированы вблизи направлений 0⁰ и 180⁰, что указывает на сильную периферию взаимодействия. В угловом распределении π^- -мезонов наблюдается значительное преобладание π^- -мезонов, летящих в переднюю полусферу.

(1)

На рис. 2,3 представлены распределения в лабораторной системе эффективных масс π^- -мезона с протоном быстрым, P_n , и с протоном медленным, P_p , или, что оказывается эквивалентным, в с.ц.м. с протоном летящим в переднюю полусферу и с протоном летящим в заднюю полусферу. События, входящие в распределения рис. 3, разбиты по величине импульса первичного нейтрона на три группы: $P_n < 4$ Гэв/с; $4 < P_n < 7$ Гэв/с; $P_n > 7$ Гэв/с.

x/Подробно о методике получения экспериментальных данных, обработке, оценке примесей и т.д. см./1,2,3/.

На рис. 4 приведены распределения эффективных масс М_{р,}^πи М_{р,}^π- для событий, разбитых по величине четырехмерной передачи на две группы, соответствующие двум диаграммам (подробней см. /3/)

Для аппроксимации экспериментальных распределений по величине эффективной массы необходимо найти наиболее правильную форму фоновой кривой. Кривая фазового объема в нашем случае не подходит, так как не отражает периферического характера взаимодействия.

Анализ угловых характеристик протонов и *п*-мезонов в с.ц.м. реакции для событий из разных областей по эффективной массе системы (р*п*) приводит к следующим выводам.

 а) Углы вылета протонов слабо зависят от величины эффективной массы. Отношение числа протонов, летящих вблизи направлений 0⁰ и 180⁰, к их полному числу остается практически постоянным. Наиболее существенна зависимость углового распределения протонов от величины импульса нейтрона.

б) Для событий вне области изобар распределение п -мезонов
 имеет форму, близкую к изотропной.

Основываясь на выводах (а,б), мы смоделировали ⁷²⁷ 10 тыс. событий реакции вр \rightarrow рр π^- , в которых угловое распределение протонов в с.ц.м. реакции зависело от величины импульса падающего нейтрона и совпадало с экспериментальным. Угловое распределение π^- -мезонов имело изотропную форму. На рис. 5 представлены распределения по импульсам, углам и четырехмерной передаче для моделированных событий. Видно, что данные распределения близки к экспериментальным.

В распределениях $M_{p_n}\pi^-$ или $M_{p_p}\pi^-$ (без разделения событий на группы с q = 0 и q = 1) есть определенная доля ложных комбинаций от событий с q = 1 для $M_{p_n}\pi^-$ и от событий с q = 0 для $M_{p_p}\pi^-$. Проделывается следующая процедура.

а) Смоделированные события с изотропным распределением π -мезона взвешиваются 2 раза: один – по экспериментальному угловому распределению π^- -мезона для событий с q = 1, а другой – для событий с q = 0 (см. рис. 6). В результате получаем две соответствующие фоновые кривые для ложных комбинаций, $F_{p_p}^{noж.}$ и $F_{p_p}^{now.}$. При взвешивании угловые распределения протонов меняются незначительно.

б) Кривые $F_{p_n}^{now.}$ и $F_{p_p}^{now.}$ складываются с фоновой кривой, где π^- – мезон изотропен, с весами, пропорциональными числу событий с q = 0 и с q= 1 соответственно. Веса оказываются независимыми от величины импульса нейтрона и равными 0,4 и 0,6:

$$F_{p,\pi}^{-} = 0.6F_{p,\pi^{-}q=0,1}^{-} + 0.4F_{p,\pi^{-}}^{-} ,$$

$$F_{p,\pi}^{-} = 0.4F_{p,\pi^{-}q=0,1}^{-} + 0.6F_{p,\pi^{-}}^{-} ,$$
(2)

где $F_{p\pi^-q=0,1}$ - фоновая кривая с изотропным распределением π^- -мезонов, которая используется для аппроксимации распределений с признаками q = 0 и q = 1 (рис. 4); $F_{p\pi^-}$ и $F_{p\pi^-}$ - фоновые кривые для аппроксимации распределений без разбиения событий на

На рис. 4 приведены распределения эффективных масс М_{р,п}и М_{р,π}- для событий, разбитых по величине четырехмерной передачи на две группы, соответствующие двум диаграммам (подробней см. /3/)

Для аппроксимации экспериментальных распределений по величине эффективной массы необходимо найти наиболее правильную форму фоновой кривой. Кривая фазового объема в нашем случае не подходит, так как не отражает периферического характера взаимодействия.

Анализ угловых характеристик протонов и *п*-мезонов в с.ц.м. реакции для событий из разных областей по эффективной массе системы (р*п*) приводит к следующим выводам.

 а) Углы вылета протонов слабо зависят от величины эффективной массы. Отношение числа протонов, летящих вблизи направлений 0⁰ и 180⁰,
 к их полному числу остается практически постоянным. Наиболее существенна зависимость углового распределения протонов от величины импульса нейтрона.

б) Для событий вне области изобар распределение π -мезонов
 имеет форму, близкую к изотропной.

Основываясь на выводах (а,б), мы смоделировали^{22/} 10 тыс. событий реакции пр \rightarrow рр π^- , в которых угловое распределение протонов в с.ц.м. реакции зависело от величины импульса падающего нейтрона и совпадало с экспериментальным. Угловое распределение π^- -мезонов имело изотропную форму. На рис. 5 представлены распределения по импульсам, углам и четырехмерной передаче для моделированных событий. Видно, что данные распределения близки к экспериментальным.

В распределениях $M_{p_n}\pi^-$ или $M_{p_p}\pi^-$ (без разделения событий на группы с q = 0 и q = 1) есть определенная доля ложных комбинаций от событий с q = 1 для $M_{p_n}\pi^-$ и от событий с q = 0 для $M_{p_p}\pi^-$. Проделывается следующая процедура.

а) Смоделированные события с изотропным распределением π - мезона взвешиваются 2 раза: один – по экспериментальному угловому распределению π^- -мезона для событий с q = 1, а другой – для событий с q = 0 (см. рис. 6). В результате получаем две соответствующие фоновые кривые для ложных комбинаций, $F_{p_p}^{now}\pi^-$ и $F_{p_p}^{now}\pi^-$. При взвешивании угловые распределения протонов меняются незначительно.

6) Кривые $F_{p_n \pi^-}^{now.}$ и $F_{p_p \pi^-}^{now.}$ складываются с фоновой кривой, где π^- – мезон изотропен, с весами, пропорциональными числу событий с q = 0 и с q = 1 соответственно. Веса оказываются независимыми от величины импульса нейтрона и равными 0,4 и 0,6:

$$F_{p,\pi}^{-} = 0.6 F_{p,\pi^{-}q=0,1}^{+} + 0.4 F_{p,\pi^{-}}^{-},$$

$$F_{p,\pi}^{-} = 0.4 F_{p,\pi^{-}q=0,1}^{-} + 0.6 F_{p,\pi^{-}}^{-},$$
(2)

где $F_{p\pi^-q=0,1}$ – фоновая кривая с изотропным распределением π^- -мезонов, которая используется для аппроксимации распределений с признаками q = 0 и q = 1 (рис. 4); $F_{p\pi^-}$ и $F_{p\pi^-}$ – фоновые кривые для аппроксимации распределений без разбиения событий на

группы с q = 0 и q = 1 (рис. 2,3); "фаз. объем" – фоновая кривая, отражающая фазовый объем реакции $n p \rightarrow pp\pi^-$. Формы различных фоновых кривых, взвешенных по спектру нейтронов, вызвавших реакцию $np \rightarrow pp\pi^-$, приведены на рис. 7. Видно, что моделированные кривые существенно отличаются от фазовой кривой.

Экспериментальные распределения (рис. 2,3,4) аппроксимировались соответствующими наборами брейт-вигнеровских форм ^{/4/} для изобар Δ (1236) , N*(1470) , N*(1688) и фоновых кривых. На рис. 2,3,4 сплошной линией обозначена суммарная аппроксимирующая кривая, пунктиром с точкой – моделированная фоновая кривая. Результаты аппроксимации приведены в табл. 1. Аппроксимация экспериментальных распределений проводилась как с моделированными фоновыми кривыми, так и с фазовыми. В правой последней колонке приведено отношение величины χ^2 к числу степеней свободы. В этой же таблице приведено процентное содержание форм, дающих наилучшие значения отношения χ^2/k .

Из рис. 2,3,4 и табл. 1 видны:

а) существенное различие между распределениями эффективных масс $M_{p_n}\pi - u M_{p_p}\pi - ;$ образование изобар проявляется преимущественно в распределениях эффективных масс $M_{p}\pi - ;$

б) изменение процентного выхода изобар в зависимости от величины импульса первичного нейтрона; с увеличением импульса нейтрона относительная доля первой изобары резко падает, тогда как доли изобар N*(1470) и N*(1688) растут.

 в) доминирующая роль изобары N*(1470), имеющей квантовые числа нейтрона, при импульсах нейтрона P_n > 4 Гэв/с.

Эффект доминирования изобары N*(1470) наблюдался при изучении /5/ гроцесса

(3)

Таблица 1

Pn (⊡o/c)	Tun Komõui PJT	Tun poha	фон (%)	△ ₁₂₃₈ (⁰∕₀)	N#70 (%)	N#580 (%)	Х²/ К
полный спектр	Pnπ [−]	ование	62.5±44	12±22	204±3	51±57	44
	P _P Π		936±2	64±2	1	1	.16
	Pn ∏ī ∎o		49±6	16±3	257±42	93±78	08
	ΡρΠφι		889±36	141±36	-	1	44
1	Pn∏		60±7	40±7	-	-	15
~ 4	P _P π	Ē.	714±67	286±67	-		30
4÷7	PnJ	Moden	427±68	17.6±4	397±78	1	- 11
	Ρ _ρ π		96±32	4±32	. — .	I	10
> 7	PnT		497±5	105±24	268±4	13 ± 6.8	1.0
	PaT		906±23	94±23		-	13
ПОЛНЫЙ СПЕКТР	Рл	ดเรอป์ษณ์ องัษยิศ	309±37	19±23	39±35	1L1 ± 55	1.3
	P _P T		877±24	123±21		_	2.5
	PhIT-Q=0		173±45	234±3	438±46	455±7	10
	РЛФ		68 ±35	32±35	-		30
< 4	PnT		53±8	47 ±8	1 <u> </u>	—	19
	PpT		664±73	336±73	1		44
1.7	P _n TT		213±64	251±4	536±75		4.7
4-1	P₀∏		95±34	5±34	-	—	10
7	₽₀π⁻		23±3	176±2	38 ± 4	21 ±54	43
	P _P Π	Ъ.	848±2.4	452±2.4			49

Снимки получены при облучении протонами с импульсом P_p = 7 Гэв/с брукхевенской 2-метровой камеры, наполненной дейтерием. Всего к каналу реакции (1) было отнесено 349 случаев. Авторы делают вывод, что в данной реакции доминирует обмен состоянием с изотопспином, равным нулю.

Имеются предварительные данные по изучению реакции (1) на ускорителе в Нимроде^{/6/}. Облучалась 2-метровая водородная камера нейтронами со сплошным спектром, полученным при рассеянии выведенного протонного пучка с импульсом 7,5 Гэв/с. Приводятся распределения по эффективной массе М_{р,}^π- и М_{р,}^π- для событий с импульсом падающего нейтрона 5 < P_n < 7,5 Гэв/с.

(4)

В предположении одночастичного обмена отношение между сечениями для диаграмм с q = 1 и q = 0 дается выражением

$$R = \frac{G_{pxn}^{2} \sigma (px \rightarrow p\pi^{-})}{G_{pxp}^{2} \sigma (nx \rightarrow p\pi^{-})},$$

где x – обменная частица; $G_{N\times N}$ – константа связи NxN ; $\sigma(N_X \rightarrow N \pi^-)$ – сечение процесса $N_X \rightarrow N \pi^-$. Отношение R для различных изоспиновых состояний обменной частицы I(x) и системы $I(p\pi^-)$ приведено ниже.

l(pπ ⁻)	I(x)	R
1/2	0	· · · · · · · · · · · · · · · · · · ·
1/2	1	4
3/2	i	1

Отсутствие пика в области 1470 Мэв/с² по М_{р,п}-и сильное образование изобары N*(1470) в распределении по М_{р,п}- при импульсах нейтрона P_n> 4 Гэв/с указывает на то, что величина R <<1 в области масс, отвечающих изобаре N*(1470) • . Следовательно, если изобара N*(1470) преимущественно рождается в нейтронной вершине, то существенен вклад обмена состоянием с изоспином, равным нулю.

На рис. 8,9 представлены полное сечение реакции пр → ррπ⁻/3/ и сечения образования изобар Δ(1236), N*(1470), N*(1688). Сечения изобар определялись из двумерного графика M_{pπ}=f(P_n). Событие считалось принадлежащим к той или иной изобаре в том случае, если величина эффективной массы оказывалась в пределах ширины изобары. Процент фона оценивался по результатам аппроксимации распределений эффективных масс (рис.3). Ошибка в определении сечений изобар включает в себя статистические погрешности, методические неточности в определении формы импульсного спектра падающих нейтронов, ошибки в поправках, возникающие ^в эксперименте ^{/3/} и ошибку из-за неуверенности в оценке фона (последняя составляет 30% от полной ошибки).

В табл. 2 приведены средние величины сечений образования изобар в импульсных интервалах: P_n < 4 Гэв/с, 4 < P_n < 7 Гэв/с и P_n > > 7 Гэв/с. Для определения сечений использовались результаты аппроксимации табл. 1.

Таблица 2

Р _п (Гэв/с)	<i>о</i> д(1236)(мб)	σ _{N*(1470} (мб)	σ N*(1688)(мб)
< 4	2,2 <u>+</u> 0,6	_	_
4 + 7	0,3 <u>+</u> 0,1	0,51 <u>+</u> 0,1	-
. > 7	0,35 <u>+</u> 0,1	0,48 <u>+</u> 0,1	0,24 <u>+</u> 0,06

8

Из рис. 9 и табл. 2 видно, что сечение изобары $\Delta(1236)$ резко падает с увеличением импульса нейтрона, тогда как сечения изобар N*(1470) и N*(1688) остаются постоянными при $P_n > 4$ Гэв/с. Ход сечений в зависимости от импульса нейтрона согласуется с данными, полученными электронной методикой в протонном облучении /7/.

Сечения образования изобар объясняют ход полного сечения реакции пр → pp π⁻. Спадающая часть полного сечения обусловлена уменьшением сечения образования изобары Δ(1236), а постоянство при P_n> 4 Гэв/с отражает тот факт, что сечения образования изобар N*(1470) и N*(1688) слабо меняются в данном интервале импульсов.

На рис. 10,11 представлены распределения по величине эффективной массы (мб/(Гэв/с²)). Каждое событие входило в то или иное распределение с одним из 10 весов:

(5)

 $c_i = \frac{\sigma(p_i)}{N_i},$

где σ(p_i) и N_i - сечение и число событий реакции пр→ррπ⁻ в заданном интервале импульсов падающих нейтронов. В распределения рис. 11 входят события с импульсом падающего нейтрона P_n>5 Гэв/с.

Экспериментальные распределения по такой шкале удобны для абсолютного сравнения с теоретическими моделями.

Подводя итог вышеизложенному, перечислим наиболее важные моменты, отмеченные в данном эксперименте:

1) сильное образование резонансов в нейтронной вершине;

 доминирующая роль изобары N*(1470) при P_n > 4 Гэв/с, что указывает на существенный вклад механизма образования с обменом состоянием с изоспином, равным нулю;

полное сечение реакции и сечения изобар ∆(1236), N*(1470),
 N*(1688) в зависимости от импульса падающего нейтрона.

10

Литература

- В.И. Мороз, А.В. Никитин, Ю.А. Троян. ЯФ, <u>9</u>, 3, 565 (1969);
 В.И. Мороз, А.В. Никитин, Ю.А. Троян. ЯФ, <u>9</u>, 4, 792 (1969);
 Ю.А. Троян. Автореферат диссертации, 1-4055, Дубна, 1968.
- А.П. Гаспарян, А.В. Никитин, Ю.А. Троян. Препринт ОИЯИ, Р1-4642, Дубна, 1969.
- А.П. Гаспарян, А.В. Никитин, Ю.А. Троян. Препринт ОИЯИ, Р1-5041, Дубна, 1970.
- 4. J.D. Jackson. Nuovo Cimento, <u>34</u>, 1644 (1964).
- 5. A. Shapiro et al. Phys. Rev. Letters, <u>21</u>, 1835 (1968).
- 6. E.Lillethun. Nucleon Reactions. Proc. of the Int. Conf. on Elementary Particles at Lund, 1969.
- 7. C.M. Ankenbrandt et al. Nuovo Cimento, <u>35</u>, 1052 (1965);
 G.Belletini et al. Phys.Letters, <u>18</u>, 167 (1965);
 E.W. Anderson et al. Phys.Rev. Letters, <u>16</u>, 855 (1966);
 I.M. Blair et al. Phys.Rev.Letters, <u>17</u>, 789 (1966).

Рукопись поступила в издательский отдел 20 апреля 1970 года.

Рис. 4. Распределения эффективных масс $M_{p_n}\pi - \mu M_{p_p}\pi - для$ событий, соответствующих диаграммам с q = 0 и q = 1.

Рис. 3. Распределения эффективных масс М_р*п*-и М_р*п*⁻для событий, разбитых по величине импульса падающего нейтрона на три группы.

15

Рис. 6. Угловое распределение п⁻-мезонов для событий с q = 0 и q= 1.

17

Рис. 8. Полное сечение реакции пр → рр π⁻ в зависимости от импульса падающего нейтрона.

Рис. 7. Формы различных фоновых кривых, взвешенных по спектру нейтронов, вызвавших реакцию пр → ррт⁻.

