

Т.Д. Блохинцева, А.В. Кравцов, В.И. Медведев, В.И. Поромов, Г.Л. Соколов, С.Г. Шерман

> ИССЛЕДОВАНИЕ РЕАКЦИЙ *π*⁻ р→ *π*⁻ *π*⁺ n И *π*⁻ р→ *π*⁻*π*° р ПРИ ЭНЕРГИИ 339 МЭВ

1969

APPROX T

N de Lia

1 - 4839

£

Т.Д. Блохинцева, А.В. Кравцов, В.И. Медведев, В.И. Поромов, Г.Л. Соколов, С.Г. Шерман

> ИССЛЕДОВАНИЕ РЕАКЦИЙ *π*⁻ р → *π*⁻ *π*⁺ n И *π*⁻ р → *π*⁻*π*° р ПРИ ЭНЕРГИИ 339 МЭВ

> > Направлено в ЯФ

осьодными инстатут влерных исследований БИБЛИЮТЕКА Настоящий эксперимент проводился с помощью 25-сантимеровой водородной камеры ЛЯП ОИЯИ^{/1/}, помещенной в магнитное поле 12, 12 кэ. Пучок π^- -мезонов от внутренней мишени синхроциклотрона ОИЯИ анализировался рассеянным полем ускорителя, а также дополнительным отклоняющим магнитом с углом отклонения 10°. Среднее число частиц, вводимых в камеру за цикл расширения, составляло 10-12. Подробности опыта описаны в работе^{/2/}. Энергия первичного пучка π^- -мезонов, определенная путем измерения радиусов кривизны пучковых треков и усредненная по всем сеансам работы, равнялась 339<u>+</u> ±12 Мэв.

Регстрировались следующие процессы:

 $\pi^- p \rightarrow \pi^- \pi^+ n$ (1)

£

 $\pi^{-}p \rightarrow \pi^{-}\pi^{0}p \qquad (II)$

$$\pi^- p \rightarrow \pi^- \gamma p \qquad (III)$$

 $\pi^- p \rightarrow \pi^- p$ (IV)

$$\pi^{-} \mathbf{p} \rightarrow \pi^{0} \mathbf{n} \qquad (\mathbf{V})$$

Всего было просмотрено ≈ 400 тысяч стереофотографий.

Процедура измерения и критерии отбора

Полученные фотографии дважды просматривались на просмотровых проекторах, при этом эффективность обнаружения двухлучевых звезд составляла ≈ 99%.

Геометрическое восстановление и измерение найденных событий производилось с помощью стереопроектора. Для повышения точности измерений отбирались только те события, которые удовлетворяли следующим геометрическим критериям:

1) угол между первичным треком и медианной плоскостью камеры не превышает 4[°];

2) расстояние от точки взаимодействия до границ видимого объема камеры больше 4 см;

 угол между плоскостью рассеяния отрицательной частицы и медианной плоскостью камеры не превышает 70°;

4) длина протонного трека больше 0,5 см.

После этого из всей совокупности отобранных событий выделялись неупругие события. Критерии разделения упругих и неупругих событий формулировались различным образом для трех интервалов значений угла рассеяния положительной частицы θ .

Для интервала 10⁰ < θ_2 < 70⁰ в качестве меры отклонения от упругой кинематики принималась величина

$$p_{1}^{2} = \left(\frac{\Delta\phi}{\sigma(\Delta\phi)}\right)^{2} + \left(\frac{\Delta\theta}{\sigma(\Delta\theta)}\right)^{2} ,$$

где Δ_{ϕ} - отклонение от компланарности события, $\Delta \theta$ - отклонение от упругой корреляции углов рассеяния положительной и отрицательной частиц.

В интервале $\theta_2 \leq 10^{\circ}$ в связи с большой погрешностью измерения азимутального угла за меру отклонения от упругой кинематики принималась величина

$$\rho_{2}^{2} = \left(\frac{\Delta E}{\sigma(\Delta E)}\right)^{2} \left(\frac{\Delta \theta}{\sigma(\Delta \theta)}\right)^{2}$$

где

$$\mathbf{E} = \mathbf{E}_{+} + \mathbf{E}_{-} - \mathbf{E}_{0}$$

Е _ - начальная энергия, Е_, Е _ - энергия вторичных частиц.

В интервале $\theta_2 \geq 70^0$ отклонение от упругой кинематики характеризовалось величиной

$$\rho_{3}^{2} = \left(\frac{\Delta \theta_{p}}{\sigma(\Delta \theta_{p})}\right)^{2} + \left(\frac{\Delta \theta}{\sigma(\Delta \theta)}\right)^{2} ,$$

где $\Delta \theta_{\ell}$ - отклонение от упругой корреляции угла рассеяния и пробега положительной частицы.

Величины $\sigma(\Delta \phi), \sigma(\Delta \theta), \sigma(\Delta E)$ и $\sigma(\Delta \theta_{\ell})$ – дисперсии распределений событий по соответствующим величинам, определенные экспериментально. Событие считалось неупругим, если величины $\rho_{1}^{2}, \rho_{2}^{2}$ и ρ_{3}^{2} превышали значения 16,5; 15 и 16,5 соответственно. При этом примесь упругих событий в неупругие не превышала 0,2%.

Обсчёт событий и идентификация

Отобранные неупругие события были дважды измерены на стереопроекторе. Результаты измерений обсчитывались на ЭВМ "Минск-22" по программе TREPANG ^{/4/}, которая устраняла систематические ошибки, связанные с усадкой пленки, преломлением в водороде, конической репроекцией при измерении радиусов ^{x/} и торможением частиц.

х/Импульс частицы определялся по радиусу кривизны одной из косоугольных проекций трека на горизонтальную плоскость. Радиус измерялся путем совмещения проекции трека с дугой окружности, нанесенной на плексиглассовую пластинку.

Дальнейший обсчёт события проводился по фит-программе (1 -- С фит), которая использовала алгоритм, описанный в работе /5/.

Каждое событие обсчитывалось в 3-х гипотезах, соответствующих реакциям I. II и III .

Для данного события гипотезы II и III отвергались, если одновременно выполнялись следующие неравенства:

 $\chi_{_{\rm I}}^2 < 7; \quad \chi_{_{\rm II}}^2 > 7; \quad \chi_{_{\rm III}}^2 > 7.$

Если же наряду с $\chi_1^2 < 7$ оказывалось, что хотя бы одно из χ_{Π}^2 или χ_{Π}^2 меньше 7, то привлекалась дополнительная информация о событии. Проводилась визуальная оценка ионизации положительного трека. Наличие отчётливых разрывов на треке однозначно исключает реакции II и III, т.к. при данной энергии все протоны имеют сплошные треки. В некоторых случаях применялась идентификация по пробегу. Для этого определялся пробег протона, имеющего импульс на 3 стандартных ошибки больше измеренного импульса положительной частицы. Если вычисленный таким образом пробег оказывался меньше, чем длина положительного трека, то реакции II и III исключались.

Для разделения реакции I и V использовался тот факт, что 99,8% пар Далица имеют инвариантную массу $\omega_{e^+e^-}$ меньше 100 Мэв/с^{2/6/}. Если оказывалось, что $\omega_{e^+e^-}$ превышает 130 Мэв/с² (30 Мэв/с² соответствует приблизительно 3 ошибкам в этой величине), то событие считалось принадлежащим реакции 1. Если же $\omega_{e^+e^-}$ оказывалось меньше 130 Мэв/с², проводились ионизационные измерения, и электронные события отделялись в соответствии с результатами работы^{/7/}.

На рис. 1 приведено распределение по χ_1^2 для событий, принадлежащих реакции 1. Гистограмма хорошо описывается χ^2 - распределением с 1 степенью свободы.

Для событий, принадлежащих реакциям II и III было построено распределение по квадрату недостающей массы (рис. 2). События в гистограмме группируются вокруг двух значений M^2 , равных О и 195². В качестве критерия разделения событий реакций II и III была выбрана величина $M_0^2 = 9000 \text{ Мэв/с}^4$, соответствующая минимуму между двумя пиками. События с $M_0^2 < 9000 \text{ Мэв}^2/c^4$ были отнесены к реакции III, а события с $M_0^2 > 9000 \text{ Мэв}^2/c^4$ – к реакции II.

Для оценки примесей реакции Ш в II и II в III, а также для проверки правильности используемых в фит-программе ошибок измерений, проводилось моделирование событий реакций II и Ш. Для этого сначала моделировалось "точное" событие с помощью 5 независимых случайных чисел, которые определяли следующие кинематические параметры:

1) импульс пучковой частицы;

2) импульс нейтральной частицы в с.ц.и.;

3) угол рассеяния нейтральной частицы в с.ц.и.;

4) угол вылета протона в системе покоя пары заряженных частиц по отношению к направлению движения этой пары;

5) азимутальный угол протона в системе покоя этой пары. При этом имелась возможность задавать распределения 5 указанных независимых величин произвольным образом (практически для них задавались экспериментальные распределения). Для полученного таким образом "точного" события вычислялись измеряемые величины в лабораторной системе, и в них вносились нормально распределенные случайные добавки, соответствующие средним экспериментальным ошибкам в измеряемых величинах. Моделированное таким образом "экспериментальное" событие обсчитывалось по фит-программе.

Для реакции Ш задавались следующие экспериментальные ошибки: $\Delta p_{+} / p_{+} = 0,090; \quad \Delta p_{-} / p_{-} = 0,075; ошибки в углах = 1°. Эти$

ş

Рис. 2. Распределение по квадрату недостающей массы для событий типа π-р → π-π⁰ р и π⁻р → π⁻ у р. Пунктирная гистограмма – модельное распределение, нормированное на экспериментальное количество событий.

величины были получены усреднением, ошибок, выданных программой геометрического восстановления.

Было разыграно 300 событий. Модельное распределение по M_0^2 , полученное при розыгрыше реакции III, совпало с левым пиком экспериментального распределения (рис. 2). Модельные распределения по $\chi_{III}^2(\gamma)$ (т.е. в верной гипотезе) и $\chi_{II}^2(\gamma)$ (т.е. в неверной гипотезе) также хорошо совпали с соответствующими экспериментальными распределениями.

Для розыгрыша реакции II вначале задавались средние экспериментальные ошибки, равные $\Delta p_+ / p_+ = 0,091; \Delta p_- / p_- = 0,086;$ ошибки в углах = 1°. При розыгрыше с такими ошибками модельное распределение по M_0^2 оказалось значительно шире, чем правый пик экспериментального распределения, из чего следовало, что ошибки в реакции II, по-видимому, завышены. На это же обстоятельство указывает также и тот факт, что экспериментальное распределение по $\chi^2 (\pi^0)$ (в верной гипотезе) уже, чем ожидаемое χ^2 распределение с I степенью свободы (рис. 1). Завышение ошибок в реакции II можно, по-видимому, объяснить неточным учётом многократного рассеяния при вычислении ошибок импульсов в геометрической программе. В реакции II этот дефект должен сказываться сильнее, т.к. средний импульс частиц в этой реакции меньше, чем в реакции III :

в реакции II $\overline{p}_{+} = 360 \text{ Мэв/с,}$ $\overline{p}_{-} = 140 \text{ Мэв/с,}$ в реакции III $\overline{p}_{+} = 430 \text{ Мэв/с,}$ $\overline{p}_{-} = 240 \text{ Мэв/с.}$

С учётом этого обстоятельства розыгрыш реакции II был проделан заново. При этом в фит-программе по-прежнему использовались экспериментальные ошибки, а в розыгрыше модельной звезды – вдвое меньшие. Было разыграно 360 событий. Полученное в результате модельное распределение по M_0^2 удовлетворительно совпало с правым пи-

ком экспериментального распределения (рис. 2). Модельные распределения по $\chi_{II}^2(\pi^0)$ (верная гипотеза) и $\chi_{III}^2(\pi^0)$ (неверная гипотеза) хорошо совпали с экспериментальными.

Оценка примеси по критерию χ^2 существенно превышает оценку примеси по распределению M_0^2 , что, по-видимому, есть следствие завышенных ошибок. Поскольку экспериментальные ошибки известны неточно, а модельные распределения по M_0^2 хорошо совпадают с экспериментальными, оценки примеси, сделанные по модельным распределениям M_0^2 , рассматривались как окончательные и учитывались при вычислении ошибок в сечениях. Величины примесей реакции II в III и III в II оказались равными 10 и 9 соответственно.

Оценка разрешающей способности

Разрешающая способность по основным физическим характеристикам реакции 1 определялась с помощью матрицы ошибок варьируемых параметров Н⁻¹, вычислявшейся в фит-программе.

Полученные оценки разрешающей способности для инвариантных масс пар частиц и угловых распределений в с.ц.и. приведены в таблице 1.

	Таблица 1		
_	Величина	Разрешающая способность для реакции I	
2	ω 7/n	8,4 Мэв/с ²	
	$\omega_{\pi^+ n}$	8,1 Мэв/с ²	
	$\omega_{\pi} - \pi^{+}$	6,5 Мэв/с ²	
	$\cos \theta_{\pi}$ -	0,032	
	$\cos \theta_{\pi^+}$	0,030	
	$\cos \theta_n$	0,080	

Сечения реакций I-III определялись по отношению числа зарегистрированных событий данной реакции к количеству упругих событий. Учёт небольшой примеси низкоэнергетических частиц в пучке и падения эффективности регистрации при больших азимутальных углах проводился описанным ранее способом^{/8/}.

Поправка к сечениям реакций II и III, обусловленная отбрасыванием событий с пробегом протона, меньшим 0,5 см, была оценена по статистическому распределению для импульсов протона в этих реакциях и оказалась равной 1,4% для реакции II и 2,9% - для реакции III.

В таблице II приведено количество отобранных и идентифицированных событий для реакций I-III, а также вычисленные полные сечения.

Полные сечения					
Реакция	Количество событий	Сечение			
$\pi p \rightarrow \pi \pi n$	1200	I,39 <u>+</u> 0,05			
$\pi^- p \rightarrow \pi^- \pi^0 p$	152	0,17 <u>+</u> 0,01			
$\pi^- p \rightarrow \pi^- \gamma p$	155	0,17 <u>+</u> 0,01			

Таблица 🎚	
-----------	--

На рис. 3,5 представлены экспериментальные угловые распределения частиц в с.ц.и., а на рис. 4,6 – распределения по инвариантным массам пар частиц для реакций I и II ^{x/}.

х/Результаты обработки реакции Ш обсуждались в работе ^{/9/}.

Все угловые распределения хорошо описываются разложением по полиномам Лежандра $A_0 P_0 + A_1 P_1 + A_2 P_2$. Коэффициенты A_0 , A_1 и A_2 , определенные по методу наименьших квадратов для каждого распределения, приведены в таблице Ш

Таблица 🎹

Коэффициенты разложения угловых распределений

в ряд $\sum_{k=0}^{2} A_{k} P_{k}$ (Cos θ) части-Реакция A. (Nδ) A. (MD) А2 (МБ) na 0,689<u>+</u>0,022 -0,292<u>+</u>0,039 0,147±0,048 $\pi^{-} \mathbf{p} \rightarrow \pi^{-} \pi^{+} \mathbf{n}$ 0,690<u>+</u>0,022 0,186±0,037 -0.049+0.048 0,694<u>+</u>0,022 $0, 164 \pm 0, 038$ 0,0I0±0,049 n $0,082\pm0,007$ $-0,020\pm0,013$ 0,009±0,017 π⁻ π⁰ $\mathbf{p} \rightarrow \pi^{-} \pi^{0} \mathbf{p}$ 0,081±0,007 0 ±0,012 -0,006±0,017 0,083<u>+</u>0,007 0.0II±0.0I3 0.003+0.017

Анализ результатов

В ряде работ $^{/10/}$ подчеркивалась значительная роль образования изобары Δ (3/2 3/2) в процессах π N \rightarrow π π N.

В 1963 г. Олссоном и Иодхом^{/11/} была предложена усовершенствованная изобарная модель для описания реакции $\pi N \rightarrow \pi \pi N$. Согласно модели Олссона-Иодха, реакция описывается диаграммой, приведенной на рис. 7. В качестве промежуточного состояния авторы модели рассматривали резонанс Δ в s -состоянии по отношению к конечному π -мезону и нерезонансную систему N* (1/2 1/2) также в s -состоянии. Существенным и принципиальным недостатком модели была ее

тоянии. Существенным и принципиальным недостатком модели была ее неспособность объяснить спектр масс пп -систем с Т = 0, в котором наблюдается значительный избыток событий при больших $\omega_{\pi\pi}$

ţ

. Сплошная кривая-расчёт по модели. Рис. 3. Угловые распределения в реакции п⁻р → п n⁺ n

ļ

ţ

В работе Анисовича и др.^{/13/} было показано, что наблюдаемая аномалия в спектре ω в основном может быть объяснена интерференцией между двумя каналами: резонансным с рождением в Р -состоянии и нерезонансным (оба канала имеют начальное состояние

 $P_{1/2}^{+}$).

Анализ, проведенный в настоящей работе, использует модель, учитывающую следующие каналы:

 s - рождение изобары Δ из начального состояния D_{3/2};
 P - рождение Δ из начального состояния P⁺_{1/2} (начальное состояние P⁺_{3/2} не учитывалось, т.к. согласно фазовому анализу упругого π N -рассеяния поглощение из этого состояния при низких энергиях мало);

3) рождение системы N* (1/2 1/2) в s -состоянии из начального состояния $P_{1/2}^+$ (нерезонансный канал).

Амплитуды, соответствующие этим каналам, использовались в той форме, в которой они были описаны в работе Олссона

Использованная модель содержала следующие 11 параметров: а и а₃ – амплитуды s – рождения Δ в изотопсостояниях T = 1/2 и T = 3/2; Φ_1 – фаза между ними; g₁ и g₃ – амплитуды p – рождения Δ в состояниях T = 1/2 и T = 3/2; Φ_2 – фаза между ними; с₁ и с₂ – амплитуды рождения N*(1/2 1/2)⁻⁻⁻⁻ в состояниях T = 1/2 и T = 3/2; Φ_3 – фаза между ними; Φ_4 – фаза между каналом с p –рождением Δ и нерезонансным каналом; Φ_5 – фаза между каналом с s –рождением Δ и нерезонансным каналом.

Параметры модели были определены по методу наименьших квадратов. При этом использовались следующие экспериментальные данные:

.

4.

ţ

Рис. 7.

1) полные сечения реакций

$$\pi^{+} p \rightarrow \pi^{+} \pi^{+} n ,$$

$$\pi^{+} p \rightarrow \pi^{+} \pi^{0} p ,$$

$$\pi^{-} p \rightarrow \pi^{-} \pi^{0} p ,$$

$$\pi^{-} p \rightarrow \pi^{0} \pi^{0} n ,$$

найденные интерполяцией имеющихся экспериментальных данных при энергиях < 600 Мэв. Результаты интерполяции приведены в работе /14/

2) спектры инвариантных масс ω_μ + π · ω_π - n · ω_π + n ;
 3) коэффициенты разложения угловых распределений реакции
 π⁻ p → π⁻π⁺ n в ряд по полиномам Лежандра.

Число степеней свободы равнялось NDF = 38. Использовалась программа минимизации квадратичного функционала методом линеаризации ^{/15/}. Начальные значения фаз $\Phi_1 + \Phi_5$ задавались генератором случайных чисел. В результате минимизации из \approx 20 случайных наборов были получены 2 решения, имеющие $\chi_1^2 = 52,7$ и $\chi_1^2 = 55,2$.

Оба решения приведены в таблице IV .

Таблица IV

Параметры модели

(амплитуды a,g, c приведены в ферми, фазы Ф-в градусах)

араметр Решение І		Решение П	
a	0,007±0,0II	0,009 <u>+</u> 0,018	
a3	0,020 <u>+</u> 0,014	0,017±0,022	
91	0,128±0,009	0,131±0,008	
93	0,04 <u>+</u> 0,07	0,05 <u>+</u> 0,08	
Ĉ,	2,48± 0,12	2,40 ±0,13	
C ₃	0,23± 0,10	$0,22 \pm 0,10$	
Φ,	-6 ±720	-3 ±640	
Φ_2	-87 ±33	82 <u>+</u> 22	
Φ_3	207 ± 67	202 ± 56	
Φ_4	151 <u>+</u> 73	293 ± 57	
Φ_{5}	2I0 <u>+</u> 75	202 <u>+</u> 58	
χ^2	52,7	55,2	
NDF	38	38	

Оба набора практически одинаково хорошо описывают массовые и угловые распределения в реакции 1 (рис. 3,4).

Ни угловые, ни массовые спектры реакции $\pi^- p \to \pi^- \pi^- p$ при определении параметров не использовались. Спектры этой реакции, вычисленные с помощью наборов I и II, отличаются друг от друга несущественно. Согласие с экспериментом в реакции $\pi^- p \to \pi^- \pi^0 p$ значительно хуже, чем в реакции $\pi^- p \to \pi^- \pi^+ n$ (рис. 5,6), особенно в распределениях по $\omega_{\pi^- p}$ и $\omega_{\pi^0 p}$.

С помощью полученных параметров были определены парциальные сечения реакции π N → π π N, оказавшиеся равными:

$$\sigma(\mathbf{P}_{11}) = 3,48\pm0,25 \text{ MG}; \qquad \sigma(\mathbf{D}_{13}) = 0,01\pm0,08 \text{ MG}; \sigma(\mathbf{P}_{31}) = 0,1\pm0,2 \text{ MG}; \qquad \sigma(\mathbf{D}_{33}) = 0,2\pm0,2 \text{ MG}.$$

Вычисленные парциальные сечения не противоречат результатам фазового анализа упругого πN -рассеяния, приведенным в работах /16/, однако величина σ (P_{11}), полученная в настоящей работе, существенно больше значения, приведенного в работе Барейра и др. /17/.

В таблице V приведены сечения различных реакций в каждом канале

Таблица V

Сечения каналов модели для различных реакций (мб)

Реакция	каналы		
	s -рождение ∆	_Р -рождение Δ	нерезонансный
$\pi^{+} \mathbf{p} \rightarrow \pi^{+} \pi^{+} \mathbf{n}$ $\pi^{+} \mathbf{p} \rightarrow \pi^{+} \pi^{0} \mathbf{p}$ $\pi^{-} \mathbf{p} \rightarrow \pi^{-} \pi^{0} \mathbf{p}$ $\pi^{-} \mathbf{p} \rightarrow \pi^{-} \pi^{+} \mathbf{n}$ $\pi^{-} \mathbf{p} \rightarrow \pi^{0} \pi^{0} \mathbf{n}$	$0,03 \pm 0,04$ $0,1 \pm 0,2$ $0,01 \pm 0,03$ $0,05 \pm 0,02$ $0,001 \pm 0,009$	$\begin{array}{c} 0,01 \pm 0,04 \\ 0,05 \pm 0,20 \\ 0,10 \pm 0,02 \\ 0,32 \pm 0,06 \\ 0,18 \pm 0,03 \end{array}$	$0,04 \pm 0,03$ $0,011\pm 0,009$ $0,08 \pm 0,02$ $0,99 \pm 0,06$ $0,69 \pm 0,15$

 № пользованная модель в основном хорошо согласуется с экспериментальными данными. Имеющиеся расхождения с экспериментом (главным образом, в массовых спектрах реакции π⁻ р → π⁻ π⁰ р) относятся к реакции с малым сечением, поэтому можно надеяться устранить их с помощью малых поправок к модели.

В заключение авторы считают своим приятным долгом поблагодарить Л.Л.Неменова за постановку задачи, постоянное внимание и систематические обсуждения, Г.И.Селиванова, В.А.Жукова, В.Г.Гребинника, Г.Либмана и группу лаборантов – за большую помощь в получении и обработке пленки, а также коллектив ВЦ филиала ЛФТИ – за содействие в обработке результатов.

Литература

- 1. Т.Д.Блохинцева, А.Т.Василенко, В.Г.Гребинник, В.А.Жуков, Г.Либман, Л.Л.Неменов, Г.И.Селиванов, Юань Жун-фан. ПТЭ, 5, 51 (1962).
- 2. Т.Д.Блохинцева, В.Г.Гребинник, В.А.Жуков и др. ЖЭТФ 44, 116 (1963).
- 3. Т.Д.Блохинцева, В.Г.Гребинник, В.А.Жуков и др. ЯФ <u>3</u>, 511 (1966).
- 4. Т.Д.Блохинцева, С.Г.Шерман и др. Препринт ОИЯИ 10-3929, Дубна 1968.
- 5. З.М.Иванченко, А.Ф.Лукъянцев, В.И.Мороз и др. Препринт ОИЯИ Р-2399, Дубна 1965.
- N.Samios, R.Plano, A.Prodell et al. Phys.Rev. <u>126</u>, 1844 (1962).
 E.Fowler, F.Grawford, L.Lloyd et al. Phys.Rev.Lett. <u>10</u>, 110 (1963).
- 7. Л.Л.Неменов. Диссертация, ОИЯИ, 1966.
- 8. Т.Д.Блохинцева, В.Г.Гребинник, В.А.Жуков и др. ЯФ 1, 103 (1965).
- 9. Т.Д.Блохинцева, А.В.Кравцов, С.Г.Шерман. ЯФ 8, 928 (1968).
- В.А.Жуков, Л.Л.Неменнов, Юань Жун-фан. ЯФ <u>4</u>, 148 (ё966).
 А.П.Комар, М.М.Макаров, В.А.Шегельский. Препринт ФТИ-060, Ленинград (1967).

11. M.Olsson, University of Maryland Technical Report, No 379(1964). G.Yodh, M.Olsson, Phys.Rev., <u>145</u>, 1309 (1966).

12. J.Kirz, J.Schwartz, R.Tripp. Phys.Rev., <u>130</u>, 2481 (1963).

- 13. В.В.Анисович, Е.М.Левин, А.К.Лихоед, Ю.Г.Строганов, ЯФ <u>8</u>, 563 (1968).
- 14. А.В.Кравцов. Препринт ФТИ-208, Ленинград (1969).
- 15. С.Н.Соколов, И.Н.Силин. Препринт ОИЯИ Д-810, Дубна 1961.

16. A.Donnachie, R.Kirsopp, C.Lovelace. Phys.Lett. 268, 161 (1968).

В.А.Шегельский. Препринт ФТИ-165, Ленинград (1969).

17. P.Bareyre, C.Brichman, C.Villet, Phys.Rev. <u>165</u>, 1730 (1968).

Рукопись поступила в издательский отдел 8 декабря 1969 года.