СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

C 346,6a

X-303

Дубна

1 - 4476

7/11-69

М.С.Хвастунов

об идентификации распада X° , $\eta + \gamma$ $\downarrow \gamma + \gamma$

1 - 4476

М.С.Хвастунов

об идентификации распада Х°- η + γ

В данной работе обсуждаются некоторые особенности кинематики распадов $X^0 \to \eta \to \gamma + \gamma$, $X^0 \to \pi^0 + \gamma + \mu$, $X^0 \to \pi^0 + \pi^0 \to \gamma + \gamma$. При распадах $X^0 \to \pi^0 + \gamma$ и $X^0 \to \pi^0 + \pi^0$ резонансов X с большой массой ($\mathfrak{m}_{X^0} \gg \mathfrak{m}_{\pi^0}$) пары фотонов с наименьшими углами разлета с большой вероятностью являются распадными парами от π^0 -мезонов. При этом углы разлета $\theta_{\pi^0\gamma} = (\vec{P}_{\pi^0}, \vec{P}_{\gamma})$ и $\theta_{\pi^0_1\pi^0_2} = (\vec{P}_{\pi^0_1}, \vec{P}_{\pi^0_2})$ в подавляющем большинстве случаев не меньше минимальных углов разлета $\theta_{\pi^0\gamma}^{(\mathfrak{min})}$ и $\theta_{\pi^0_1\pi^0_2}^{(\mathfrak{min})}$. Благодаря этому, обеспечивается успех методов, использующих только угловые измерения распадных фотонов.

Дов, испольсующи с ситуацию имеем при распадах $X \to \eta + \gamma$ Существенно иную ситуацию имеем при распадах $X \to \eta + \gamma$ Минимальный угол разлета $\begin{pmatrix} m^{in} \\ \eta \\ \gamma \end{pmatrix} = \begin{pmatrix} p^{\bullet} \\ \eta \\ \gamma \end{pmatrix} = \begin{pmatrix} 0^{\bullet} \\ \eta \\ \gamma \end{pmatrix}$ (по крайней мере для $m_{\chi^0} \leq 2m_{\eta}$), и по углам разлета фотонов невозможно выделить распадную пару от η -мезона. В этом случае для надежной идентификации моды распада необходимы измерения энергий и углов вылета распадных фотонов. Комбинируя попарно все фотоны, можно вычислить три значения эффективной массы. Однако такая процедура нежелательна, так как она приводит к увеличению статистического фона.

Если использовать известную функцию угловой корреляции фотонов при распаде X' -> y + y бесспинового резонанса X' /1/

$$w(\theta,\beta) = \frac{1-\beta^2}{2\beta} \quad \frac{\cos(\theta/2)}{\sin^2(\theta/2)} \quad \frac{1}{\sqrt{\beta^2 - \cos^2(\theta/2)}}, (\beta \ge \cos\theta/2),$$
(1)

то в большинстве случаев распада $X^0 \rightarrow X' + \gamma$ или $X^0 \rightarrow X' + X'$ мож- $\downarrow \rightarrow \gamma + \gamma$ $\downarrow \rightarrow \gamma \gamma \downarrow \rightarrow \gamma \gamma$ но однозначно выделить распадную пару фотонов от X' - мезона. В выражении (1) β -скорость резонанса X', а θ -угол разлета распадных фотонов от X'. Путем замены угла θ параметром $\xi = \sin(\theta/2) / \sin(\theta_m/2)$ можно функцию w(θ, β) преобразовать к виду /2/ x)

$$w(\xi, \gamma) = \frac{1}{\xi^2} \sqrt{\frac{1-\xi^2/\gamma^2}{\xi^2-1}},$$
 (1')

где $\gamma = 1/\sqrt{1-\beta^2}$ и $\sin(\theta_m/2) = 1/\gamma$. Вероятность того, что при распаде X' $\rightarrow \gamma$ + γ

1) параметр ξ не превосходит некоторого значения $\xi_{\rm i}$, вычис-ляется по формуле $^{/2/}$

$$W(\xi_{1}, \gamma) = \int_{1}^{\xi_{1}} w(\xi, \gamma) d\xi / \int_{1}^{\gamma} w(\xi, \gamma) d\xi = \sqrt{\frac{1 - 1/\xi_{1}^{2}}{1 - 1/\gamma^{2}}};$$
(2)

2) параметр $k_1 = E_{\gamma 1}/(E_x^{\prime}/2)$ не меньше некоторого значения $k_1 = 1 - \sqrt{1 - 1/\xi_1^2}$, а параметр $k_2 = E_{\gamma 2}/(E_x^{\prime}/2)$ не больше $2 - k_1 = 1 + \sqrt{1 - 1/\xi_1^2}$, вычисляется по формуле /2/

$$W_{1}(k_{1}, \gamma) = (1-k_{1})/\sqrt{1-1/\gamma^{2}};$$
 (3)

3) параметр $a = \sin \theta_2 / \sin \theta_1$ $(\theta_1 = (\vec{p}_{\gamma_1}, \vec{p}_x,), \theta_2 = (\vec{p}_{\gamma_2}, \vec{p}_x,))$ не меньше выбранного значения a_1 , вычисляется по формуле /2/

$$W_{2}(a_{i}, \gamma) = \left(\frac{1-a_{i}}{1+a_{i}}\right) / \sqrt{1-1/\gamma^{2}}$$
 (4)

x) Функция $w(\xi, \gamma)$ отличается от функции $w(\theta, \beta)$ нормировочным множителем $\frac{1}{2} \cdot \frac{\gamma^2}{\sqrt{\gamma^2 - 1}}$. Наиболее просто картина распада выглядит в системе покоя резонанса. Поэтому количественное рассмотрение будем проводить в основном в этой системе отсчета.

Распад $X^0 \rightarrow X' + \gamma$ характеризуется тремя углами и тремя $\downarrow \rightarrow \gamma_1 + \gamma_2$ энергиями: $\theta_{\gamma_1 \gamma_2} = (p_{\gamma_1}, p_{\gamma_2})$, $\theta_{\gamma\gamma_1} = (p_{\gamma}, p_{\gamma_1}), \theta_{\gamma\gamma_2} = (p_{\gamma}, p_{\gamma_2}), E_{\gamma_1}, E_{\gamma_2}$ и \mathbf{E}_{γ} . Пользуясь функциями $W(\xi_i,\gamma)$, $W_1(\mathbf{k}_i,\gamma)$ и $W_2(a_i,\gamma)$, можно вычислить вероятности W того, что при распаде величины $heta_{\gamma_1\gamma_2}$, $heta_{\gamma\gamma_1}$, $heta_{\gamma\gamma_2}$, $ext{E}_{\gamma_1}$, $ext{E}_{\gamma_2}$ и $ext{E}_{\gamma}$ находятся в определенных границах. На рис. 1 и 2 в качестве примера приведены распределения вероятностей W для этих величин при распадах $\omega \rightarrow \eta + \gamma$ и $\phi \rightarrow \eta + \gamma$. $\downarrow \rightarrow \gamma_1 + \gamma_2$ $\downarrow \rightarrow \gamma_1 + \gamma_2$ Для сравнения на этих же рисунках приведены распределения вероятносдля $\omega \rightarrow \pi^0 + \gamma$ и $\phi \rightarrow \pi^0 + \gamma$. Как видно из $\downarrow \gamma_1 + \gamma_2$ $\downarrow \rightarrow \gamma_1 + \gamma_2$ тей W с энергией, большей максимальной энергии фотона при распаде ω (ϕ) + η + γ . Поэтому, если имеется смесь распадов: $(\omega (\phi) \rightarrow \pi^0 \gamma) + (\omega (\phi) \rightarrow \eta + \gamma)$, то разделить эти моды распада не сложно. При распаде ω (ϕ) $\rightarrow \pi^0_{LY}$ + γ всегда энергия Е , "свободного" фотона больше энергий Е у и Е у распадных фотонов от π^0 -мезона. По этому признаку легко выделить распадную пару фотонов от π^0 -мезонов. В случае распада $X^0 \to \eta \xrightarrow{+ \gamma} + \gamma$ выделение пары фотонов от 9 -мезона не всегда однозначно.

Рассмотрим сначала распад ω →η +γ . Как видно из рис.1, → γ₁+γ₂ в большинстве случаев распада справедливы неравенства

$$\theta_{\max} \geq \theta_{\gamma_1 \gamma_2} \geq \theta_{\gamma \gamma_2} \geq \theta_{\gamma \gamma_1} \geq \theta_{\min} \quad .$$

$$\mathbf{E}_{\min} = \mathbf{E}_{\gamma} \leq \mathbf{E}_{\gamma_1} \leq \mathbf{E}_{\gamma_2} \leq \mathbf{E}_{\max} \quad ,$$

$$\theta_{\gamma_1 \gamma_2} = \theta_{\gamma \gamma_2} \geq \Delta \theta \, .$$
(5)

5

ŝ

Из неравенств (5) видно, что пары фотонов с наибольшим углом разлета и наибольшими энергиями происходят от распада η^0 -мезона. При $\theta_{\min} = 61^{\circ}$, $\theta_{\max} = 151^{\circ}$, $E_{\min} = 200$ Мэв, $E_{\max} = 363$ Мэв и $\Delta \theta = 3,5^{\circ}$ неравенствам (5) удовлетворяет $\approx 70\%$ распадов $\omega^0 + \eta^0 + \gamma$. Для оставшихся $\approx 30\%$ распадов можно написать неравенства

$$\theta_{\max} < \theta_{\gamma_1 \gamma_2} \stackrel{\approx}{=} \theta_{\gamma \gamma_2} > \theta_{\gamma \gamma_1} < \theta_{\min} ,$$

$$E_{\min} \stackrel{\approx}{=} E_{\gamma} \stackrel{\approx}{=} E_{\gamma_1} < < E_{\gamma_2} > E_{\max} .$$
(5')

Для таких событий в качестве распадной пары фотонов от η⁰ -мезона можно взять фотон с наибольшей энергией и один из фотонов с меньшей энергией. Каждое событие разбивается на две комбинации, которые берутся с весом 1/2. Эти комбинации мало отличаются друг от друга.

Подобная картина наблюдается и для распадов $\phi \rightarrow \eta + \gamma$ (см. рис. 2).

Всю совокупность распадов разобьем на три группы.

К первой группе отнесем распады, удовлетворяюшие условиям

$$\theta_{\min}^{(1)} \leq \theta_{\gamma_1 \gamma_2} \leq \theta_{\gamma \gamma_1} \leq \theta_{\gamma \gamma_2} \leq \theta_{\max}^{(1)} ,$$

$$E_{\min}^{(1)} \leq E_{\gamma_1} \leq E_{\gamma_2} \leq E_{\gamma} = E_{\max}^{(1)} ,$$

$$\theta_{\gamma \gamma_1} - \theta_{\gamma_1 \gamma_2} \geq \Delta \theta.$$
(6)

В этой группе пары фотоков с наименьшим углом разлета и наименьшими энергиями – пары от распада η –мезона. При $\theta_{\min}^{(1)} = 113^{\circ}, \theta_{\max}^{(1)} = 130^{\circ}, E_{\min}^{(1)} = 306$ Мэв, $E_{\max}^{(1)} = 350$ Мэв к $\Delta \theta = 3,5^{\circ}$ в первую группу входит $\approx 12\%$ событий.

Ко второй группе отнесем события, удовлетворяющие условиям:

$$\theta_{\min}^{(2)} \leq \theta_{\gamma_1 \gamma_2} \stackrel{\cong}{=} \theta_{\gamma \gamma_1} < \theta_{\gamma \gamma_2} \leq \theta_{\max}^{(2)} ,$$

$$E_{\max}^{(2)} \geq E_{\gamma} \stackrel{\cong}{=} E_{\gamma_2} > E_{\gamma_1} \geq E_{\min}^{(2)} ,$$

$$(6')$$

$$\theta_{\min}^{(1)} \cong \theta_{\gamma_1 \gamma_2} \cong \theta_{\gamma \gamma_1} < \theta_{\gamma \gamma_2} > \theta_{\max}^{(1)}$$

$$\mathbf{E}_{\max}^{(1)} \cong \mathbf{E}_{\gamma} \cong \mathbf{E}_{\gamma_2} > \mathbf{E}_{\gamma_1} < \mathbf{E}_{\min}^{(1)} .$$

При $\theta_{\min}^{(2)} = 111^{\circ}$, $\theta_{\max}^{(2)} = 135^{\circ}$, $E_{\min}^{(2)} = 288$ Мэв и $E_{\max}^{(2)} = 368$ Мэв во вторую группу входит $\approx 10\%$ распадов. Для событий из этой группы в качестве распадной пары фотонов от η -мезона можно взять фотон с наименьшей энергией и один из фотонов с большей энергией; событие разбивается на две комбинации, каждая из которых берется с ресом 1/2. Эти комбинации мало отличаются друг от друга.

В третью группу входят распады, удовлетворяющие условиям

$$\theta_{\max}^{(2)} < \theta_{\gamma\gamma_{2}} > \theta_{\gamma\gamma_{2}} > \theta_{\gamma\gamma_{1}} < \theta_{\min}^{(2)} ,$$

$$E_{\min}^{(2)} > E_{\gamma_{1}} < E_{\gamma} < E_{\gamma_{2}} > E_{\max}^{(2)} ,$$

$$\theta_{\gamma_{1}\gamma_{2}} - \theta_{\gamma\gamma_{1}} \ge \Delta\theta .$$

$$(6'')$$

К этой группе при Δθ = 3,5⁰ относится ≈ 78% распадов. Для таких событий пара фотонов с энергиями наибольшей и наименьшей и углом разлета, средним из трех углов, является распадной парой от η -мезона.

Таким образом, при распаде ω (ϕ) $\rightarrow \eta + \gamma$ $B \approx 70\%$ ($\approx 88\%$) случаев можно однозначно указать распадную пару фотонов от η -мезона, и в $\approx 30\%$ ($\approx 12\%$) случаев однозначно сделать этого нельзя. Доказательством того, что зарегистрированные в некотором эксперименте 3γ - события с эффективной массой, близкой к массе m_x резонанса X , являются распадами на $\pi^0(\eta$) и у этого резонанса, могут служить:

1) Распределение по энергии "свободного" фотона, не входящего в пару распадных фотонов от предполагаемого $\pi^0(\eta)$ –мезона. В случае двухчастичного распада $X \rightarrow \pi^0(\eta) + y$ это распределение в системе центра масс 3γ –системы должно быть сконцентрировано около определенного значения энергии E_{γ} , равного

$$E_{\gamma} = \frac{1}{2m_{x}} (m_{x}^{2} - m_{\pi^{0}(\gamma)}^{2}), \qquad (7)$$

с шириной, равной полуширине резонанса Х.

2) Распределение пар распадных фотонов от предполагаемого π⁰(η) мезона на двухмерном графике

$$E_{\gamma_1}/E_{\gamma_2} = (1 - \sqrt{1 - 1/\xi^2})/(1 + \sqrt{1 - 1/\xi^2}), \qquad (8)$$

FRE $\xi = \sin(\theta_{\gamma_1 \gamma_2}/2) / \sin(\theta_m/2), \sin(\theta_m/2) = m_{\pi^0(\eta_1)} / E_{\pi^0(\eta_1)}$

$$E_{\pi^{0}(\eta)} = \sqrt{p^{2} + m_{\pi^{0}(\eta)}^{2}}, \quad p = E_{\gamma}.$$

При двухчастичном распаде X $*\pi^{0}(\eta) + y$ энергия $E_{\pi^{0}(\eta)}^{n}\pi^{0}(\eta)$ -мезона в системе покоя резонанса фиксирована с точностью до полуширины резонанса X. Поэтому пары распадных фотонов от $\pi^{0}(\eta)$ - мезонов должны хорошо ложиться на график функции (8) для распада $\pi^{0}(\eta) \cdot y_{1} + y_{2}$ с энергией $\pi^{0}(\eta)$ -мезона $E_{\pi^{0}(\eta)}$. Если энергии $E_{\gamma_{1}}$, $E_{\gamma_{2}}$ и угол разлета $\theta_{\gamma_{1}\gamma_{2}}$ для какой-либо пары фотонов хорошо согласуются с равенством (8), то эффективная масса такой пары обязательно совпадает с массой $\pi^{0}(\eta)$ -мезона. Обратное справедливо не всегда: не каждая пара фотонов с эффективной массой, близкой к массе $\pi^{0}(\eta)$ -мезона, хорошо ложится на график функции (8) для $\pi^{0}(\eta)$ -мезона.

3) Распределение пар распадных фотонов от предполагаемого $\pi^{0}(\eta)$ - мезона по параметру $\xi = \sin(\theta_{\gamma_{1} \gamma_{2}}/2) / \sin(\theta_{m}/2)$. Для $\pi^{0}(\eta)$ - мезонов это распределение описывается функцией w (ξ, γ) угловой кор-реляции распадных фотонов при $\gamma = E \pi^{0}(\eta) / m \pi^{0}(\eta)$.

4) В системе центра масс двухчастичной реакции, например

$$\pi^{-} + \mathbf{p} \to \mathbf{X}^{0} + \mathbf{n} , \qquad (9)$$

импульс резонанса Х фиксирован:

$$\mathbf{p}_{x} = \frac{1}{2E_{0}} \left\{ \left[E_{0}^{2} - (\mathbf{m}_{x} + \mathbf{m}_{n})^{2} \right] \left[E_{0}^{2} - (\mathbf{m}_{x} + \mathbf{m}_{n})^{2} \right] \right\}^{\frac{1}{2}}, \quad (10)$$

где E_0 - полная энергия в системе центра масс реакции (9). Дополнительным (к обсуждавшимся в предыдуших пунктах) фактом, указывающим на моду распада $\chi^0 \to \pi^0(\eta) + \gamma$, может служить распределение событий по двухмерному графику $E_1/E_2 = f(-\theta_{\pi^0}(\eta)\gamma)$, где E_1 и $E_2 = -$ меньшая и большая энергии из двух энергий $E_{\pi^0}(\eta)$, и E_γ в системе центра масс реакции (9) и $\theta_{\pi^0}(\eta) = (\vec{p}_{\pi^0}(\eta), \vec{p}_\gamma)$ в этой же системе. Значения функции $f(\theta_{\pi^0}(\eta)\gamma)$ можно вычислять численным способом. Случаи двухчастичного распада $\chi^0 \to \pi^0(\eta) + \gamma$ резонансов χ , рождающихся в двухчастичной реакции (9), должны хорошо ложиться на график функции $E_1/E_2 = f(\theta_{\pi^0}(\eta)\gamma)$ для энергии резонанса χ равной $E_x = \sqrt{p^2}_x + m^2_x$, где p_x определяется выражением (10). Если для какого-либо 3γ -события энергии $E_{\pi^0}(\eta)$, и E_γ и угол $\theta_{\pi^0}(\eta)\gamma$

X , то эффективная масса $\pi^0(\eta) y$ -системы обязательно совпадает с массой резонанса X . Обратное не всегда справедливо: не каждое событие с эффективной массой $\pi^0(\eta) y$ -системы, близкой к массе резонанса X , хорошо ложится на график функции E /E = f($\theta_{\pi^0(\eta)y}$).

Для распада $X^0 \rightarrow \pi_{\to\gamma\gamma}^0 + \pi_{\to\gamma\gamma}^0$ можно провести рассуждения, аналогичные предыдущим. Этот распад будем описывать двумя углами и двумя энергиями: $\theta_{\gamma\gamma}^{(\pi)}$ -наибольшим углом между распадными фотонами от π^0 -мезона и $\theta_{\gamma\gamma}$ -наименьшим углом между фотонами от разных π^0 -мезонов, E_1 и E_2 - наименьшей и наибольшей энергиями распадных фотонов. В качестве примера на рис. З приведены вероятности того, что при распаде $f^0 \rightarrow \pi^0 + \pi^0$ угол $\theta_{\gamma\gamma}^{(\pi)}(\theta_{\gamma\gamma})$ не больше (не меньше) некоторого значения и энергия $E_1(E_2)$ не меньше (не больше) некоторого выбранного значения. Вероятности вычислялись с использованием функций $W(\xi_1, \gamma), W_1(k_1, \gamma)$ и $W_2(a_1, \gamma)$. Для большинства случаев можно записать неравенства

9

$$\theta_{\gamma\gamma} - \theta_{\gamma\gamma}^{(\pi\gamma)} \ge \Delta \theta ,$$

$$E_{1} \ge E_{\min} , \qquad (11)$$

$$E_{2} \le E_{\max} .$$

Для таких событий пара фотонов с наименьшим углом разлета происходит от одного π^0 -мезона, а оставшиеся два фотона – от другого π^0 -мезона. При $\Delta \theta$ = 5°, Е , = 30 Мэв и Е $_2$ = 600 Мэв в эту группу входит ≈ 85% событий. Оставшиеся события можно разбить на комбинации – три комбинации для каждого события. Предпочтительней та комбинация, которая удовлетворяет условиям

$$|\mathbf{E}_{\gamma_1} + \mathbf{E}_{\gamma_2} - \mathbf{m}_{4\gamma/2}| \le \Delta \mathbf{E}_1$$

$$|\mathbf{E}_{\gamma_3} + \mathbf{E}_{\gamma_4} - \mathbf{m}_{4\gamma/2} | \leq \Delta \mathbf{E}_2,$$

$$|\mathbf{E}_{\gamma_{1}}/\mathbf{E}_{\gamma_{2}} - (1 - \sqrt{1 - 1/\xi_{12}^{2}})/(1 + \sqrt{1 - 1/\xi_{12}^{2}})| \leq \Delta_{1}, (\mathbf{E}_{\gamma_{1}} \leq \mathbf{E}_{\gamma_{2}}),$$
(12)

$$|\mathbf{E}_{\gamma_3}/\mathbf{E}_{\gamma_4} - (1 - \sqrt{1 - 1/\xi_{34}^2})/(1 + \sqrt{1 - 1/\xi_{34}^2})| \le \Delta_2 , (\mathbf{E}_{\gamma_3} \le \mathbf{E}_{\gamma_4}),$$

где E_{γ_1} , E_{γ_2} и E_{γ_3} , E_{γ_4} – энергии распадных фотонов γ_1 , γ_2 и γ_3 , γ_4 от предполагаемых π^0 –мезонов, $m_{4\gamma}$ – эффективная масса 4γ –системы,

$$\xi_{12} = \sin\left(\theta_{\gamma_1\gamma_2}/2\right) / \sin(\theta_m/2), \quad \xi_{34} = \sin\left(\theta_{\gamma_3\gamma_4}/2\right) / \sin\left(\theta_m/2\right),$$

$$\theta_{\gamma_1\gamma_2} = (\vec{p}_{\gamma_1}, \vec{p}_{\gamma_2}), \quad \theta_{\gamma_3\gamma_4} = (\vec{p}_{\gamma_3}, \vec{p}_{\gamma_4}) \quad \mu \quad \sin\left(\theta_m/2\right) = m_{\pi^0} / (m_{4\gamma}/2).$$

Величины ΔE₁ , ΔE₂ , Δ₁ и Δ₂ определяются ошибками измерения энергий и углов вылета фотонов. Рассуждения о том, какие распределения могут быть привлечены для доказательства моды распада $X^0 \rightarrow \pi^0 + \pi^0$, аналогичны соответствующим рассуждениям относительно моды распада $X^0 \rightarrow \pi^0(\eta) + \gamma$.

Краткие выводы

Использование функции угловой корреляции фотонов от распада бесспинового резонанса $X' \rightarrow y_{\gamma}$ позволяет для большинства распадов резонансов $X \rightarrow X' + y$ и $X \rightarrow X' + X'$ однозначно указать распадную пару фотонов от X'.

Автор выражает благодарность Г.И. Копылову за полезные обсуждения.

Литература

Г. Челлен. Физика элементарных частиц, "Наука", 1966.
 М.С. Хвастунов. Сообщение ОИЯИ, 1-4475, Дубна, 1969.

Рукопись поступила в издательский отдел 7 мая 1969 года.

Рис.1. Распределение вероятностей для величин $\theta_{\gamma_1\gamma_2}$, $\theta_{\gamma\gamma_1}$, $\theta_{\gamma\gamma_2}$, $E_{\gamma_1}, E_{\gamma_2}$ и E_{γ} при распаде на $\pi^0_{\rightarrow\gamma_1}$, γ_1 + γ_2 + γ (сплошные кривые) и $\eta_{\rightarrow\gamma_1}$, γ_1 + γ (пунктирные кривые) покоящегося ω -мезона.

Рис.2. Распределение вероятностей для величин $\theta_{\gamma_1 \gamma_2}$, $\theta_{\gamma \gamma_1}$, $\theta_{\gamma \gamma_2}$, E_{γ_1} , E_{γ_2} и E_{γ} при распаде на $\frac{\pi^0}{\gamma_1}$, $+\gamma_2$ + γ (сплошные кривые) и $\eta_{\rightarrow\gamma_1}$, $+\gamma_2$ + γ (пунктирные кривые) покоящегося ϕ -мезона.

Рис.3. Распределение вероятностей для величин $\begin{array}{ccc} \theta_{\gamma\gamma}^{(\pi)} & , & \theta_{\gamma\gamma} & , & E_1 & \\ E_2 & при распаде на <math>2\pi^0$ покоящегося f⁰ -мезона.