

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

1 - 4275

Н.И.Петров

ИССЛЕДОВАНИЕ РАСПАДНЫХ СВОЙСТВ К° -МЕЗОНОВ МЕТОДОМ КАМЕРЫ ВИЛЬСОНА В МАГНИТНОМ ПОЛЕ

Специальность - 040 - экспериментальная физика

Автореферат диссертации на соискание учёной степени доктора физико-математических наук

Дубна 1969

Работа выполнена в Лаборатории ядерных проблем Объединенного института ядерных исследований

Официальные оппоненты:

доктор физико-математических наук профессор М.И.Подгоредкий, доктор физико-математических наук профессор Р.М.Суляев, доктор физико-математических наук профессор В.Г.Кириллов-Угрюмов

Велущее предприятие: Институт атомной энергии им. И.В.Курчатова ГКАЭ СССР

Автореферат разослан " 1969 г. Защита диссертации состоится " 1969 г. на заседании Учёного Совета Лаборатории ядерных проблем ОИЯИ

Адрес: г.Дубна, Московской области, Объединенный институт ядерных исследований, Лаборатория ядерных проблем

С диссертацией можно ознакомиться в библиотеке ОИЯИ.

Учёный секретарь Совета ЛЯП кандидат физико-математических наук,

О.А.Займидорога

2

S.S.

Н.И.Петров

ИССЛЕДОВАНИЕ РАСПАДНЫХ СВОЙСТВ К° -МЕЗОНОВ МЕТОДОМ КАМЕРЫ ВИЛЬСОНА В МАГНИТНОМ ПОЛЕ

Специальность - 040 - экспериментальная физика

Автореферат диссертации на соискание учёной степени доктора физико-математических наук

Содержанием диссертации являются результаты исследова+ ния распадных свойств К -мезонов, выполненного большим коллективом физиков с помощью двух камер Вильсона в магнитном поле на синхрофазотроне Объединенного института ядерных исследований. Это исследование, начатое в 1959 г., явилось после опыта группы Ледермана/1/, в котором было доказано существование долгоживущей компоненты нейтральных К-мезонов. первой экспериментальной работой, посвященной детальному изучению распадов указанных частиц. В то время экспериментальная проверка выводов теории универсального слабого (V-A)-взаимодействия для распадов, идущих с изменением странности. находилась в начальной стадии. Поэтому изучение свойств К -мезонов (заряженных и нейтральных), предоставляющих среди других странных частиц наибольшие возможности для проверки выводов теории, имело большой научный интерес. Особая актуальность исследования свойств нейтральных К -мезонов обусловливалась еще тем обстоятельством, что поиски распадов К, -мезонов, абсолютно запрещенных гипотезой СР -инвариантности, позволяли произвести проверку этой гипотезы, сформулированной в 1956 г. Ландау /2/и Ли и Янгом /3/.

Поскольку в упомянутой работе^{/1/} группы Ледермана были получены самые предваритольные данные о распадах K_L^0 -мезонов, перед исследованием была поставлена задача возможно более полного анализа распадных схем K_L^0 -частип, получения широкого набора количественных данных и их сравнения с предсказаниями теории.

Очевидно, что поставленная задача предполагала необходимость безвыборочной регистрации всех каналов распада К⁰ -мезонов с измерением импульсов заряженных распадных частиц. К моменту начала наших опытов (когда искровых и стримерных камер еще не было) единственным прибором, позволяющим производить такую регистрацию распадов в наиболее чистых условиях – почти в вакууме, - являлась камера Вильсона в магнитном поле.

Диссертация состоит из введения, четырех глав и заключения. Во введении изложены основные положения теории универсального (V-A) -взаимодействия и сформулированы задачи исследования.

В первой главе содержится описание выводов теории применительно к экспериментальным данным, полученным в опыте.

Во второй и третьей главах дается изложение постановки опыта и методики обработки снимков с камер.

Самая большая- четвертая глава диссертации посвящена анализу измеренных V°-событий и обсуждению полученных на основе этого анализа количественных результатов опыта.

В заключении содержится краткая сводка результатов опыта и выводов, сделанных при их обсуждении.

II. Постановка опыта

С целью снижения уровня фона от посторонних частиц в рабочих объемах камер и расширения возможностей для измерения импульсов и идентификации распадных частиц камеры экспонировались в пучках K_L^0 -частиц сравнительно низкой энергии. Схема опыта с цилиндрической камерой Вильсона /4/ диаметром 400 мм, с помощью которой были начаты исследования, представлена на рис. 1.

PUC.1

Источником К -частиц служит внутренняя свинцовая мишень (1), помещаемая в пучок ускоренных протонов с энергией Е = 9-10 Гэв. Пучок нейтральных частиц, испускаемых мишенью под углом 97° к направлению движения протонов, формируется двумя свинцовыми коллиматорами (3). Вход в передний коллиматор закрыт свинцовым конвертором (2) толщиной 100г/см2. Для удаления из пучка заряженных частиц используется отклоняющий магнит (5), расположенный после первого коллиматора. В очистке пучка от заряженных частиц эффективно участеуют также магнитное поле ускорителя и поле электромагнита (8) типа МС-4, в зазоре которого помещается камера Вильсона (7). Расстояние от среза последнего коллиматора до камеры более одного метра, поэтому все' К -частицы, рожденные в стенках коллиматоров, на пути до камеры успевают распасться. Защита от фонового излучения обеспечивается железным ярмом электромагнита (8) и специальной бетонной кладкой, примыкающей к стене здания синхрофазотрона. Общее расстояние от внутренней мишени (1) до середины камеры равняется 8 м.

Начиная с 1962 г., параллельно с первой установкой в пучке нейтральных частиц экспонировалась метровая прямоугольная камера Вильсона в магнитном поле, изготовленная в Институте физики АН Грузинской ССР/18/. При работе с метровой камерой схема опыта осталась практически неизменной. В случае цилиндрической камеры среднее значение вертикальной составляющей напряженности магнитного поля равняется 14500 э; неоднородность поля в освещенной области не превышает 3%. Для прямоугольной камеры указанные характеристики равны 8800 э и 10% соответственно. Длительности рабочих циклов цилиндрической и прямоугольной камер составляют 77 и 100 сек. Фотографирование камер производилось двухобъективными фотоалпаратами. При экспонировании камер в пучках нейтральных частиц ускоритель работал на пониженной интенсивности, составляющей (1,0 + 2,0) . 10⁸ протонов на один импульс. При этих условиях одно V° -событие от распада K° -мезона на цилиндрической камере приходилось в среднем на 4-5 фотоснимков; на прямоугольной камере – на 2,5-3 снимка. В ряде экспозиций в рабочие объемы камер помешались свинцовые пластинки толщиной 5,8 г/см², предназначаемые для идентификации распадных частиц по потере импульса при прохождении через пластинки. Энергетический спектр K_{L}^{0} -мезонов в месте расположения прямоугольной камеры показан на рис. 2. Средняя энергия K_{L}^{0} -мезонов составляет E = 150 Мэв; средняя энергия распавшихся в камерах K_{L}^{0} -частиц равна E = 115 Мэв.

III. Методика обработки снимков с камер Вильсона

В начале исследования в нашем распоряжении имелся только метод измерения следов частиц с помощью репроецирования их изображений, который был хорошо отработан в Лаборатории ядерных проблем/5,6/ и широко использовался для обработки камерных пленок. Позднее, когда для регистрации K_L^0 -распадов стала использоваться прямоугольная камера, с целью расширения фронта работ по измерению фотоснимков этот метод был дополнен координатным методом измерения следов с помощью полуавтоматического прибора.

Обработка экспериментальных материалов производилась в следующем порядке:

а) просмотр фотоснимков и регистрация V°-событий от распада К°-мезонов и их предварительная идентификация;
 б) измерение зарегистрированных при просмотре V°-событий, включая измерения относительной плотности почернения

следов;

 в) обсчёт результатов приборных измерений на ЭВМ и кинематическая идентификация схем распада;

г) моделирование распадов К⁰_L -мезонов в освещаемом объеме камеры и анализ полученных результатов.

Измерения относительной плотности почернения следов производились только для следов частиц, импульс которых Р ≤ 100 Мэв/с. При машинной обработке результатов измерений импульсы частиц вычислялись с учётом топографии магнитного поля. Для частицы, длина проекции следа которой на плоскость снимка равна 10 см, а радиус кривизны следа – 100 см, в случае прямоугольной камеры полная ошибка измерения импульса составляет 10%. Для обеспечения условий надежного измерения импульсов распадных частиц вводились критерии отбора V° -событий по длине следов и углов испускания распадных частиц.

Идентификация схем распада производилась двумя методами:

 а) путем идентификации природы распадных частиц на основе измерения относительной плотности почернения следов
 и измерения потерь импульса частицами при прохождении через свинцовую пластинку;

 б) путем проверки кинематического соответствия V°-события заданной схеме К⁰_L -распада.
 Для трехчастичных распадов по результатам

 $K^0_{\tau} \rightarrow \pi^+ + e^- + \tilde{\nu}$

8

500

измерений вычислялись значения энергии распавшегося К_L-мезона. Когда распадная схема не "проходит", значения энергии получаются комплексными.

С целью проверки V⁰ -событий на двухчастичные распадные схемы

вычислялось значение массы распавшейся частицы.

 $K^0 \rightarrow \pi^+ + \pi^-$

Вследствие того, что измерить и идентифицировать удавалось только распады, имеющие определенные конфигурации в лабораторной системе (например, $K_{\sigma3}^0$ -распады с электронами небольшой энергии), сравнение характеристик идентифицированных распадов с соответствующими теоретическими распределениями производилось с учётом отбора V⁰-событий в лабораторной системе координат. Указанный учёт осуществлялся "исправлением" безвыборочных теоретических распределений посредством моделирования K_L^0 -распадов в освещаемом объеме камеры по методу Монте-Карло.

IV. Основные экспериментальные результаты и выводы

Количественные результаты получены на основе обработки свыше 35 тысяч парных снимков с камер, проведенной в Лаборатории ядерных проблем ОИЯИ. Всего на снимках было <u>обнаружено 9,4 тысяч V⁰</u> -событий от распада ^{К⁰}_L -мезонов^{x/}.

х/Полное количество зарегистрированных в опыте V⁰_событий составляет 14,4 тыс; 5 тысяч V⁰ -событий обработаны в Лаборатории высоких энергий ОИЯИ.

Среди 9,4 тысяч V°-событий идентифицировано:

- 866 К распадов ;
- 28 К⁰_{из} -распадов;
- 29 пар Далитца от распада К⁰₃₇о;
- 7 распадов $K_{L}^{0} \rightarrow \pi^{+} + \pi^{-} + \pi^{0} \rightarrow \gamma$
- 440 распадов $K_{L}^{0} \rightarrow \pi^{+} + \pi^{-} + \pi^{0}$.

Фотоснимки отдельных распадов представлены на рис. 3-6. Направление движения распавшегося К⁰_L -мезона показано стредкой внизу снимка.

91. Энергетические спектры и угловые корреляции
 частиц в К⁰₆₃ -распаде

Для построения энергетических спектров и угловых распределений использовались 554 полностью обмеренных K_{e3}^0 -распадов. Поскольку наиболее полные сведения о варианте распадного взаимодействия получены при анализе 394 K_{e3}^0 -распадов с малоэнергетичными электронами (Е лаб. \leq 100 Мэв), ниже приводятся данные только для этой группы (первой выборки) K_{e3}^0 -распадов.

Экспериментальный и теоретические спектры *п* -мезонов представлены в таблице 1.

Экспериментальный спектр соответствует истинным значениям энергии распавшихся K_L^0 - мезонов x).

х/ Теоретические спектры вычислены в предположении, что формфакторы по сильному взаимодействию являются постоянными величинами.

Рис.5. Распад К_++, T+, T+, T° < 8 e++e-

14

Рис. 6. Электронно-позитронная пара. С большой степенью вероятности пара соответствует распаду К°+П°+П°+Я°<е++e-

Таблица 1 Спектр 7 -мезонов

		d (%)					
$\Delta \left(\frac{e}{E_{\text{max}}} \right)$) Опыт	Расчет					
		v.	S	Т			
0,0 ÷ 0,2	2,9 ± 0,8	0,8 <u>+</u> 0,4	6,2 <u>+</u> I,0	0,6 <u>+</u> 0,4			
0,2 + 0,4	6,3 <u>+</u> I,3	3,4 <u>+</u> 0,8	I6,6 <u>+</u> I,7	5,0 <u>+</u> 0,9			
0,4 ÷ 0,6	9,5 <u>+</u> I,5	9,3 <u>+</u> 1,2	26,0 <u>+</u> 2,1	23,9 <u>+</u> 2,0			
0,6 ÷ 0,8	27,9 <u>+</u> 2,7	29,4 <u>+</u> 2,4	36,6 <u>+</u> 2,5	42,3 <u>+</u> 2,7			
0,8 ÷ I,0	54,6 <u>+</u> 3,7	57,I <u>+</u> 2,7	I4,6 <u>+</u> I,6	28,2 <u>+</u> 2,2			
			and the second	A second second second second			

Из сравнения распределений видно, что только векторный вариант взаимодействия хорошо описывает экспериментальные данные. В случае этого варианта взаимодействия формфактор имеет следующие эначения:

$\Delta(\frac{E}{E})$	f ₊ (отн. ед.)
0,0 + 0,2	1,9 <u>+</u> 0,6
0,2 + 0,4	1,4 <u>+</u> 0,3
0,4 + 0,6	1,01 <u>+</u> 0,10
0,6 + 0,8	0,97 <u>+</u> 0,06
0,8 + 1,0	0,96 + 0,06

Характер зависимости – медленное убывание формфактора с ростом энергии *п* -мезона согласуется с теоретическими оценками. Если найденную зависимость представить в виде:

 $f_{+}(q^{2}) = f_{+}(0)(1 + \lambda - \frac{q^{2}}{m_{\pi}^{2}}),$

где q² - квадрат четырех-импульса, переданного паре лептонов, то для коэффициента λ получается значение $\lambda = (3,0^{+5,5}_{-4,0}) \cdot 10^{-2}$. =244 -270 MeV конфигураций хічннпшЭп для распределения

121

Ταδρυψα

ilepour annundati	пронов Распределение Соз Хе, п	n %	cyem alostes pacyem	S T T Unwim V S T	1,4+2,6 62,8+6,9 4,0+0,6 0,9+0,6 1,2+0,5 8,3+1,2 15,913,5	18,5±2,5 36,4±5,2 0,6÷0,2 4,8±1,5 2,8±0,9 9,7±1,3 18,2±3,7	56±1,6 0,8±0,8 0,2÷-0,2 7,7±1,9 6,5±1,3 17,8±1,7 22,7±4,1	1,2 ± 0,8 0,0 -0,2+-0,6 22,3±3,2 19,9±2,2 27,8±2,1 26,5±4,	2,3±0,2 0,0 -0,6÷-1,0 64,3±5,4 69,5±4,1 35,4±2,4 16,7±3,6
•	peden		Ċ	Unbim	0' <i>0</i> ‡ 0' Q	4,8±1,5	7,7±1,9	22,3±3,2	64,3±5,4
nydnnior	Pacn		a Coste F		<i>4,0 ÷ 0,6</i>	<i>0,6÷0,2</i>	0,2 ÷ -0,2	-0,2÷-0,6	-0'9÷-1'0
Knoda				T	62,8±6,9	36,4±5,2	0,8±0,8	0'0	0'0
۶ ۲	ронос		rcyem	S	41,4±2,6	38,5±2,5	15,6±1,6	4,2 ± 0,8	0,3±0,2
• . •	SABRI	% U	Dd	V	28,8±2,7	48,1±3,4	18,6±2,1	3,9±1,0	0,6±0,4
	дшуац	-	C	Unbim	29,1±3,6	50,2±4,8	18,9±2,9	1,8±0,9	0'0
	CI	(F)		-\ Cmax/	<i>q,0÷0,2</i>	0,2÷0,4	0,4 ÷ 0,6	0,1÷0,8	0,8 ÷ 1,0

17

В таблице II и на рис. 7 производится сравнение экспериментальных и теоретических спектров электронов и распределений углов разлета π -мезонов и электронов при энергии π -мезонов, фиксированной в интервале $\Delta E = 244 + 270$ Мэв. Это сравнение, произведенное нами впервые, представляет собой наиболее строгую проверку варианта распадного взаимодействия, свободную от каких-либо предположений о формфакторах по сильному взаимодействию. Проверка согласия экспериментальных и теоретических распределений по методу χ^2 позволяет сделать следующие заключения:

а) скалярный и тензорный варианты исключаются как
 единственные варианты взаимодействия с достоверностью выше
 99,9%;

б) только векторный вариант "проходит" как единственный вариант взаимодействия;

в) величина возможного суммарного вклада в распадное
 взаимодействие со стороны S- и T -вариантов не превышает
 10-15%:

 г) в пределах ошибок отсутствует зависимость формфактора ^f, от энергии электрона,

Заключение о том, что скалярный вариант не проходит как единственный вариант взаимодействия, сделано нами епервые.

Из сравнения измеренного отношения вероятностей $K_{\mu3}^0$ – и K_{e3}^0 – распадов с отношением, вычисленным по характеристикам. $K_{\mu3}^+$ – распада/7/, следует, что

$$\frac{f_{+}(K_{\mu_{3}}^{0})}{f_{+}(K_{e_{3}}^{0})} = 0,97 \pm 0,19.$$

Этот результат свидетельствует в пользу эквивалентности электронов и мюонов в слабом взаимодействии.

19

§2. Поиски двухлептонных распадов К, -мезонов

Поиски двухлептонных распадов производились путем кинематической идентификации V⁰ -событий. Поскольку в условиях нашего опыта имитация двухчастичных распадов К. -мезонов может обуславливаться только трехчастичными распадами тех же частиц, при осуществлении поиска в качестве дополнительных критериев отбора использовались требования, вытекающие из условий компланарности двухчастичного распадного события, а именно, равенство нулю поперечной составляющей суммарного импульса заряженных распадных частиц и равенство 180° разности азимутальных углов направлений их испускания:

 $P_{\perp}^{\perp} = P_{\perp}^{\perp}$; $|\phi_{\perp} - \phi_{\perp}| = 180^{\circ}$.

Первый поиск двухчастичных лептонных распадов был осуществлен нами на основе измерения 780 V⁰ -событий с цилиндрической камеры. Считалось, что V⁰ - событие является двухлептонным распадом К₁ - мезона, если измеренные значения массы К, -мезона, поперечной составляющей суммарного импульса и разности азимутальных углов отличались от требуемых значений не более, чем на одно стандартное отклонение. В итоге проверки среди 780 V⁰ -событий с цилиндрической камеры не было найдено ни одного двухлептонного распада К -мозона, что дает следующие значения верхней границы относительной вероятности двухлептопных распадов:

$$\begin{array}{ccc} K_{\rm L}^0 \rightarrow e^+ + e^- \\ W & (\rightarrow \mu^+ + \mu^-) \leq 1,3 \cdot 10^{-3} \\ \rightarrow e^{\pm} + \mu^{\mp} \end{array}$$

Из сравнения указанного значения верхней границы с вероятностью $K^+ \rightarrow \mu^+ + \nu$ - распада следует, что отношение константы взаимодействия между нейтральными токами С нейтр. к обычной константе С взаимодействия между заряженными токами равно:

Эта первая оценка вероятности двухлептонных распадов определяла более высокую степень подавления взаимодействия между нейтральными токами, нежели оценка, полученная по вероятности распада К $\stackrel{+}{\to} \pi^+ + e^+ + e^-$.

Позднее поиски распада $K_{\tau}^{0} \rightarrow e^{+} + e^{-}$ были продолжены по событиям с прямоугольной камеры. Среди отобранных 3000 V0-событий не было найдено ни одного распада $K_1^0 \rightarrow e^+ + e^-$.

 Проверка следствий гипотезы СР -инвариантности В нашем опыте проверены следующие следствия гипоте-СР -инвариантности: - абсолютный запрет распада $K_{I}^{0} \rightarrow \pi^{+} + \pi^{-}$;

зы

- равенство единице зарядового отношения для К ез-распада; - идентичность спектров импульсов электронов и позитронов в K_{a3}^{0} -распаде и π^{\pm} -мезонов - в $K_{3\pi}^{0}$ -распаде.

А. Оценка верхней границы вероятности распада

Поиск распадов $K_{L}^{0} \rightarrow \pi^{+} + \pi^{-}$ производился таким же образом, как и поиск двухлептонных распадов. Среди 780 v⁰-событий было цайдено два события, согласующихся в пределах ошибок измерения с указалной схемой распада. За счёт имитации распадов $K_{\tau} \rightarrow \pi^{+} + \pi^{-}$ трехчастичными распадами, согласно расчёту, должно было наблюдаться тоже два события. Поэтому из наших дапных для верхней границы относительной вероятности распада $K_{L}^{0} \rightarrow \pi^{+} + \pi^{-}$ получается значение:

 $(K_{\tau}^{0} \rightarrow \pi^{+} + \pi^{-}) \leq 2,5,10^{-3}.$

По сравнению с единственной имевшейся в то время оценкой, полученной группой Ледермана/1/, нам удалось понизить значение верхней границы этой вероятности в три раза.

Б. Определение зарядового отношения в K^0_{e3} -распаде

Зарядовое отношение определено по всей статистике идентифицированных K_{e3}^0 -распадов, включающей 866 событий. В указанную статистику добавлены 28 $K_{\mu3}^0$ -распадов, идентифицированных по μ , е – распаду и характеру остановки распадной частицы в газе камеры. Среди всех идентифицированных лептонных распадов найден 451 распад с положительными π -мезонами и 443 распада с отрицательными π -мезонами.

Зарядовое отношение R равно:

$$R = \frac{N(\pi^+)}{N(\pi^-)} = 1,04 \pm 0,7$$

Самое первое среди имеющихся определение/8/ зарядового отношения было сделано нами в 1961 г. на основе 97 K_{e3}^0 -распадов, зарегистрированных цилиндрической камерой. Оно равнялось R = 0,90±0,18. Несмотря на большую ошибку измерения, эта оценка в то время представляла определенный интерес, так как данные группы Ледермана/1/ не исключали возможность, что зарядовое отношение сильно отличается от единицы.

Спектры импульсов в лабораторной системе для π^- и π^- -мезонов из $K^0_{3\pi}$ -распада и электронов и позитронов из K^0_{e3} -распада представлены на рис. 8 и 9. Для построения спектров π^+ и π^- -мезонов использовано 440 актов распада $K^0_L \rightarrow \pi^+ + \pi^- + \pi^0$, выделенных статистическим мето-

N

дом. Спектры позитронов и электронов построены по 866 K_{e3}^{o} -распадам, использованным для определения зарядового отношения. На рис. 8,9 пунктирная линия соответствует отрицательным частицам. Как видно из сравнения спектров, в пределах ошибок опыта спектры частиц и античастиц не отличаются друг от друга. Количества распадов $K_L^0 \rightarrow \pi^+ + \pi^- + \pi^0$, у которых

 $P_{\pi^+} > P_{\pi^-}$ $H = P_{\pi^+} < P_{\pi^-}$,

равны 228 и 212, соответственно.

Наши результаты по проверке следствий гипотезы СР -инвариантности не содержат результатов, не согласующихся с этой гипотезой. Факт наблюдения двух событий, кинематически соответствующих распаду $K_L^0 \rightarrow \pi^{-+} + \pi^{--}$, может быть объяснен эффектом имитации двухчастичных распадов трехчастичными распадами. Одновременно этот факт означает, что примесь амплитуды перехода, нарушающей СР -чётность, мала и поэтому СР -чётность является достаточно точным квантовым числом. В представлении волновой функции $K_{,0}^0$ -частицы

величина параметра «, определяющего вклад амплитуды, нарушающей СР -чётность, по нашим данным, по модулю не превышает |«| < 2,8·10⁻³.

 $|K_1^0\rangle = |K_2^0\rangle + \epsilon |K_1^0\rangle$

Определение вероятностей трехчастичных распадов K_{L}^{0} -мезонов и проверка следствий правил Δ 1=1/2

В ходе анализа V^0 – событий от распада K_L^0 – мезонов в дополнение к данным о схемах распада, полученным группой Ледермана/1/, нами было доказано существование схемы нейтрального распада и более непосредственно определена природа нейтральной частицы в трехчастичном распаде, содержащем π^+ и π^- -мезоны. При этом были измерены вероятности трехчас-

25

90

N(%)

33 30 24 21 co m

2 0

электроноб

позитронов

ампульсоб

Слектры для

Puc. 9

pacnada

180

150

120

тичных лептонных и нелептонных распадов, дающих главный

вклад в полную вероятность распада:

 $K_{L}^{0} \rightarrow \pi^{\pm} + e^{\mp} + \overline{\nu} (\nu)$ $\rightarrow \pi^{\pm} + \mu^{\mp} + \nu (\overline{\nu})$ $\rightarrow \pi^{+} + \pi^{-} + \pi^{0}$ $\rightarrow \pi^{0} + \pi^{0} + \pi^{0}.$

А. Относительная вероятность К_{*3} -распада

Для определения относительной вероятности К + - распада использовались V⁰-события, идентифицированные в результате измерения потерь импульса распадными частицами при прохождении через свинцовую пластинку. С целью практического сведения к нулю вклада в проходящие электроны от 7--мезонов к электронам были отнесены проходяи частицы с потерей импульса <u>Р</u> > 50%. Для опшие ределения полного количества проходящих электронов вводились затем поправки на прохождения электронов, в которых получаются безлучевые ливни, и на прохождения с потерей <u>_____</u> < 50%. Первая поправка вводилась по данимпульса ным экспериментальных работ/9/; вторая - на основе теоретической функции разброса потерь на излучение/10/. На прямоугольной камере зарегистрировано 1095 случаев прохождения распадных частиц через пластинку. Исправленное полное количество прохождений электронов составляет 191,4. По этим данным с учётом вычисленных по методу Монте-Карло вероятностей прохождения заряженных продуктов распада через пластинку найдено, что относительная вероятность (по отношению ко всем распадам с заряженными продуктами) равна:

$W(K_{0}^{0}) = (51 \pm 6)\%.$

Впервые определение вероятности K_{03}^0 -распада было сделано нами в 1960 г. по материалу с цилиндрической камеры/11/. Тогда было найдено, что относительная вероятность K_{03}^0 -распада равна:

$$W(K_{a3}^{0}) = (48+11)\%$$

Средневзвешенное значение относительной вероятности по двум определениям составляет:

 $W(K_{e3}^{0}) = (49, 8 \pm 5, 2).$

Б. Относительная вероятность распада $K_{1}^{0} \rightarrow \pi^{+} + \pi^{-} + \pi^{0}$

Среди всех зарегистрированных V⁰ -событий найдено 9 четырехлучевых событий, из которых 7 полностью обмеряются. Для каждого из этих событий установлено, что две распадные частицы являются электроном и позитроном, а две другие не могут быть К -мезонами или протонами. Значения массы распавшейся частицы, вычисленные в предположении двух схем распада

 $K_{L}^{0} \rightarrow \pi^{+} + \pi^{-} + \pi^{0} \frac{\gamma}{e^{+} + e^{-}}$ $_{M} K_{L}^{0} \rightarrow \pi^{+} + \pi^{-} + \gamma \rightarrow e^{+} + e^{-},$

показали, что только в случае первой схемы они совпадают в пределах ошибок с массой K^0_L -мезона. Таким образом, по наблюдению продуктов распада нейтральной частицы было доказано, что в трехчастичном распаде с двумя заряженными π -мезонами нейтральной частицей является π^0 -мезон.

Определение вероятности распада произведено методом статистического разделения схем распада/12/, а именно путем согласования экспериментального и расчётного распределений 1400 V⁰ -событий по параметру E'

$$E_{5}' = \frac{M_{k}^{2} - m_{\pi}^{2} + M_{t}^{2}}{2\sqrt{M_{t}^{2} - P_{t}^{+2}}}$$

(где M_t - эффективная масса заряженных продуктов распада, найденная в предположении, что заряженные распадные частицы являются π -мезонами; P_t^L - поперечная составляющая импульса нейтральной частицы), представляющему собой энергию распавшегося K_L^0 -мезона в системе, где продольная составляющая суммарного импульса заряженных распадных частиц равна нулю. Согласование распределений производилось по методу минимизации функции χ^2 . В итоге было найдено, что относительная вероятность распада $K_L^0 \to \pi^+ + \pi^- + \pi^0$ равна:

 $(K_{1}^{0} \rightarrow \pi^{+} + \pi^{-} + \pi^{0}) = (16, 7 \pm 1, 6)\%.$

Экспериментальное и теоретическое (пунктирная линия) распределения V⁰-событий по параметру E₅ для значения $W(K_L^0 \to \pi^+ + \pi^- + \pi^0) = 16,4$ представлены на рис. 10.

Поскольку теоретическое распределение включает только К ${}^0_{\sigma 3}$ -, ${}^0_{\mu 3}$ -и К ${}^0_{\pi}$ + ${}^-_{\pi}$ -по-распады, факт его согласования с экспериментальным распределением является доказательством того, что указанные распады дают главный вклад в распад ${}^{K}{}^0_{L}$ -мезонов на заряженные продукты.

В. Относительная вероятность Кода -распада

Вероятность $K_{\mu3}^{0}$ -распада определена по измеренным вероятностям K_{*3}^{0} - и $K_{\pi+\pi-\pi0}^{0}$ - распадов как величина, дополняющая их сумму до единицы:

 $W(K_{\mu s}^{0}) = (33,5 \pm 5,5)\%.$

Измеренное отношение вероятностей лептонных распадов составляет:

29

$$\frac{W(K_{\mu3}^{0})}{W(K_{p3}^{0})} = 0,67 \pm 0,13.$$

Значения отношения ξ формфакторов i_{-} и i_{+} , найденные по измеренному отношению вероятностей, равны:

 $\xi_1 = 0.2^{+0.8}_{-1.2}$; $\xi_2 = -7.0^{+1.1}_{-0.9}$.

Г. Обнаружение и определение вероятности распада $K_{r}^{0} \rightarrow \pi^{0} + \pi^{0} + \pi^{0}$

Распад обнаружен в результате отождествления электроннопозитронных пар, импульс которых составляет угол более 20⁰ с направлением пучка K_L^0 -мезонов, с электронно-позитронным парами от последующего распада одного из π^0 - мезонов по схеме Далитца:

 $K_{T}^{0} \rightarrow \pi^{0} + \pi^{0} + \pi^{0}$

Это отождествление произведено на основе сравнения экспериментальных и теоретических/13/ распределений пар по углу разлета $(\frac{\omega}{\omega_0})$ и квадрату отношения эффективной массы пары к массе π -мезона, которые представлены на рис. 11 и 12.

$$\omega_{o} = \frac{\left| \overline{P}_{+} + \overline{P}_{-} \right|}{E_{+} + E_{-}}.$$

Значение относительной вероятности распада $K^0_L \rightarrow 3\pi^0$, найденное по 29 зарегистрированным парам Далитца с учётом поправок на вклад от пар внешней конверсии и эффективности регистрации пар, составляет

$$\mathbb{W}(\mathbb{K}_{L}^{0} \to \pi^{0} + \pi^{0} + \pi^{0}) = (31^{+7}) \%$$

yeny pacmbopa Пунктиром показано расчетное распред Ł om pacnada Далитца

40

(%)

30

Д. Проверка следствий правила отбора Δ 1=1/2

Сравнение измеренных относительных вероятностей с их значениями, вычисленными на основе правила Δ l=1/2 по измеренным вероятностям K^+ -распадов/14/, произведено в таблице III.

	Таблица	Ш
•		

Ветвь	Относительная вероятность (%)			
к, -распада	Опыт	Расчет		
	49,8 <u>+</u> 5,2	49,1 <u>+</u> 3,2		
κ ^ο μ3	33,5 <u>+</u> 5,5	3I,4 <u>+</u> 5,2		
$K_{\pi}^{0} + \pi - \pi^{0}$	I6,7 <u>+</u> I,6	19,5 <u>+</u> 1,9		
$K^{0}_{\pi}{}^{0}_{\pi}{}^{0}_{\pi}{}^{0}$	31,0 + 7	29,2 <u>+</u> 3,0		

При вычислении вероятностей использовались соотношения, полученные без учёта различия масс заряженных и нейтральных К- и π -мезонов и взаимодействия π -мезонов в конечном состоянии, которые являются точными только для лептонных распадов. Как видно из таблицы, в пределах ошибок опыта для лептонных распадов правило Δ 1=1/2 выполняется. Для нелептонных распадов вследствие значительных ошибок измерения вероятностей, а также неточности использованных при вычислении вероятности соотношений, по нашим данным, нельзя исключить возможность заметного вклада переходов с Δ 1=3/2.

VI. Заключение

В результате опыта получен . широкий набор количественных результатов и произведено их сравнение с выводами теории универсального слабого (V-A) -взаимодействия, а именно:

32

 Для К⁰_{e3} -распадов измерены спектры электронов *п* -мезонов и распределение углов разлета этих частиц; при этом данные о спектре электронов и распределении углов разлета электронов и *п* - мезонов для случая, когда *п* - мезоны фиксированы в узком энергетическом интервале, получены впервые.

На их основе:

 а) сделано заключение о варианте распадного взаимодействия, свободное от каких-либо предположений о формфакторах по сильному взаимодействию;

б) установлена зависимость формфактора (, от энергии
 п -мезона;

 в) показано, что в пределах ошибок опыта формфактор по сильному взаимодействию не зависит от энергии электрона;

г) сделана оценка отношения формфакторов f $_+$ для $K^0_{\ \mu 3}$ и $K^0_{\ a 3}$ – распадов.

2. Произведены оценки значений верхних границ относительных вероятностей двухлептонных распадов и определена степень подавления взаимодействия между нейтральными токами.

3. С целью проверки гипотезы СР -инвариантности слабого взаимодействия измерены:

- значение верхней границы вероятности распада К⁰₁→π⁺+π⁻;

- зарядовое отношение в К₀⁰ - распаде;

- спектры импульсов электронов и позитронов в K_{e3}^0 -распаде и π^+ - и π^- -мезонов в $K_{3\pi}^0$ - распаде.

Из данных по величине вероятности распада $K_L^0 \to \pi^{+\bullet} + \pi^-$ сделана оценка вклада амплитуды, не сохраняющей СР –чётность, в распадное взаимодействие.

В опыте установлено различие между вероятностями распада $K_{L}^{0} \rightarrow \pi^{+} + \pi^{-}$ в горизонтальном и наклонном пучках K_{L}^{0} -частиц.

 Измерены относительные вероятности лептонных и нелептонных трехчастичных распадов

34

 $K^0_{\tau} \rightarrow \pi^+ + e^{\mp} + \tilde{\nu}(\nu)$ $\rightarrow \pi^+ + \mu^+ + \nu(\tilde{\nu})$ $\rightarrow \pi^0 + \pi^0 + \pi^0$

и проверены следствия правила отбора Δ 1=1/2.

5. Проведен анализ распадных схем K_{L}^{0} -мезонов: а) впервые доказано существование распада $K_{L}^{0} \rightarrow 3 \pi^{0}$;

6) по впервые наблюдавшимся четырехлучевым событиям от K_L^0 -распада более непосредственным образом определена природа нейтральной частицы в трехчастичном распаде, содержащем $\pi^+ - u \pi^-$ -мезоны. На основе этих данных, а также данных по измерению вероятностей других распадов установлены основные каналы распада K_L^0 -мезонов.

Таким образом, совокупность количественных результатов, полученных при исследовании распадных свойств K_L^0 -мезонов, позволила провести проверку основных выводов теории универсального слабого (V-A) – взаимодействия, включая гипотезы и правила отбора, не вытекающие непосредственно из теории.

Результаты исследований, описанных в диссертации, опубликованы в печати/8,11,15-25/ и доложены на международных конференциях по физике высоких энергий/26-30/.

Основные данные опыта получены в соавторстве с Д.М.Котляревским, Л.А.Кулюкиной, А.Н.Мествиришвили, Д.Нягу, Э.О.Оконовым, В.А.Русаковым, А.М.Розановой, Г.Г.Тахтамышевым, Л.В.Чхаидзе, У Цзун-фань, М.Х.Аникиной и М.С.Журавлевой.

Литература

- 1. M.Bardon, K.Lande, L.M.Lederman, W.Chinowsky. Ann. Phys. 5, 156 (1958).
- 2. Л.Д.Ландау. ЖЭТФ, 32, 405 (1957).
- 3. T.D.Lee, R.Oheme, C.N.Yang, Phys. Rev, <u>106</u>, 340 (1957).
- В.П.Джелепов, М.С.Козодаев, Н.И.Петров, В.Т.Осипенко, В.А.Русаков, ПТЭ №3, 3 (1956).
- 5. А.Т.Василенко, М.С.Козодаев, Р.М.Суляев, А.И.Филиппов, Ю.А.Шербаков, ПТЭ №6, 34 (1957).
- В.Г.Иванов, Н.И.Петров, В.А.Русаков. Материалы совещания по камерам Вильсона, диффузионным и пузырьковым камерам, вып. V. стр. 45, ОИЯИ, Дубна, 1959.
- 7. A.C.Callazam, U.Camerini, R.D.Hantman et al., Phys. Rev. 150, 1153 (1966).
- 8. М.Х.Аникина, Д.В.Нягу, Э.О.Оконов, Н.И.Петров, А.М.Розанова, В.А.Русаков. ЖЭТФ, 42, 130 (1962).
- Ch.A l'Andlay. Journal de Phys. et le Radium, 16, 176 (1955). Nuovo Cim. 12, 859 (1954).
- 10.L.Eiges. Phys. Rev. 76, 264 (1949).
- 11. Д.Нягу, Э.О.Оконов, А.М.Розанова, В.А.Русаков. ЖЭТФ, 40, 1618 (1961).
- 12. A.Astier, L.Blaskovic, M.M.de Conreges et al. Proc. of the Aix-en-Provence Internacional Conference on Elementary Particles (1961), p. 227.

13. N.Croll, W.Wada. Phys. Rev, 98, 1355 (1955).

- 14. F.S.Shaklee, C.L.Ensen, B.P. Roe, D.Sinclair, Phys. Rev., 136B, 1423 (1964).
- 15. Э.О.Оконов, Н.И.Петров, А.М.Розанова, В.А.Русаков. ЖЭТФ, 39. 67 (1960).
- М.Х.Аникина, О.Н.Гогитидзе, М.С.Журавлева, А.А.Козлов, Д.М.Котляревский, З.Ш.Манджавидзе, А.Н.Мествиришвили, Д.Нягу, Э.О.Оконов, Н.И.Петров, А.М.Розанова, В.А.Русаков, Г.Г.Тахтамышев, Л.В.Чхаидзе, У Цзун-фань, А.А.Церелов. ЖЭТФ, 45, 469 (1963).

- М.Х.Аникина, М.С.Журавлева, Д.М.Котляревский, З.Ш.Манджавидзе, А.Н.Мествиришвили, Д.Нягу, Э.О.Оконов, Н.И.Петров, В.А.Русаков, Г.Г.Тахтамышев, Л.В.Чхаидзе, У Цзунфань. ЖЭТФ, 46, 59 (1964).
- Г.Н.Варденга, Д.М.Котляревский, А.Н. Мествиришвили, Д.В.Нягу, Э.О.Оконов, Н.И.Петров, В.А.Русаков, У Цзун – фань. Препринт ОИЯИ, Р-1920, Дубна 1964.
- А.Мествиришвили, Д.Нягу, Н.Петров, В.Русаков, У Цзунфань. Препринт ОИЯИ, Р-2450, Дубна 1965.
- Д.М.Котляревский, А.Н.Мествиришвили, Д.Нягу, Э.О.Оконов, Н.И.Петров, В.А.Русаков, Л.В.Чхаидзе, У Цзун-фань. Я.Ф. 1, 1035 (1965).
- А.Н.Мествиришвили, Д.Нягу, Н.И.Петров, В.А.Русаков,
 У Цзун-фань. Препринт ОИЯИ Р-2449, Дубна, 1965.
- Д.Нягу, Э.Оконов, Н.И.Петров, В.Русаков, Г.Тахтамышев,
 У Цзун-фань. ЯФ, 3, 903 (1966).
- А.Н.Мествиришвили, Д.Нягу, Н.И.Петров, В.А.Русаков,
 У Цзун-фань. Препринт ОИЯИ Р-2892, Дубна 1966.
- 24. Л.А. Кулюкина, А.Н.Мествиришвили, Д.Нягу, Н.И.Петров, В.А.Русаков, У Цзун-фань. ЖЭТФ, 52, 90 (1967).
- Л.А.Кулюкина, А.Н.Мествиришвили, Д.Нягу, А Н.И.Петров,
 В.А.Русаков, У Цзун-фань. ЖЭТФ, 53, 29 (1967).
- D.V.Neagy, E.O.Okonov, N.I.Petrov, A.M.Rosanova.
 V.A.Rusakov. Proc. of the 1960 Annual International Conference on High Energy Physics at Rochester, p. 603 (1961).
- NM.H.Anikina, M.S.Zhuravleva, D.M.Kotliarevsky,
 Z.C.Mandjavidze, A.N.Mestvirishily, D.Neagy, E.O.Okonov, N.I.Petrov, A.M.Rosanova, V.A.Rusakov, G.G.Tachtamishev, L.V.Chehaidze, Proc. 1962 Intern Conference on Hogh Energy Physics at CERN, p. 452.
- 28. Д.Нягу, Э.Оконов, Н.Петров, В.Русаков, Г.Тахтамышев, У Цзун-фань. Материалы XII международной конференции по физике высоких энергий (1964), том. 1, стр. 115 (1966).

- 29. А.Мествиришвили, Д.Нягу, Н.Петров, В.Русаков, Л.Чхаидзе, У Цзун-фань. Материалы XII международной конференции по физике высоких энергий (1964), том. 2, стр. 126 (1966).
- L.A.Kulukina, A.N.Mestvirishvily, D.Neagy, N.I.Petrov, V.A.Rusakov, U Zun-fan. Proc. of the XIII Intern-Conference on High Energy Physics 1967, p.40. Summary of Experimental Date on K-decays.

Рукопись поступила в издательский отдел 20 января 1969 года.