ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ лаборатория высоких энергий

C.340

1 - 4190

М.А.Азимов

ИССЛЕДОВАНИЕ РЕАКЦИЙ *π*⁻ р→ e⁺e⁻n И *π*⁻ р→ *π*° n ПРИ ИМПУЛЬСЕ 4 ГЭВ/С

Специальность 040 - экспериментальная физика

Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена в Лаборатории высоких энергий Объединенного института ядерных исследований

Научный руководитель:

кандидат физико-математических наук М.Н.Хачатурян

Официальные оппоненты: доктор физико-математических наук М.И.Соловьев, кандидат физико-математических наук С.А.Бунятов

Ведущее научно-исследовательское учреждение: Лаборатория фотомезонных процессов Физического института АН СССР им. П.Н.Лебедева.

Автореферат разослан " 1968 года Защита диссертации состоится" 1968 года на заседании Учёного совета Лаборатории высоких энергий Объединенного института ядерных исследований, г.Дубна, Московской области (конференц-зал ЛВЭ).

С диссертацией можно ознакомиться в библиотеке Объединенного института ядерных исследований.

Учёный секретарь Совета кандидат физико-математических наук

А.А.Кузнецов

6

0

N

5

1 - 4190

М.А.Азимов

ИССЛЕДОВАНИЕ РЕАКЦИЙ *π*⁻ р→ e⁺e⁻n и *π*⁻ p→ *π*° n ПРИ ИМПУЛЬСЕ 4 ГЭВ/С

Специальность 040 - экспериментальная физика Автореферат диссертации на соискание учёной степени кандидата физико-математических наук

> CCROMMENTAL HIMLEYT NYDIWY DECINDOSITEI ISMGJINOTEKA

Введение

Изучение электромагнитных взаимодействий адронов в настоящее время является одной из главных проблем физики элементарных частиц. Однако процессы, относящиеся к данному классу явлений, отличаются очень маленькими сечениями, что затрудняет их исследования с помощью известных экспериментальных установок. Вследствие этого многие интересные электромагнитные процессы до сих пор плохо изучены.

Реферируемая диссертация посвящена экспериментальному исследованию реакции

$$\pi^{-} + \mathbf{p} \rightarrow \mathbf{e}^{+} + \mathbf{e}^{-} + \mathbf{n} \tag{1}$$

при Р_п = 4,0 Гэв/с с помощью нового метода. Диссертация состоит из четырех глав.

В первой главе изложен теоретический аспект проблемы. Вторая и третья главы посвящены методике эксперимента, где в связи с этим описан цикл исследований реакции

(2)

при Р = 4,1 и 4,8 Гэв/с. В четвертой главе прово-

дится анализ и обработка экспериментальных данных о реакции (1) и обсуждение результатов эксперимента.

Описанные в диссертации исследования были проведены на синхрофазотроне Лаборатории высоких энергий Объединенного института ядерных исследований в течение 1963-1967 г.г.

Ниже кратко излагается содержание диссертации.

I. Модель векторной доминантностя (V.D.M.) и ее возможная проверка в процессах образования e⁺e⁻пар в реакции π⁻p→e⁺e⁻в

Основы V.D.M. изложены в оригинальных работах Янга и Миллса (1954 г.), Ли и Янга (1955), Фуджи (1959), Сакураи (1960), а также Намбу (1957), Фразера и Фулько (1960). Основной гипотезой V.D.M. является предположение о доминировании векторных мезонов в электромагнитных взаимодействиях адронов, т.е. о наличии виртуальных переходов между нейтральными векторными мезонами (С=-1, P=-1, J=1, m=m_v) и у -кваитом (C=-1, P=-1, J=1, m=0).

Модель векторной доминантности предсказывает структуру диаграммы Фейимана для реакции (1) в виде:

Из днаграммы (3) следует, что образование e^+e^- -пар с высоким времениподобным значениям q² происходит, в основном, через те промежуточные состояния, которые из вестны как векторные мезоны ρ° , ω п ϕ . Экспериментальное исследование реакции (1) позволяет проверить предсказание V.D.M., т.е. наличие структуры диаграммы Фейнмана (3), и в случае подтверждения дает возможность определить константу связи векторпого мезона с γ -квантом (γ_v или $\gamma_v^2/4\pi$), которая связана с парциальной шириной распада векторных мезонов ($\Gamma(v \rightarrow e^+e^-)$)^{/1/}.

Наблюдение e^+e^- -лар при q^2 , отличающихся от тех значений, которые соответствуют ρ°, ω и ϕ , дает возможность глубже понять электромагнитный формфактор нуклона.

II. Метод исследования радиационных распадов резонансов (МИРРР)

Методические основы МИРРР были разработаны в цикле исследований, которые были проведены с черенковским у -спектрометром из свинцового стекла размерами 18 x 18 x 30 см³ (раздел п.1).

Изучение черенковского у -спектрометра на пучке электронов^{/2,3/} в области энергии E₋=0,25 + 4,0 Гэв показало наличие линейной зависимости амплитуды импульсов от энергии электронов вплоть до 4,0 Гэв.

Зависимость энергетического разрешения спектрометра (R) от энергии (E_{e^-}) в интервале 0,25 ÷ 2,0 Гэв : R=const(E_{e^-}), а от 2 до 4 Гэв: R = const. = $\pm 5\%/4/$.

Применение искровых камер совместно с черенковским у -спектрометром позволяет улучшить точность измерения энергии (при учёте зависимости амплитуды от места и от угла падения ливневой частицы) и получить более полиую илформацию (энергия и координаты) о данной ливневой частиие.

В эксперименте /5/ с помощью макетирования искровых камер латунными и свинцовыми пластинами, расположенными перед черенковским у -спектрометром, выяснена принципнальная возможность применения искровых камер совместно с черенковским спектрометром. Результаты эксперимента показали, что искровые камеры толщиной до 2 рад.ед. почти не влияют на основные характеристики спектрометра.

Возможность запуска искровых камер от импульса черенковского γ -спектрометра исследовалась на пучке π^- -мезонов. Тонкостенные искровые камеры со свинцовым конвертором, расположенные перед черенковским γ -спектрометром, облучались выделенными системой сцинтилляционных счётчиков γ - квантами от реакции $\pi^- p \rightarrow h + m \pi^{\circ}$. Запуск искровых камер осуществлялся от импульса черенковского γ -спектрометра. В результате совместно работающей системой из черенковского спектрометра и искровых камер детектировались γ -кванты с энергией 3 + 5 Гэв. Установка позволяла одновременно измерять углы падения (с точностью $\pm 0,4^{\circ}$), координаты трека и энергию (с точностью $\pm 5\%$) ливневых частиц/6/. Следует подчеркнуть, что данная система способна детектировать ливневые частицы в широком интервале энергий от десятков Мэв до сотен и тысяч Гэв.

Исследование реакции *т* р → *п*^о в

-

Описание экспериментов по измерению полного и дифференциального сечения перезарядки π^- -мезонов на протонах (2) при импульсе 4,1 и 4,8 Гэв/с содержится в разделе Ш.2. Помимо того, что эти эксперименты интересны сами по себе, они позволяют проверить основные методические идеи, привепенные выше.

6

Для измерения полного сечения реакции (2) при импульсе π^- -мезонов 4,1 Гэв/с использовался уже описанный черенковский у -спектрометр. С помощью системы сцинтилляционных счётчиков производилось мониторирование пучка и выделение событий с у -квантами. Измерения проводились разностным методом (СН₂ и С). В эксперименте измерялся энергетический спектр случаев, вызванных попаданием в черенковский спектрометр у -квантов из реакций типа $\pi^- p \cdot n + m\pi^0$ В спектре наблюдался характерный максимум от у -квантов из реакции (2). После введения соответствующих поправок была получена величина полного сечения реакции (2) : $\sigma_{ex} = (0,12 \pm 0,02)$ мбн. Этот результат, приведенный в работах^{/7,8/} (вместе с представленной на XII международную конференцию по физике высоких энергий работой Уаклинга и др.), является первым измерением сечения реакции перезарядки при больших энергиях.

Для исследования дифференциального сечения перезарядки при $P_{\pi} = 4,8$ Гэв/с применялась совместно работающая система из черенковского у -спектрометра и искровых камер/9/. В эксперименте измерялись энергетические и угловые характеристики у -квантов от распадов π° -мезонов, рождающихся в реакции (2). Измерения производились также разностным методом (СН ₂ и С). На рис. 1 приведено дифференциальное сечение перезарядки в единицах квадрата переданного импульса -t. Величина сечения перезарядки вперед, усредненная по интервалу $0 \le |t| \le 0,1$, равна

$$\frac{d \sigma}{d t} (t=0) = (0,49 \pm 0,10) \text{ M6H} / (\Gamma_{9B}/c)^{2},$$

или в единицах телесного угла (с.ц.)

$$\frac{d\sigma}{d\Omega}$$
 (0°) = (0,33 + 0,07) MGH/CTEP.

Это эначение согласуется в пределах ошибок измерений с величиной $\frac{d\sigma}{d\Omega}$ (0°), рассчитанной на основании дисперсионных соотношений и известных данных о полных сечениях $\pi^- p$ и $\pi^+ p$ взаимодействий. Полное сечение реакции (2), подсчитанное с учётом геометрии эксперимента и данных по дифференциальному сечению перезарядки при больших (t), равно: $\sigma_{ex} = (0,11 + 0,02)$ мбн.

Обсуждение экспериментальных данных и различных теоретических моделей, относящихся к реакции перезарядки, содержится во вступительной части раздела II.2.

Физические основы МИРРР

Описанные эксперименты по исследованию реакции перезарядки и — -мезонов на протонах и исследование кинематики реакций

$$\pi^- + p \rightarrow n + V^0(x^0) = V^0(x^0) \rightarrow e^+ e^-, \gamma \gamma = U T.A.$$
 (4)

(раздел II. 3) свидетельствует о том, что можно одновременно измерить угловые и энергетические характеристики этих реакций с помощью двухканальной системы совместно работающих черенховских у -спектрометров и искровых камер/10/. Рис. 2 показывает основное преимущество такой установки/11/.

III. Установка для исследования радиационных распадов резонансов

Описание установки, созданной на основе идей, изложенных выше, и с помощью которой исследована реакция (1), приведено в третьей главе диссертации.

На рис. З представлен схематический чертеж установки. Сцинтилляционные счётчики S₁ и S₂ служат для мониторирования пучка налетающих частиц. Искровые камеры в каждом из двух идентичных каналов представляют собой систему из четырех модулей с площадью рабочей области каждого 50 х 50 см² и величиной разрядного промежутка 10 см. Для конверсии частип, имеющих ливневую природу, перед второй и последующими камерами помещаются латунные пластины суммарной толщиной 1,2 (0,4 х 3) рад.ед.

Для увеличения эффективности запусков установки между искровыми камерами и черенковскими у –спектрометрами устанавливаются сцинтиляционные счётчики S, и S,.

Черенковские спектрометры ЧС-1 и ЧС-II служат для измерения энергии распадных частип. Для собирания черенковского света в каждом спектрометре используется девить фотоумножителей с дпаметром фотокатода 17 см. Спектрометры исследовались на пучке электронов/3/ в области энергии 1-4 Гэв.

В пределах экспериментальных ошибок зависимость амплитуды от энергии для обоих спектрометров вплоть до 4,0 Гэв линейна. Энергетическое разрешение (R) спектрометров (при $E_{-}=4$ Гэв R = \pm (5 + 7)% зависит от энергии, как R =const(E_-, вилоть до 4 Гэв. В диссертации приведены результаты исследований зависимости амплитуды импульсов и энергетического разрешения от места и угла падения пучка электронов на поверхность радиатора спектрометра. Эти данные были использованы для введения поправок.

Анализ работы установки приводится в разделе Ш.2 диссертации. Проведенный анализ энергетических спектров $e^+e^-(yy)$ от процессов (4) в онтимальной геометрии (см. рис. 2) показал, что в пределах телесных углов, охватываемых детекторами, среднее значение энергий $e^{\pm}(y)$ в каждом канале $E_1 =$ $= E_2 = E_{\pi^-/22}$ где E_{π^-} энергия налетающей частицы. Очевидно, что выполняется и другое условле, а имепно, сумма энергий ($E_1 + E_2$) с точностью до переданного нуклону импульса равна энергия налетающего плона. Указанные условия позволяют использовать в измерениях логическую систему для отбора интересующих событий и таким образом значительно снизить число фоновых срабатываний аппаратуры.

Система искровых камер запускается совпадениями ($S_{1}, S_{2}, S_{3}, S_{4}$ ЧС-1, ЧС-II) при следующих условиях : 1) $E_{1} > E_{1}^{0}$: 2) $E_{2} > E_{2}^{0}$; 3) $E = E_{1} + E_{2} > E^{0}$.

На основании кинематического анализа процессов с учётом энергетических разрешений γ -спектрометров в проведенных экспериментах были установлены значения порогов: $E_1^0 = E_2^0 = 0.5$ Гэв и $E_1^0 = 3$ Гэв.

Установка позволяет одновременно получить о каждом событим (e^+e^- , уу и др.) следующие данные: угол вылета из мишени $e^+(\gamma)$, угол разлета $e^+e^-(\gamma\gamma)$, энергию $E_1e^{\pm}(\gamma)$ и, следовательно, позволяет определить эффективную массу $V^o(x^o)$ частиц из реакции (4):

$$M^{2} = (E_{1} + E_{2})^{2} - (\vec{P}_{1} + \vec{P}_{2})^{2} = 2E_{1}E_{2}(1 - \cos\theta).$$

(5)

· • .

Следует заметить, что фотография искровых камер дает информацию не только о координатах и угловых характеристиках трека частицы, но и о заряде частицы. По фотографиям можно легко определить природу треков: треки заряженных частиц – "e", треки, образованные γ -квантами, " γ " и треки γ -конверсионных пар, образованных в мишени, " γ_k ". Установка калибровалась по эффективным массам по распадам η° -мезонов в реакции: $\pi^- P \rightarrow \eta^\circ п$ и $\eta^\circ \rightarrow \gamma\gamma$ при $P_{\pi^-} = 4,0$ Гэв/с^{/13/}.

В эксперименте использовалась полиэтиленовая мишень. По фотографиям с искровых камер отбирались события, имеющие по одному "γ" -треку в каждом канале. Из них идентифицированы всего 49 событий как распады η⁰ → γ + γ в реакции π⁻ р → п η⁰. Учитывая соответствующие поправки и принимая относительную вероятность распада $\eta^{\circ} \rightarrow \gamma \gamma$ равной 38,6%, для полного сечения образования η° -мезонов получаем/14,15/: $\sigma_{\eta^{\circ}} = (74 \pm 12)$ мкбн, которое согласуется с данными других авторов.

IV. Исследование реакции π р→е⁺е п при Р = 4,0Гэв/с

Исследованию реакции (1) были посвящены две серии экспериментов при Р_п = 4,0 Гэв/с.

В первой серии экспериментов использовалась плоскостенная жидководородная мишень размерами 7 х 10 х 50 см³. Угол между осями каналов был равен 26⁰. Анализ экспериментальных данных этой серии экспериментов показал наличие заметного числа фоновых событий, обусловленных конверсией у -квантов в стенках мишени/16-19/.

Вторая серия экспериментов (угол между осями обоих каналов – 29⁰), проведенная с использованием конусообразной жидководородной мишени (ℓ – 25 см) с тонким выходным окном, подтвердила гипотезу о конверсионном характере фона/20,21/.

Полное число мезонов, прошедших через жидководородную мишень в двух сериях экспериментов, составило около 6.10⁹. При этом установкой зарегистрировано около 33000 событий, из которых отобраны случаи, содержащие на фотографиях первого и второго каналов одиночный трек заряженной частицы, входящей в блок со стороны мишени. Таких случаев, возможных кандидатов в с⁺ с⁻ события, оказалось 332.

В дальнейшем эти события измерялись и обрабатывались индивидуально с помощью программы "Радек - 2" на ЭВМ. Для каждого события были вычислены эффективная масса M_{ee} , угол разлета θ_{ee} , χ^2 - пересечения треков и положение точки взаимодействия в мишени.

11

При отборе по геометрическим критериям уровень браковки по χ^2 соответствовал вероятности $P(\geq \chi^2) = 1\%$.

После применения остальных критериев остается 71 кандидат в e⁺e⁻ – пары (для реакции (1)). Фотография, полученная с помощью искровой камеры с характерным e⁺e⁻ – событием, приведена на рис. 4.

Анализ фоновых процессов показал, что преобладающим процессом является фон, обусловленный конверсией у -квантов в стенках мишени.

Спектр углов разлета и спектр эффективных масс γ -конверсионного фона получены на основе соответствующих распределений $\gamma\gamma$ -событий, зарегистрированных параллельно с e^+e^- -событиями. Нормированные спектры γ - конверсионного фона по обеим сериям экспериментов вычитались от соответствующих распределений θ_{ee} и M_{ee} раздельно. Спектры эффективных масс (M_{e+e}-) после вычета фона нормировались на максимальную эффективность.

Кривые эффективности для I и II серий экспериментов вычислялись методом статистических испытаний на ЭВМ.

Полученные спектры суммировались поинтервально.

Суммарные распределения (для 'I и II серий экспериментов) эффективных масс и углов разлета представлены на рис. 5.

Обсуждение результатов эксперимента

Полученные распределения углов разлета и эффективных масс e⁺e⁻ -пар от реакции (1) имеют существенные особенности. Действительно, в области эффективных масс от 600 до 900 Мэв и в интервале углов разлета от 20° до 26° в системе e⁺e⁻ -пар наблюдается резонанс шириной более 100 Мэв и с массой около 750 Мэв (см. рис. 5). Пропесс образования e⁺e⁻-пар в указанной области согласуется со следующей реакцией: Кинематический анализ этих распадов приведен на рис. 6, где по оси ординат отложено отношение энергий распадных частии, а по оси абсцисс – угол разлета частии. Представление точкой каждого из 71 событий (кандидатов в e^+e^- -события) на этом графике показывает скопление e^+e^- -событий в области теоретической кривой для ρ° -мезона (ρ). Кривые $\Delta \rho_1$ и $\Delta \rho_2$ вычислены с учётом ширины ρ° -мезона и точности измерения энергий и углов. Цифры рядом с точкой указывают эффективные массы "ее" в Мэв.

Приведенные факты служат убедительным доказательством существования распадов $\rho^{\circ} \div e^{+} + e^{-}$ и не противоречат существованию распадов $\omega \rightarrow e^{+} + e^{-}$. Таким образом, в области эффективных масс от 600 до 900 Мэв $e^{+}e^{-}$ -пары в реакции (1) образуются в основном в результате распада нейтральных векторных мезонов ρ . (п ω).

На основе наших экспериментальных данных можно оценить верхнюю границу сечения нерезонансного рождения e^+e^- -пар в реакции (1) в исследованной области эффективных масс $\sigma_{e^+e^-} \leq (6 + 10) 10^{-34} \text{см}^2$, которая не противоречит теоретическим оценкам.

Для определения относительных вероятностей распадов ρ° – и ω -мезонов на e⁺e⁻ –пары наши экспериментальные данные представлены в следующем виде:

 $\sigma_{\rho^{\circ}}^{B} \sigma_{\rho^{\circ}}^{\bullet +} = + \sigma_{\omega}^{B} \sigma_{\omega^{\circ}}^{+} = 0,445 = (0,450 \pm 0,095) \ 10^{-4} \text{ MGH} .$ (7)

Коэффициент 0,445 обусловлен различием в эффективности регистрации установкой $\rho^{\circ} \rightarrow e^{+} + e^{-}$ и $\omega \rightarrow e^{+} + e^{-}$. Используя гипотезу $\omega - \phi$ – смешивания с θ =38° и литературные дан-

12

13

(6)

ные для сечения рождения ρ° - и ω -мезонов в реакции (6) ($\sigma_{\rho^{\circ}} = 0.75.10^{-27} \text{ см}^2$ и $\sigma_{\omega} = 0.14.10^{-27} \text{ см}^2$), для парциальных вероятностей распада ρ° - и ω -мезонов на e^+e^- -пары получаем:

$${}^{B} \rho^{0} {}_{e} {}^{+} {}_{e} {}^{-} = \frac{\Gamma(\rho^{0} \rightarrow e^{+} + e^{-})}{\Gamma(\rho^{0} \rightarrow \text{total})} = (5,3 \pm 1,1) \ 10^{-5},$$

$${}^{B} \omega {}_{e} {}^{+} {}_{e} {}^{-} = \frac{\Gamma(\omega \rightarrow e^{+} + e^{-})}{\Gamma(\rho^{0} \rightarrow \text{total})} = (7,4 \pm 1,6) \ 10^{-5}.$$

(8)

Здесь приведены статистические ошибки. Если в (7) предположить $\sigma_{\omega} = 0$, то $B_{\rho^0 e^+ e^-} = (6,0 \pm 1,2) \cdot 10^{-5}$. Отсюда видно, что вклад от распада $\omega \rightarrow e^+ e^-$ мал (~ 12%). Значения констант связи ρ^o -и ω -мезонов с у -квантом, соответствующие (8)

Γ(ω→ total

в пределах ошибок измерения согласуются с предсказанием V.D.M. $(\gamma_{\rho}^2/4\pi = 0,62 \text{ и } \gamma_{\omega}^2/4\pi = 1,2).$

Это подтверждает предсказание V.D.M. относительно характера образования e⁺e⁻ -пар, описываемое диаграммой Фейнмана (3), и, следовательно, существование прямых виртуальных переходов : V °-у v.

Основные материалы диссертации обсуждены на международных конференциях по физике высоких энергий в 1964 г. в Дубне/8/, в 1966 г. в Рочестере/16/, на рабочем совещании по искровым камерам в Дубне/13/, на международных конференциях

14

по электромагнитным взаимодействиям в Дубне/19/ и в Стенфорде (1967)/20/, а также опубликованы в печати/2,4-7,9-11, 14,15,17,18,21/

Полученные в реферируемой диссертации величины парциальных вероятностей распадов ρ° -(и ω) – мезонов на e^+e^- -пары с идентификацией их по эффективным массам являются первыми данными, опубликованными в литературе/17/.

В ранее выполненных экспериментах распады ρ° -мезонов на е⁺е⁻ -пары не идентифицировались.

Результаты более поздних экспериментов/1,22/ подтверждают данные настоящей работы (см. табл. 1 и 2).

Краткие выводы

Основные результаты диссертации могут быть сформулированы следующим образом:

 Экспериментально доказана возможность детектирования у -квантов и электронов с помощью совместно работающей системы, состоящей из искровой камеры и черенковского

у -спектрометра.

2. Предложена двухканальная установка для исследования реакций (4), состоящая из двух симметрично расположенных систем (относительно оси пучка) черенковских у -спектрометров и искровых камер. Установка позволяет измерять эффективную массу резонансов, распадающихся на e⁺ e⁻, уу и т.д.; она обладает высокой селективностью и может работать при больших, интенсивностях первичного пучка.

3. Измерено полное и дифференциальное сечение реакции $\pi^{-}p \rightarrow \pi^{\circ}n$ при $P_{\pi^{-}} = 4.83$ Гэв/с.

4. Измерено полное сечение реакции $\pi^- p \rightarrow \pi^0 n$ при $P_{\pi^-} = 4,14$ Гэв/с.

5. Измерено полное сечение реакции п⁻ p → p⁰ п при P_n = 4,0 Гэв/с.
6. Экспериментально доказано, что характер образования e⁺e⁻ пар в реакции п⁻ p→ e⁺ e⁻ в в области эффективных масс от 400 до
900 Мэв согласуется с диаграммой Фейнмана (3), т.е. с предсказанием V.D.M.

Сделана опенка верхней границы сечения перезонансного рождения e⁺e⁻ -пар в областл эффективных масс от 400 до 900 Мэв.

7. a) Доказано существование распада $\rho^{\circ} \rightarrow e^+ e^-$,

 б) Измерена величина парциальной вероятности распада ρ° -мезона на е⁺е⁻-пары.

На основе полученных экспериментальных данных вычислена константа связи ρ^0 -мезона с у -кваетом $(\gamma_\rho^2/4\pi)$, ямеющая фундаментальное значение для проверки V.D.M.

г) Полученные результаты подтверждают гипотезу о
 существовании прямых виртуальных переходов V°→v.

Литература

- S.C.C.Ting. Обзорный доклад на симпозиуме по взаимодействиям электронов и фотонов прп высоких энергиях. Стенфорд, 1967.
- М.А.Азимов, В.А.Никитин, В.С.Пантуев, В.А.Свиридов, Л.Н.Струнов, М.Н.Хачатурян. Препринт ОИЯИ, 2451, Дубна, 1965.
- 3. В.С.Пантуев, М.Н.Хачатурян. ПТЭ, №3, 51 (1965).
- М.А.Азимов, В.С.Пантуев, М.Н.Хачатуряв. Преприят ОИЯИ, 2240, Дубна, 1965; Nuclear Instruments and Methods., 39, 325 (1966).
- 5. М.А.Азимов, В.С.Пантуев, М.Н.Хачатурян, И.В.Чувило. Препринт ОИЯИ, 1730, Дубиа, 1964; ПТЭ № 4, 223 (1965).

- М.А.Азимов, В.Г.Колесник, В.С.Пантуев, Л.В. Сильвестров, стов, М.Н.Хачатурян. Препринт ОИЯИ, Р-2436, Дубна, 1965.
- М.А.Азимов, В.С.Пантуев, Л.В. Сильвестров, М.Н.Хачатурян, И.В.Чувило. Препринт ОИЯИ, Р-1782, Дубна, 1964; Ядерная физика, т.1, 145 (1965).
- М.А.Азимов, И.М.Граменицкий, Л.С.Охрименко, В.С.Пантуев, Л.В. Сильвестров, Б.Словински, З.Стругальский, М.Н.Хачатурян, И.В.Чувило. Материалы XII Международной конференции по физике высоких энергий, <u>1</u>, 145, Москва, "Атомиздат", 1966.
- М.А.Азимов, Е.Н.Басова, У.Г.Гулямов, К.Р.Игамбердиев, В.Г.Колесник, В.С.Пантуев, Л.В. Сильвестров, М.Н. Хачатурян. Преприят ОИЯИ, 2592-6, 1966. ЖЭТФ, письма в редакцию 3, 336 (1966).
- М.А.Азимов, А.М.Балдин, В.С.Пантуев, Л.В. Сильвестров, М.Н.Хачатурян, И.В.Чувило. Публикация ОИЯИ, Б7-20-70, Дубиа, 1964.
- М.Н.Хачатурян, М.А.Азимов, В.С.Пантуев. Бюллетень изоб.
 (1966).
- М.А.Азимов, М.Н.Хачатурян, В.С.Пантуев. Авт. свидет.
 № 182249.
- 13. М.А.Азимов, М.Н.Хачатурян, В.С.Пантуев, Л.И. Журавлева, Б.Зеленов, Э.Мальпев, А.Маслаков, А.Матюшин, В.Матюшин, М.Хвастунов, Р.Фирковски, И.В.Чувило. Материалы рабочего совещания по искровым камерам (Дубна, 14-19 марта 1966 г.). Препринт ОИЯИ, 13-2998, Дубна, 1966.
- M.A.Azimov, A.S.Belousov, I.V.Chuvilo, R.Firkowski, M.N.Khachaturyan , M.S.Khvasturov, L.G.Makarov, E.J.Maltsev, A.T.Matyushin, V.T.Matyushin, V.S.Pantuev, I.N.Shtarkov, D.V.Uralsky, B.A.Zelenov, L.I.Zhuravleva, Preprint, E13–2971, Dubna, 1966.
- M.N.Khachaturyan, M.A.Azimov, A.S.Belousov, I.V.Chuvilo, R.Firkowski, M.S.Khvastunov, L.G.Makarov, E.I.Maltsev, A.T.Matyushin, V.T.Matyushin, V.S.Pantuev, I.N.Shtarkov, D.V.Uralsky, B.A.Zelenov, L.I.Zhuravleva, Nuclear Instr. and methods., <u>51</u>, 309 (1967).

- M.A.Azimov, A.M.Baldin, A.S.Belousov, I.V.Chuvilo, R.Firkowski, M.S.Khvastunov, M.N.Khachaturyan, V.E.Komolova, E.I.Maltsev, A.I.Maslakov, A.T.Matyushin, V.T.Matyushin, G.A. Ososkov, V.S.Pantuev, L.N.Shtarkov, B.A.Zelenov, L.I.Zhuravleva. Proceedings of the XIII International Conference on High Energy Physics (Berkly 1966), p.313.
- M.A.Azimov, A.M.Baldin, A.S.Belousov, J.Hladky, L.I.Zhuravleva, G.A.Ososkov, J.Manca, A.T.Matyushin, V.T.Matyushin, R.Firkowski, M.N.Khachaturyan, M.S.Khvastunov, I.V.Chuvilo, L.N.Shtarkov. Preprint E1-3148, Dubna, 1967;

Ядерная физика, 6, 515 (1967).

M.N.Khachaturyan, M.A.Azimov, A.M.Baldin, A.S.Belousov, J.Hladky, L.I.Zhuravleva, G.A.Ososkov, J.Manca, A.T.Matyushin, V.T.Matyushin, R.Firkowski, M.S.Khavashunov, J.V.Chuvilo, L.N.Shtarkov, Phys. Lett., <u>24B</u>, 349 (1967).

19. М.Н.Хачатурян. Обзорный доклад на Международной конфе-

ренции по электромагнитным взаимодействиям. Дубна, 7-15,

П,1967 г., т. 1, стр. 53.

 M.N.Khachaturyan, M.A.Azimov, A.M.Baldin, A.S.Belousov, J.Hladky, L.I.Zhuravleva, G.A.Ososkov, J.Manca, A.T.Matyushin, V.T.Matyushin, R.Firkowski, M.S.Khvastunov, I.V.Chuvilo, L.N.Shtarkov.

Труды международного симпозиума по взаимодействиям

электронов и фотонов при высоких энергиях, Стенфорд, 1967.

R.G.Astvacaturov, M.A.Azimov, A.M.Baldin, A.S.Belousov, I.V.Chuvilo, J.Hladky, U.LIvanov, M.N.Khachaturyan, M.S.Khvastunov, A.T.Matyushin, V.T.Matyushin, L.N.Shtarkov, L.I.Zhuravleva. Preprint E1-3770, Dubna, 1958; Phys. Lett., <u>27B</u>, 45 (1968).

22. S.C.C.Ting. Обзорный доклад на XIV

орный доклад на XIV международной конфе-

ренции по физике высоких энергий , Вена, Сентябрь, 1968: Публикация ОИЯИ, R -4070, т. I , Дубна, 1968.

Рукопись поступила в издательский, отдел

12 декабря 1968 года.

Таблица I

Сводные экспериментальные данные по определению в "? +--

њњ ПП	Реакция	^Β ρ°•+•-×	$10^5 \gamma_{\varphi}^2 / 4\pi$	Лабора- тория	месяц, год и ссылка
I	π~p→e ⁺ e [−] n	(3,9 <u>+</u> 1,2)	0,68 ^{+0,30} -0,16	Дубна	II/I967 ^{/I7/}
2	$e^+e^- \rightarrow \pi^+\pi^-$	(4,9 <u>+</u> 0,7)	0,54 ⁺⁰ ,09 -0,06	Новоси- бирск	IX/I967 ^{/I/}
3	$e^+e^- \rightarrow \pi^+\pi^-$	(6,2 <u>+</u> 1,0)	0,43 ⁺⁰ ,08 -0,06	Opce	IX/I967 ^{/I/}
4	yc →e ⁺ e ⁻ c	(6,5 <u>+</u> I,4)	$0,41^{+0,11}_{-0,07}$	дэзи	IX/I967/I/
5	$\pi^- p \rightarrow e^+ e^- n$	(5,3 <u>+</u> I,I)	0,52 ^{+0,14}	Дубна	наст.раб./21/
	Теория v.b.м. 4, 3 0,62				

Таблица 2

滕滕 п/п	Реакция	$B_{\omega e^+ e^-} \times 10^5$	$\gamma_{\omega}^2/4\pi$	Лабора- тория	Месяц,год и ссылка
I	π¯p → e ⁺ e [−] n	5 + 60	0,2+1,9	Нимрод	1965
.2	π p→e ⁺ e n	(4,8 <u>+</u> 1,5)	I,98+0,90	Дубна	1967/17/
3	$\pi^- p \rightarrow e^+ e^- n$	(6,5 <u>+</u> I,3)	I,46 <u>+</u> 0,32	Дубна	III/I968 ^{/2I/}
4	π¯p →e ⁺ e [−] n	(7,4 <u>+</u> I,6)	I,29 ^{+0,35}	Дубна	настоящая работа
5	$e^+e^- \rightarrow \pi^+\pi^-\pi^-$	(7,9 <u>+</u> 1,5)	I, I0 <u>+</u> 0, 3	Opce	IX/I968 ^{/22/}
	Теория v.b.	м. 0,8	I,2		•

Рис. 2. Угловое распределение электронов в л.с.к. от распада $\rho^{o(\omega)}$ -мезонов при Р $\rho^{o(\omega)} = 4,0$ Гэв/с (в с.ц.п. угловое распределение электронов взято изотропным).

Рис. 5. Суммарные распределения углов разлета и эффективных масс для e⁺e⁻ - событий I и II серий экспериментов после вычета фона.

Рис. 6. Зависимость отношения энергий распадных частиц (e⁺e⁻) от угла разлета в л.с.к.