

Н.Ангелов, И.М.Граменицкий, Х.Каназирски, А.М.Моисеев, Л.А.Тихонова, А.Б.Фенюк, М.Д.Шафранов

определение сечения $\pi \pi$ -взаимодействия в реакциях $\pi^+ p \rightarrow \pi^+ \pi^+ n$ и $\pi^+ p \rightarrow \pi^+ \pi^\circ p$ при импульсе первичных π^+ мезонов 2,34 гэв/с

1968

BUCOKMX THEPTMN

SHACLVAC

Н.Ангелов, И.М.Граменицкий, Х.Каназирски, А.М.Моисеев, Л.А.Тихонова, А.Б.Фенюк, М.Д.Шафранов

ystyle up

определение сечения $\pi \pi$ -взаимодействия в реакциях $\pi^+ p \rightarrow \pi^+ \pi^+ n \, \mu \, \pi^+ p \rightarrow \pi^+ \pi^0 \, p$ при импульсе первичных π^+ мезонов 2,34 гэв/с

При изучении взаимодействий типа

$$\pi \mathbb{N} \to \pi \pi \mathbb{N} \tag{1}$$

появляется возможность провести оценки сечения *п п* - взаимодействия. При рассмотрении одномезонной диаграммы (рис. 1) Чу и Лоу ^{/1/} получили следующее предельное выражение для дифференциального сечения реакции (1)

$$\frac{\partial^2 \sigma}{\partial \Delta^2 \partial \omega^2} \xrightarrow{\Delta^2 \to \mu^2} \frac{f^2}{2\pi} \frac{1}{q_L^2} \frac{(\Delta^2/\mu^2)}{(\Delta^2 + \mu^2)^2} \omega \sqrt{\frac{\omega^2}{4} - \mu^2} \sigma_{\pi\pi}(\omega), \quad (2)$$

Рис.1. Одномезонная диаграмма.

где ${f}^2$ - константа связи π N - взаимодействия, q_L - импульс падаюшего π -мезона в л.с., Δ^2 - квадрат переданного 4-импульса $\pi\pi$ системе, ω -полная энергия двух π - мезонов в их с.ц.м., μ - масса покоя обменной частицы (в данном случае π - мезона), $\sigma_{\pi\pi}(\omega)$ - сечение $\pi\pi$ - взаимодействия при $\Delta^2 = -\mu^2$.

Поскольку полюс в амплитуде, описываемой одномезонной диаграммой, близок к физической области, можно предположить, что эта диаграмма будет давать основной вклад в процесс (1) при малых переданных импульсах. Тогда, экстраполируя (2) в нефизическую область значение Δ^2 , в точке $\Delta^2 = -\mu^2$ можно получить сечение $\pi\pi$ – рассеяния. Для экстраполяционной процедуры более удобно использовать выражение

$$F(\Delta^{2}, \omega^{2}) = \frac{2\pi}{f^{2}} \frac{q_{L}^{2}}{\omega\sqrt{\frac{\omega^{2}}{4} - \mu^{2}}} (\Delta^{2} + \mu^{2}) \frac{\partial^{2}\sigma}{\partial\Delta^{2}\partial\omega^{2}}$$
(3)

При справедливости предположения об одномезонном обмене $F(\Delta^2, \omega^2)$ должна линейно зависеть от Δ^2 , проходить через 0 при $\Delta^2 = 0$ и при экстраполяции в точку $\Delta^2 = -\mu^2 F(-\mu^2, \omega^2) = \sigma_{\pi\pi}(\omega)$. Оценка $\sigma_{\pi\pi}$ может быть проведена также методом интегрирования (2) по Δ^2 в физической области. При этом дополнительно предполагается слабая зависимость $\sigma_{\pi\pi}(\omega^2)$ от Δ^2 и пренебрегается виртуальностью обменного π -мезона, что в какой-то мере оправдано при малых Δ^2 .

В настоящей работе приводятся оценки сечения *пп* - взаимодействия, полученные из анализа реакций

$$\pi^{+} p \rightarrow \pi^{+} \pi^{+} n \qquad (4)$$

$$\pi^{+} \pi^{\circ} p$$

(5)

при импульсе первичных "+ - мезонов 2,34 + 0,60 Гэв/с.

На 150000 снимках с 40-сантиметровой камеры было выделено ≈ 2000 событий типа (4) и ≈3000 событий гипа (5). Методика разделения

Рис.2. Распределение по $\Delta_{\pi}^{2} +_{\pi} + для$ разных интервалов. а) 0,07 $\leq \omega^{2} \leq$ 0,39 (Гэв)², 6) 0,39 $\leq \omega^{2} \leq$ 0,59 (Гэв)², в) 0,59 $\leq \omega^{2} \leq$ 0,83 (Гэв)².

каналов реакций и статистической обработки подробно описана в работах /2,3/

Для событий, отвечающих реакции (4), были построены распределения по $\Delta_{\pi\pi}^2$ - квадрату переданного импульса системе $\pi\pi$ для разных интервалов ω^2 , приведенные на рис. 2а, в и с.

Сильная концентрация числа событий при малых $\Delta_{\pi^+\pi^+}$ позводяет считать вклад в реакцию (4) одномезонного обмена существенным. Распределение по углу Треймана-Янга (рис. 3), практически не отличающиеся от изотропного, также не противоречит этому предположению.

Рис.3. Распределение по углу Треймане-Янга для п⁺п⁺ системы при Δ² ≤ 0,25 (Гэв)².

6

Линейная экстраполяция функции $F(\omega^2, \Delta^2)$ была проведена для трех интервалов ω^2 (рис. 4а, б,с). Результаты по сечению $\pi^+\pi^+$ – взаимодействия приведены в таблице 1, в колонке 3. В колонке 4 этой же таблицы приведены данные, полученные при экстраполяции с дополнительным предположением: $F(\Delta^2\omega^2) = 0$ при $\Delta = 0$. Следует отметить, что экстраполяционная процедура для сценки $\delta_{\pi^+\pi^+}$ применялась только в работах $^{/4/}$ и $^{/5/}$, при этом в работе $^{/4/}$ было получено $\sigma_{\pi^+\pi^-} + = (1\pm6)$ мб для $4\mu^2 \le \omega^2 \le 6\mu^2$ и $\sigma_{\pi^+\pi^+} = (-2+7,5)$ мб при $6\mu^2 \le \omega^2 \le 8.5\mu^2$, а в работе $^{/5/}$ сечение $\sigma_{\pi^+\pi^+}$ оказалось отрицательным.

Сечение $\pi^+ \pi^+$ - взаимодействия определялось также методом интегрирования в физической области. Эти данные приведены в колонке 5 таблицы 1. Все результаты по оценке сечения $\pi^+ \pi^+$ - взаимодействия довольно близки друг к другу.

На рис. 5 приведена зависимость $\sigma_{\pi^+\pi^+}$ от ω^2/μ^2 (метод интегрирования в физической области). Там же приведены $\sigma_{\pi^+\pi^+}$, полученные при 2,75 Гэв/с ^{/6/}. Можно видеть, что данные в пределах ошибок совпадают.

Подробное изучение реакции (5) было проведено в работе $^{/7/}$. Результаты этой работы по анализу дифференциального сечения $d\sigma/d\Delta^2$ и зависимости элементов матрицы спиновой плотности от Δ^2 показывают, что одномезонный процесс в этой реакции является преобладающим. Поэтому были проведены оценки сечения $\pi^+ \pi^0$ – взаимодействия как методом экстраполяции, так и методом интегрирования в физической области. Оба метода дали практически одинаковые результаты. На рис. 6 приведена зависимость сечения $\sigma_{\pi^+ \pi^-}$ от ω . Эта зависимость имеет явно выраженный резонансный характер с максимумом при ω = = 780 Мэв. Естественно, что такой характер зависимости $\sigma_{\pi^0 \pi^+}$ от ω является следствием большого сечения образования ρ^+ -мезона в реакции (5).

В заключение авторы благодарят П. Маркова и Я. Пернегра за внимание к работе.

7

Рис.5. Зависимость $\sigma_{\pi^+\pi^+}$ от (ω^2/μ^2) . Пунктирные линии $p_{\pi^+} = 2,34$ Гэв/с (настоящая работа) сплошные линии $p_{\pi^+} = 2,75$ Гэв/с (работа /6/).

Таблица 1	
-----------	--

Интервал $\omega^2 \qquad \omega^2$ (Гэв) ² (Гэв) ²	ω ²	Экстраполяция		Интегрирование
	(198)	σ(mb)	σ(m b)	σ(mb)
1	2	3	4	5
0,07 - 0,39	0,23	11,9 + 3,9	8,8 + 0,1	9,9 + 1
0,39 - 0,59	0,49	14,1 + 2,9	7,0 + 0,75	8,5 + 0,8
0,59 - 0,83	0,71	0,7 <u>+</u> 8,1	4,1 + 0,5	4,7 + 0,5

Литература

- 1. G.F. Chew, G. Low, Phys. Rev., 113, 1640 (1959).
- Н.С. Ангелов, И.М. Граменицкий, Х. Каназирски, А.М. Моисеев Л.А. Тихонова, А.Б, Фенюк, М.Д. Шафранов. Препринт ОИЯИ 4097 Дубна, 1968.
- И. Н. Граменицкий, А. М. Монсеев, Л. А. Тихонова, М. Д. Шафранов Препринт ОИЯИ 10-3772, Дубна, 1968.
- 4. J. Kirz, J. Shwartz, R.D. Tripp, Phys. Rev., 126, 763 (1962).
- 5. L.A. Auerbach, T. Elioff, W.B. Johnson, J. Lach, C.E. Wigand, T. Ypsilantis. Phys. Rev., Lett, 9, 173 (1962).
- 6. N. Armenise, B. Chidini et al. Nuovo Cimento 37, 361 (1965).
- 7. Н.С. Ангелов, И.М. Граменицкий и др. Препринт ОИЯИ Р1-2997 Дубна, 1966.

Рукопись поступила в издательский отдел 25 октября 1968 года,

Рис. 6. Зависимость $\sigma_{\pi^+\pi^0}$ от ω . полученная из анализа реакции $\pi^+_{p \to \pi^+\pi^0 p}$.