

1 - 4080

Я.Бэм, В.Г.Гришин, М.М.Муминов

LAGODATOPHS BUCOKMX HEPTHŃ

ИЗМЕРЕНИЕ МАЛЫХ СМЕЩЕНИЙ ОСЕЙ ТРЕКОВ В ПРОПАНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЕ

1 - 4080

Я.Бэм, В.Г.Гришин, М.М.Муминов

ИЗМЕРЕНИЕ МАЛЫХ СМЕЩЕНИЙ ОСЕЙ ТРЕКОВ В ПРОПАНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЕ

\$50 M3 up

Исследование процесса прямого образования (e⁺e⁻) – пар электронами в пропановой пузырьковой камере существенно связано с выделением фоновых событий (e⁺e⁻) , возникших в результате конверсий тормозных γ -квантов в (e⁺e⁻)-пары /1/, оси которых смещены относительно первичного электрона. Для этой цели была разработана методика измерения малых смещений осей (e⁺e⁻)-пар относительно осей первичных электронов. Измерения проводились на микроскопе МБИ-9 с окулярным микрометром (15 x 6,3). Одно деление соответствует 1,82 микрона на кадре. Увеличение оптической системы 24-литровой камеры Лаборатории высоких энергий ОИЯИ равно z = 10 + 0,4. Камера была помещена в магнитное поле с H =14,3 кгаусс и облучена пучком π^- , μ^- , μ^- -мезонов и электронов с рс =4 Гэв.

Разработанная методика определения малых смещений осей треков может быть использована и в других экспериментах.

91. Измерения на одиночных следах

В окуляре микроскопа пузырьки видны как черные или серые зерна с нечетко ограниченными краями. Было определено, что физики, проводящие измерения, находят край пузырька со среднеквадратичной ошибкой $\sigma = (0.9 + 0.1)$ дел.

На треках первичных электронов (рс = 3 Гэв) определялось смешение осей двух соседних участков следа. Пары координат X₁ , X₃ и X₂ , X₄ измерялись по краям разного числа пузырьков (см. 1 и 2 столбцы табл. 1 и рис.1). Нить окулярного микрометра направлялась по касательной к первичному треку в точке, лежащей между измеряемыми участками следа. Смещение осей равно:

$$\xi = \frac{X_1 + X_3}{2} - \frac{X_2 + X_4}{2}.$$
 (1)

Кроме того, определялось и смещение краев двух соседних участков следа:

$$\xi^{*} = X_{1} - X_{2} \quad \text{или} \quad \xi^{*} = X_{3} - X_{4} \quad (2)$$

Результаты измерений показаны в табл. 1. На их основании можно сделать следующие выводы:

1. Средние значения величин ξ , (X₁ --X₈), (X₈-X₄) в рамках ошибок равны нулю, что и подтверждает отсутствие систематических ошибок в процессе измерения.

2. Дисперсии величин ξ , $(X_1 - X_2)$, $(X_3 - X_4)$ незначительно уменьшаются с ростом числа пузырьков, по краям которых определялись координаты (см. столбцы 4, 6, 8 табл. 1). Ошибка в определении оси первичного следа $\sigma_{(X_2+X_4)/2}$ составляет 1,3 дел., что соответствует 25 микронам в камере (см. 9-й столбец табл. 1) ^{/2/}. Ширина первичных треков в наших условиях составляет $\epsilon = 35$ дел. Высокая точность в определении оси треков связана с малым разбросом центров пузырьков вокруг истинной траектории частицы (= 4 микрона в камере)^{/3/}.

Ограничения точности определения осей треков связаны в основном с многократным рассеянием. Например, для рс =1 Гав и длины участка следа в камере 1 см (10 пузырьков) смещение, вызванное многократным рассеянием, составляет 1 дел. В нашем случае, когда длина измеряемого участка следа составляла ≈ 0,5 см в камере и рс ≈ 3 Гэв, смещение было несущественным (< 0,1 дел.).

3. Ошибки в определении разности верхних ($X_8 - X_4$) и нижних ($X_1 - X_2$) краев соседних участков треков на 0,6 дел. больше, чем ошибки в определении их осей (ξ).

Также были измерены координаты X'_1 , X'_2 , X'_3 , X'_4 (см. pис.1) по 3-4 пузырькам, и соответствующие величины оказались равны $\bar{\xi}' = (-0,2 \pm 0,2)$ дел. и $\sigma'_{\xi} = 2$ дел. (расстояние между серединами участков треков составляет ~600 дел.).

Таким образом, на расстояниях 1 см в камере дисторсии на пленке, многократное рассеяние электронов и неточности в определении касательной к треку незначительно влияют на точность измерения величины ξ (σ_{ξ} =1,7 дел. и σ_{ξ} , =2 дел.).

§2. Измерения на (e⁺e⁻)-парах

Измерения проводились на (e^+e^-) -парах, возникших в результате конверсий тормозных *у*-квантов, излученных электронами. Отбирались пары, лежащие рядом с первичным треком, для которых энергии электрона и позитрона E_+ и $E_-\geq 15$ Мэв и $0,1 \leq \frac{E_+}{E_y} \leq 0,9$. Измерялись координаты X_1 , X_3 вершины (e^+e^-) -пары по 3-4 пузырькам и координаты электрона X_2 и позитрона X_4 по 2-3 пузырькам на расстоянии 200 дел. от вершины пары. Ось (e^+e^-) -пары направлялась по касательной к первичному треку в точке, лежащей между окном камеры и вершиной (e^+e^-) -пары (угол вылета тормозного *у*-кванта сос-

тавляет ~ 2.10⁻⁴ радиана). Смещение осей (e⁺e⁻) -пары (ξ) в вершине и на расстоянии 200 дел. определялось по уравнению (1) и было получено $\bar{\xi} = (-0, 1 + 0, 2)$ дел. и $\sigma_{\xi} = 2,0$ дел.

1. В связи с тем, что распределение измеряемых (e^+e^-) - пар по величине v = $\frac{E_+}{E_y}$ является симметричным относительно v =0,5, значение $\bar{\xi} = (-0, 1 \pm 0, 2)$ дел. подтверждает отсутствие систематических смещений при измерениях на (e^+e^-) - парах.

 Полученное значение σ ξ =2,0 дел. хорошо согласуется с σξ ≈ 1,9 дел., найденной из результатов измерений на одиночных следах (см. табл. 1).

Таким образом, неточность в определении направления оси (e⁺e⁻)пары под микроскопом, различие в энергиях электрона и позитрона из (e⁺e⁻) -пары, многократное рассеяние электронов и т.д. несущественны при измерениях осей энергичных (e⁺e⁻)-пар на расстояниях до 200 дел.

Сравним ширину вершины трека (e⁺ e⁻) - пары с шириной участка первичного следа, лежащего рядом с ней. Участки следов, на которых проводятся измерения, находятся в малом объеме камеры, и генерация пузырьков происходит при одинаковых условиях. Поэтому разность ширин соответствующих треков может быть обусловлена тем, что пузырьки в вершине (e⁺ e⁻)-пары образуются двумя электронами в отличие от следа первичного электрона (угол между электроном и позитроном из (e⁺ e⁻) - пары равен $\theta \approx 4 \text{ mc}^2/E_v$).

Измерялась ширина вершины энергичной (Е $\gamma \ge 50$ Мэв) (e⁺e⁻)пары ($X_3 - X_1$)_п и ширина следа ($X_3 - X_1$)_э под вершиной пары, в обоих случаях по 3-4 пузырькам. Было получено, что $\overline{\Delta} = [(X_3 - X_1) - (X_3 - X_2)]_{=}$ = (0,2 + 0,4) дел. и σ_{Δ} =4,6 дел. Отсюда вытекает, что систематической разницы ширин (e⁺e⁻)-пары и первичного электрона нет.

Результаты измерений на одиночных следах и (e⁺e⁻) - парах были использованы при определении смещений осей (e⁺e⁻) - пар относительно осей первичных электронов для событий, в которых (e⁺e⁻) - пара образована или электроном, или тормозным у -квантом на первичном треке (см. рис.2) /1/.

Координаты X₁, X₈ первичного трека перед вершиной (e⁺e⁻)-пары измерялись по 5-6 пузырькам, координаты X₂, X₄ вершины (e⁺e⁻)пары по 1-6 пузырькам в зависимости от их энергии. Для случаев, когда X₂< X₈ и X₄>X₁величина ξ_1 вычислялась следующим образом: $\xi_1 = X_4 - X_8$, если X₂ \geq X₁ и X₄ \geq X₈; $\xi_1 = X_2 - X_1$, если X₄ \leq X₈ и X₂ \leq X₁. В остальных случаях ξ_1 определялось с помощью уравнения (1) /4/.

Чтобы найти ошибку σ_{ξ} , определялась величина ξ_{3} по измерениям на других участках следов (e⁺e⁻) – пары и первичного электрона, чем в случае ξ_{1} . Измерения "вне вершины пары" (ξ_{2}) проводились другим физиком. Было получено, что ($\overline{\xi_{1}}-\overline{\xi_{2}}$) =(0,3 ± 0,3) дел. и $\sigma_{\xi_{1}}-\xi_{2}$ = 3,0 дел. Отсюда в связи с независимостью ξ_{1} и ξ_{2} ошибка равна; $\sigma_{\xi} = \sigma_{\xi_{1}} - \xi_{2}/\sqrt{3}$ = (2,1 ± 0,2) дел. Оказалось, что в рамках приведенной неопределенности ± 0,2 дел. ошибка σ_{ξ} не зависи от энергий (e⁺e⁻) – пар, а также от значений величины ξ . Если исходить из результатов измерений одиночных треков и (e⁺e⁻) – пар, то вычисленное значение ошибки σ_{ξ} равно: для $-6 \le \xi \le 6$ дел $-\sigma = (1,9 \pm 0,3)$ дел и для $6 \le \xi \le 30$ дел. – $\sigma_{\xi} = (2,3 \pm 0,2)$ дел., что находится в хорошем согласии с $\sigma_{\xi} = (2,1 \pm 0,2)$ дел.

Таким образом, проведенные измерения показали, что точность в определении смещений осей одиночных треков, (e^{*} e⁻) -пар и пар, образованных электронами, почти одинакова и $\sigma_{\xi} \approx 2$ дел., т.е. составляет $\approx \frac{1}{15}$ от ширины трека.

Введем величину $\Delta = \xi_n - \xi_n$, где ξ_n и $\xi_n - coorветствую$ $щие значения величины <math>\xi$ на левом и правом стереокадрах. Для событий, у которых величина ξ не имеет составляющей компоненты в направлении оптических осей фотоаппаратов, т.е. по глубине (z), $\Delta = 0$. В противоположном случае $\Delta \neq 0$ и может быть описана приближенным выражением (без учета показателей преломления):

$$\Delta = \frac{B\xi_{z}}{z(H+Z)},$$
(3)

где В -база фотоаппаратов, z - увеличение оптической системы, H+Z - эффективная высота, на которой установлены фотоаппараты.

Для процессов типа тормозного излучения, сопровождаемого конверсий γ -квантов в (e⁺e⁻)-пары, величина ξ_z очень мала ($\xi_z = \frac{mc^2}{E} \ell$, где с и m⁻энергия и масса электрона, ℓ -длина конверсии). В связи с этим легко отделить события такого типа по Δ от случаев случайного наложения (e⁺e⁻)-пар на следы первичных частиц.

На рис.3 показано распределение событий типа тормозного излучения или прямого образования пар, а также случайных наложений, по величине Δ . Отсюда видно, что имеется две группы событий. События с |Δ| ≤ 10 дел. в основном связаны с тормозным излучением и прямым образованием (e⁺ e⁻)-пар электронами. Действи тельно, для таких случаев |Δ| ≤ 2,8 дел (см. урав. (3)^{/3 /}).События с |Δ| ≥ 10 дел. связаны со случайным наложением (e⁺ e⁻)-пар. Примесь таких событий в группу с |Δ| ≤ 10 дел. составляет ≤ 3%.

Эта методика разделения (e⁺e⁻)-пар по величине Δ может быть использована и в других экспериментах. Например, в эксперимен-

тах, проводимых с помощью пузырьковых камер, наполненных тяжелой жидкостью, этот метод можно использовать для отделения тормозных (e⁺e⁻) -пар от событий, связанных со случайным их наложением.

Литература

- 1. Я. Бэм, В.Г. Гришин, М.М. Муминов, В.Н. Стрельцов. Препринт ОИЯИ, P1-4023, Дубна, 1968.
- 2.V.G. Kirillov-Ugryumov, L.P. Kotenko, E.P. Kuznetsov, A.V. Samoilov. Nuclear Instr., 3, 265 (1958).

3.R.W. Williams. Rev. Scient. Instr., 32, 1378 (1961).

4. Я. Бэм, В.Г. Гришин, М.М. Муминов, В.Д, Рябцев. Препринт ОИЯИ, P1-3143, Дубна, 1967.

> Рукопись поступила в издательский отдел 20 сентября 1968 года.

JRONH	пузырьков							Чи	сло случа
X 1 , X 8	X 2, X 4	846	ŝ	$(X_1 - X_2)$	^a x1-x ₂	$\overline{X_{b} - X_{4}}$	° x 8 - X4	g(x ₂ +x ₄)/	
5-6	н	0+ 0,2	I,8	-0, I+0, 3	2,8	0+0,2	2,5	I,5	OII
2-6	CV	0+0,2	I,9	0,3+0,2	2,5	-0,2+0,	2 2,2	I,6	OII
3-4	3-4	-0,2+0,2	I,7	0,2+0,2	2,3	0+0,2	2,3	I,2	IOO
5-6	5-6	0, I+0, I	I, 4	0,4±0,2	I,9	-0,5+0,	2 2,0	1,0	102
I	2	5	4	5	9	2	80	6	OI

Таблица І

Рис.1. Схема измерения величины К на треках первичных электронов. Прямые линии показывают усреднение координат X по 3-4 пузырькам. Поле окулярного микрометра имеет диаметр ≈ 800 дел.

Рис.2. Схема измерения величины (e⁺e⁻) -пар электронами и тормозными у -квантами.

Рис.3. Гистограмма распределения событий от процессов образования (e⁺e⁻)-пар электронами и тормозными у -квантами и случайных наложений (e⁺e⁻)-пар по величине $\Delta = \xi_{\pi} - \xi_{\pi}^{\circ}$