C- 92 20/x11-67 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна 1 - 3569 Manna

J.Csikai , V.I.Fominykh, T.Lakatos

CROSS SECTIONS FOR THE REACTIONS ¹⁴¹Pr(n, p) ¹⁴¹Ce, 141 Pr(n, t) 139 Ce, 142 Ce(n,2n) 141 Ce AND 140 Ce(n,2n) 139 Ce

1967.

AFFINISK TH

CROSS SECTIONS FOR THE REACTIONS $141 \operatorname{Pr}(n, p)$ $141 \operatorname{Ce} ,$ $141 \operatorname{Pr}(n, t)$ $139 \operatorname{Ce} ,$ $142 \operatorname{Ce}(n, 2n)$ $141 \operatorname{Ce}$ AND $140 \operatorname{Ce}(n, 2n)$ $139 \operatorname{Ce}$

^{*} On leave from ATOMKI Debrecen, Hungary.

I. Introduction

Different trends have been observed in the data for neutron reaction cross sections vs. neutron, proton or mass number, in the energy region about 14 MeV $^{(1,2,3)}$. It is desirable to have larger as well as more accurate data in order to check these trends, especially for nuclei near closed shells. It is also important to examine the applicability of the empirical cross section formulae $^{(1,4,5)}$ based on these trends, by new measurements. In many cases the activation cross sections could not be determined because of the unfavourable properties of the residual nuclei. The high resolving power of the Ge (Li) detector renders it possible to obtain some of the data undetermined so far, and to improve the accuracy of those already known. By use of this technique, at 14.8 MeV neutron energy we have measured the cross sections for the (n, p), (n, t) and (n, 2n) reactions leading to the residual nuclei 139 Cc and 141 Ce.

II. Experimental Procedure

100 mg CeO_2 and 100 mg Pr_eO_1 , powders were irradiated by

14.8 MeV neutrons. The neutrons were obtained from the 3 H (d, n) 4 He reaction, using the 300 kV cascade generator of the ATOMKI. The samples were irradiated for 63 hours by a flux of ${}^{\circ}$ 10¹⁰ neutrons cm⁻². sec⁻¹. The flux was monitored continually by a 10 BF₃ long counter and a plastic scintillator. The activities of the irradiated samples were measured by a Ge (Li) spectrometer ${}^{\int 6/}$, without spectrum stabilisation. The Ge (Li) spectrometer was calibrated by an 169 Yb source. The measurement began 120 hours after the irradiation in order to decrease the background arising from reactions on Ce and Pr isotopes. The 141 Pr (n, p) and 141 Pr (n, t) reactions lead to the formation of 141 Ce and 139 Ce having half-lives 32 d and 140 d, respectively. The isotope 139 Ce has an isomeric state of 55 sec half-life decaying entirely to the ground state through a 740 keV y - transition. So, the total reaction cross section could be determined by measuring the 140 d activity. The 140 Ce (n, 2n) and

¹⁴² Ce (n, 2n) reactions also yield ¹³⁹ Ce and ¹⁴¹ Ce as residual nuclei. One can measure the ¹⁸⁹ Ce activity only by detecting the 166 keV γ -rays following the electron-capture. However, these γ -rays have to be separated from the 145 keV γ -line, arising from the decay of ¹⁴¹ Ce. This was achieved by applying the Ge(Li) spectrometer. The absolute cross section of the reaction ¹⁴¹Pr(n, p) was determined through the measurement of the β -activity by a thin mica end-window GM counter. Absolute β -sources were used for calibrating the GM counter.

III. Results and Discussion

The y-spectra of the irradiated $Pr_{6}O_{11}$ and CeO_{2} samples, are presented in Fig.1. In the case of cerium, both the 145 keV and 166 keV lines did appear, while in the case of praseodymium we obtained the 145 keV line only. The 166 keV line corresponding to the reaction ¹⁴¹Pr(n, t) could not be resolved from the background, so for the cross section of this process, we could give an upper limit only. On the basis

of the calibration by the 169 Yb isotope, the values 144.5 keV and 165 keV were obtained for the energy of the investigated y -lines.

Table 1 presents the cross section values with the account of errors due to activation and measurement. For determining the (n,t) and (n,2n) cross sections we have accepted the value 11.4 mb obtained by ourselves for the reaction 141 Pr(n, p). For the purpose of comparison the results of previous measurements are indicated too.

Table l.

Reaction	σ(mb)			
	present work	literature	calculated	
¹⁴¹ Pr(n,p) ¹⁴¹ Ce	11.4 + 1.3	4.5 + 1/7/	8.0 / 4/ 93.0/ 1/	
¹⁴¹ Pr(n,t) ¹³⁹ Ce	< 0,21			
¹⁴² Ce(n,2n) ¹⁴¹ Ce	1960 <u>+</u> 170	1600 <u>+</u> 300(8)	2037/ 5/	
140 Ce(n,2n) 139 Ce	1600 + 140		1865 / 5/	

According to the present measurements, in the case of ¹⁴¹ Pr the absolute cross section for the (n, p) reaction can be well described by the empirical relation of Levkovskii $\binom{14}{4}$. The Gardner-formula $\binom{11}{2}$ can not be applied to this nucleus.

In the case of the ^{Ce} isotopes, a very good agreement has been found between the measured values of $\sigma_{n,2n}$ and those calculated on the basis of the relation given by Pearlstein $\frac{1}{5}$.

References

- 1. D.G.Gardner, Nuclear Physics, 29, 373 (1962).
- 2. A.Chatterjee. Nuclear Physics, <u>60</u>, 273 (1964).
- 3. M.Bormann. Nuclear Physics, <u>65</u>, 257 (1965).
- 4. V.N.Levkovskii, JEPT, 45, 305 (1963).
- 5. S.Pearlstein, Nucl.Sci. and Eng., 23 , 238 (1965).
- K.Ya.Gromov, A.I.Kalinin, V.V.Kuznetsov, N.P.Nenov, B.P.Osipenko,
 V.I.Fominykh. Preprint 2724, Dubna, (1966).
- 7. R.G.Wille, R.W.Fink. Phys.Rev., 131, 2649 (1963).
- 8. R.G.Wille, R.W.Fink. Phys.Rev., <u>118</u>, 242 (1960).

Received by Publishing Department on October, 31, 1967.

Fig.1. y - spectrum of cerium (circles) and praseodymium (points) irradiated by fast neutrons.

 \sim