K-891

объединенный ядерных ИССЛЕДОВАНИЙ

Дубна

1 - 3389

А.А. Кузнецов

Adbopatopng Bulokmx Hepink

В-МЕЗОН (OE30P)

1967.

Объедевошный вистатут адорных иссисдований БИБЛИОТЕНА

B-ME3OH

А.А. Кузнецов

(0630P)

5262 3 2.

1 - 3389

1. В ведение

За последние годы появилось много новых данных о резонансах и об их свойствах. В частности, имеется целый ряд сообщений, в которых делаются выводы об обнаружении неизвестных ранее многомезонных резонансов /1/. Однако по мере накопления экспериментальных данных случается, что некоторые наблюдавшиеся в экспериментах пики, ранее объясняемые как резонансы, получают новую интерпретацию.

В данном обзоре рассматривается ситуация, которая существует в настоящее время в вопросе о В -мезоне.

2. В-мезон и его основные характеристики

В -мезоном называют частицу, которая распадается по схеме: В + π + ω ⁰

и имеет массу /М/ ~ 1220 Мэв и полную ширину ≈ 80 → 100 Мэв.

Впервые о наблюдении В -резонанса было сообщено Abolins 'ом и др.^{/2/} в 1963 году. Эта группа авторов с помощью 20-дюймовой водородной пузырьковой камеры изучала реакцию

$$\pi^{+} + p \rightarrow \pi^{+} + p + \pi^{+} + \pi^{-} + \pi^{0}$$
⁽²⁾

(1)

при импульсе "-мезонов 3,43 и 3,54 Гэв/с. Сечение исходной реакции

$$\pi^{+} + p \rightarrow \pi^{+} + p + \omega^{0} , \qquad (3)$$

в которой возможно было наблюдение В -мезона при указанных выше импульсах π⁺ -мезона, было найдено равным 1,2 <u>+</u> 0,2 и 1,06 <u>+</u> 0,10 мб, соответственно.

На рис. 1 а, в приведены диаграмма Далитца и спектр эффективных масс $\omega \pi^+$ -системы / M_{ωπ} /. Как на диаграмме Далитца, так и в спектре эффективных масс M_{ωπ} хорошо видна аномалия при M_{ωπ} = 1220 Мэв. Ранее^{/3/} этими же авторами было установлено, что в (48<u>+6</u>)% реакций (3) наблюдается совместное образование ω^0 -мезона и изобары N* */**/**

Для того чтобы исключить влияние такого рода событий на пик в спектре эффективных масс $M_{\omega\pi}$, все случаи совместного образования отбрасывались. Распределение эффективных масс $M_{\omega\pi}$ оставшихся случаев приведено на рис. 1с. Видно, что пик при $M_{\omega\pi} = 1220$ Мэв остается. Кроме того, было замечено, что в распределении эффективных масс четырех пионов ($\pi^+\pi^+\pi^-\pi^0$), когда нейтральный триплет пионов не попадает в область ω^0 -мезона, пик при $M_{\omega\pi} = 1220$ Мэв не наблюдается. Для отношения $R = \frac{P + \pi^+\pi^+\pi^-\pi^0}{B + \omega\pi^+}$ экспериментально получено значение R < 0.5.

Таким образом, из совокупности экспериментальных данных, полученных Abolins 'ом и др.^{/2,3/}, следует, что наблюдается новый резонанс в ωπ⁺ -системе с массой 1220 Мэв и полной шириной 100 <u>+</u> 20 Мэв. Этот резонанс был пазван В -мезоном.

Позже В-мезон наблюдали во многих других $\pi^+ p$ -экспериментах при разных энергиях первичного π^+ -мезона⁴⁴. При этом наблюдался не только В⁺,но и В⁻-мезон.

<u>Изотопический спин.</u> Во всех экспериментах, в которых наблюдался В -мезон, он проявляется в спектре эффективных масс ω^0, π^+ -частиц. Отсюда следует, что изотопический спин В -мезона равен единице.

<u>Спин и чётность.</u> Впервые экспериментальное определение спина и чётности В -мезона было сделано D.Camony и др.⁵⁷. Эти авторы исследовали распадные свойства системы с п по методу, предложенному F.Halpem '0/6'. В общих чертах суть метода заключается в следующем. Пусть В -мезон распадается по схеме:

Обозначим импульс каждого т -мезона от распада ω^0 -мезона через P_1 , P_2 , P_3 , а импульс дополнительного пиона - через P_4 .

$$f_{1} = 1/2 (P_{1} + P_{2} - P_{3} - P_{4})$$

$$f_{2} = 1/2 (P_{1} - P_{2} - P_{3} + P_{4})$$

$$f_{3} = 1/2 (P_{1} - P_{2} + P_{3} - P_{4})$$

$$f_{4} = 1/2 (P_{1} + P_{2} + P_{3} + P_{4}),$$
(5)

причем f = 0 в системе центра масс В -мезона. В полярных координатах эти уравнения примут вид:

$$f^{2} = f_{1}^{2} + f_{2}^{2} + f_{3}^{2}$$
(6(

н

$$X = \frac{f_1^2}{f^2}; \quad Y = \frac{f_2^2}{f^2}; \quad Z = \frac{f_3^2}{f^2}.$$
(7)

Все случаи, образующие систему из четырех пионов, могут быть представлены в виде точек в некотором трехмерном пространстве X, Y, Z. Так как X, Y, Z положительны и X + Y + Z = 1, то все экспериментальные точки расположатся в равностороннем треугольнике, определяемом с помощью указанных выше условий ^{/6,7/}. При этом плотность точек в таком треугольнике будет пропорциональна квадрату матричного элемента, интегрируемого по всему пространству. Квадрат матричного элемента имеет следующий вид:

$$\frac{d^{2}\sigma}{dX dY} = d^{3}P_{1} d^{3}P_{2} d^{3}P_{3} d^{3}P_{4} N \delta(M_{B} + E_{N} - E_{1}) \times \\ \times \delta(P_{1} + P_{2} + P_{3} + P_{4}) \delta[(E_{1} + E_{2} + E_{3} + E_{4})^{9} - M_{B}^{2}] \\ \times \delta[(E_{1} + E_{2} + E_{3})^{2} - (P_{1} + P_{2} + P_{3})^{2} - M_{C}^{2}] |\Omega DP|^{2} / E_{1}E_{2}E_{3}F_{4}E_{N}, (8)$$

где d σ вычисляется в системе центра масс В -мезона, N и E_N -нуклонный импульс и энергия, M_B, M_ω, M_π -масса B, ω, π -частиц, а E_i = $(P_i^2 - M_\pi^2)^{1/2}$ - энергия i -пиона.

ИЗ^{/8/} видно, что для разных значений спина и чётности В -мезона будут наблюдаться различные "картинки" распределения плотности точек в треугольнике ХҮZ.

На рис. 2 приведены изометрические картинки распределения плотности точек на диаграмме Halper'а для некоторых значений спина и чётности ωπ -системы. Видно, что наибольшее различие плотности точек в центральной части диаграмме Halpem'a наблюдается, когда В -мезон имеет спин и чётность 1.

Для определения спина и чётности В -мезона были взяты события, лежащие в интервале эффективных масс М , , ,

Как и в работе^{/2/}, все случан совместного рождения ω⁰ -мезона с изобарой N^{*}_{3/2} (1238) были исключены из рассмотрения.

На рис. За, в приведены диаграммы Наlpem 'а для случаев, находящихся в области В -мезона^{/9/}, и случаев; находящихся в контрольной области / 1340 < M₆₀₇₇ < 1600 Мэв/. Можно заметить, что в центре диаграммы Halpem 'а для случаев из области В -мезона действительно имеет место Эначительное уменьшение плотности точек по сравнению с тем, что наблюдается для случаев из контрольной области. На рис. 4 (a + f) приведены гистограммы, изображающие распределения плотности точек на диаграмме

Најрет 'а в полосах ОZ, O'X, O"Y (рис. 4 а-с) и по радиусу (рис. 4 (d-f), для случаев с т -системы из контрольной области и области В -мезона, Экспериментальные гистограммы сравниваются с кривой фазового объема и кривымя, рассчитанными в предположении разных значений спина и чётности

В -мезона. Из сопоставления экспериментальных гистограмм с расчётными

х/ Ω, D и P являются матричными элементами ω -распада, В-распада и В -рождения.

кривыми следует, что для случаев $\omega \pi_{,}$ взятых из контрольной области, имеется хорошее согласие с кривой фазового объема, а для случаев, взятых из области В-мезона, - с предложением о спине и чётности для В-мезона $J^{P}=1$. Однако количество событий, рассматриваемых в этой работе, настолько мало, что серьезные выводы из этих данных делать нельзя. Кроме того, как было замечено Г.И.Копыловым⁷⁷, авторы не рассмотрели случай $J^{P}=2^{+}$. Между тем распределение плотности точек на диаграмме Halpem 'а для случая $J^{P}=1^{-}$ и 2^{+} абсолютно тождественны и, следовательно, все, что говорит в пользу $J^{P}=1^{-}$, то в равной степени относится и к 2^{+} . Имеется еще ряд работ⁷⁸⁷, в которых также делались попытки определения спина и чётности

В -мезона, однако, из-за ограниченности статистического материала определенных выводов о Ј^р не было сделано.

Если предположить, что значение спина и чётности 1, то это разрешает распада В -мезона на 2π и КК. Однако экспериментально распад В -мезона по этим каналам до сих пор еще не наблюдался⁹⁹⁷.

3. Другие антерпретации отклонения в спектре

эффективных масс ω π[±] -системы при массе 1220 Мэв

Если проанализировать все экспериментальные данные, появившиеся в литературе до 1967 года относительно В -мезона, то можно заметить следующее:

 пик в спектре эффективных масс ω π[±] -системы при массе 1220 Мэв наблюдался только в π[±] p -взаимодействиях;

 до сих пор не имеется достоверных экспериментальных данных относительно эночений спина и чётности для этого отклонения;

3) пик при массе 1220 Мэв не наблюдался в каких-либо других реакциях (кроме реакции (3)), в которых возможно его появление. Все эти факты, а также некоторые теоретические работы, появившиеся в последние годы, заставили более внимательно посмотреть на первоначальную интрепретацию отклонения в спектре эффективных масс $\omega \pi^+$ -системы.

. Рассмотрим вначале работу G. Goldhaber 'а и др. /10/. Исследуя реакцию $\pi^{\pm} p \rightarrow B^{\pm} p$ (10) при импульсах 3,65 и 3,7 Гэв/с, эти авторы обнаружили

новый неожиданный эффект. Пытаясь уменьшить фон в области В -мезона, авторы^{/10/} нашли, что "очищенный" набор ω^0 -событий не приводит к увеличению случаев в полосе В -мезона на диаграмме Далитца. Процедура "очистки" фона была следующей. Известно, что матричный элемент ω^0 -распада пропорционален $|\vec{P}_i \times \vec{P}_j|$. Это приводит к распределению плотности точек на диаграмме Далитца для ω^0 -мезона, имеющего пик в центре диаграмме (см. рис. 7а). Goldhaber и др. разбили плоскость диаграммы на две части: на "центральную" и "периферическую". Выбирая случаи ω^0 -мезона из центральной области, авторы смогли существенно улучшить отношение $R' = -\frac{\omega^0 - мезон}{\phi o H}$ (см. рис. 5а). Например, для центральной области диаграммы Далитца

 $R'_{y} = 5,7 \pm 0,8$, в то время как для периферической – $R'_{n} = 2,1 \pm 0,2$. При этом предполагалось, что фон распределен равномерно.

На рис. ба,в приведены распределения масс 4 т с триплетами пионов из центральной и периферической областей диаграммы Далитца. Здесь хорошо заметен удивительный результат, полученный Goldhaber 'ом и др.: пик

В -мезона оказывается связанным, главным образом, с пионными триплетами из периферической области диаграммы Далитца, т.е. с "разбавленными" ω⁰ -мезонами.

Кроме этого, Goldhaber и др. наблюдали еще один неожиданный эффект. На рис. 7а,с приведена нормированная диаграмма Далитца для пионных триплетов ($\pi^+ \pi^- \pi^0$), попадающих в интервал эффективных масс

$$760 \le M_{\pi^+\pi^-\pi^0} \le 820$$
 Mab. (11)

Распределение плотности случаев по радиусу показано на рис. 7 в. Диаграмма Далитца представлена таким образом, что только при матричном элементе со значениями спина и чётностей равными 1 , число мезонов было бы одинаковым в обеих выбранных областях. Если теперь выбрать область масс четырех пионов (4П), соответствующую В -мезону, т.е.

$$1160 \le M \le 1300$$
 Mab (12)

и построить диаграмму Далитца для массы триплета $\pi^+ \pi^- \pi^0$, соответствующей массе ω^0 -мезона, то получится раднальное распределение плотности точек, как это показано на рис. 7 d. Вероятность того, что это распределение соот-

ветствует матричному элементу ω^0 -мезона с $J^P = 1^-$ равно $\leq 0,5\%$. Таким образом, В-мезон не обязательно связан с ω^0 -мезоном, который имеет квантовые числа $J^{PG} = 1^-$.

Итак, из эксперимента Goldhaber 'а и др. следует:

 пик в распределении масс системы 4 π при M_{4 π} = 1220 Мэв существует, если масса нейтрального триплета пионов ограничена условием (11) и они принадлежат периферической области диаграммы Далитца;

2) это отклонение не обязательно связано с ω^0 -мезоном, имеющим квантовые числа $J^{PG} = 1^{--}$.

Рассмотрим теперь работу Maor'a и 0'Halloran'a /11/, в которой появление пика в распределении масс системы ωπ при M_{ωπ} = 1220 Мэв рассматривается в связи с существованием некоторого периферического процесса.

/12/ предположил, что экспериментально уста-Deck Несколько лет назад новленный во многих работах пик А, в спектре эффективных масс пр -системы может быть объяснен с помощью простого кинематического механизма. Согласно Deck'у пик А (1080) может быть получен, если предположить, что процесс образования А, -мезона описывается диаграммой типа (см. рис. 8а), в которой виртуальный п -мезон испытывает дифракционное рассеяние на протоне-/11/ рассмотрели мишени. По аналогии с Deck 'ом Maor и О'Halloran периферический процесс образования В -мезона, описываемый одномезонный диаграммой (см. рис. 8 d) с р -обменом. В случае реакции (3) при задавном импульсе п -мезона 3,6 Гэв/с авторы получили значительный пик в распределении масс $\omega \pi$ -системы при М = 1220 Мэв. В расчётах дифференциальное сечение в нижней вершине диаграммы (см. рис. 8 d) бралось из экспериментов, в которых изучалась реакция:

$$\pi + p \to \rho + \pi \,. \tag{13}$$

Если В -мезон действительно является кинематическим следствием периферического процесса, описанного Maor 'ом и O'Halloran 'ом, то положение этого пика должно зависеть от энергии первичного п -мезона. Такая зависимость хорошо иллюстрируется расчётами, приведенными в работе Maor 'а и O'Halloran' а на примере пиков A и K* п. Результаты расчётов приведены в таблице 1.

Р / Гэв/с/	М _{А 1} /Мэв/	М _{к*π} /Мэв/
3,65	1050	1180
18,0	1020	1100

Из табляцы 1 видно, что хотя положение пиков А и К*π действительно зависит от энергии первичного пиона, эта зависимость слабая. Отсюда становится понятным, почему до сих пор указанное утверждение экспериментально не проверено.

Исследование возможности того, что В -отклонение является следствием механизма, описанного Maor'ом и 0'Halloran'ом,было проведено S. Chung 'ом и др. /13/ Авторы изучали реакцию π⁻p + p + π⁺+ π⁻ + π⁺ + π⁰ при импульсах 3,2 и 4,2Гэв/с с помощью 72-дюймовой водородной пузырьковой камеры. В анализ были включены события, которые имели только один нейтральный триплет пионов, лежащий в интервале масс ω⁰ -мезона.

На рис. 8 (а- d) приведены распределение Chew – Low и диаграмма Далитца для этих случаев. Можно видеть, что образование В -мезона имеет место совместно с изобарами N* /1238/, N* /1518/, N* /1688/ и что образование изобар про::сходит с малыми четырехмерными переданными импульсами ($\Delta_{N^*}^2 < 1.0$ (Гэв/с)²). Последнее качественно согласуется с тем, что наблюдалось в большинстве других реакций, описание которых производилось с помощью одномезонных диаграмм, где в качестве обменной частицы выступала векторная частица.

Для количественного сравнения экспериментальных данных с ρ -обменной моделью Chung с сотрудниками использовали только случаи, взятые из области N* /1238/ – изобары и с $\Lambda_{N^*}^2 < 1.0 (\Gamma_{9B}/c)^2$. Для этих случаев были построены следующие распределения: Соз $\theta_{\pi B}$, ϕ_{TY} , Соз θ_{pp} , где $\theta_{\pi N}$ -угол между первичным пионом и нормалью к плоскости распада ω^0 -мезона в системе покоя ω^0 -мезона, ϕ_{TY} -угол Треймана-Янга (ϕ_{TY} =0 в плоскости рождения), θ_{pp} -угол между первичным протоном-мишенью и протоном отдачи в системе покоя N^* -изобары. Указанные распределения представлены на рис. 8с. Здесь же приведены кривые, полученные **Svensson** 'ом' -

основе р -обменной модели с поправками на поглощение (кривые взяты из Aderholz 'a^{/15/}). Экспериментальные распределения находятся в хоработы рошем согласии с теоретическими кривыми. Для случаев, взятых из области более высоких изобар, чем N* /1238/, подобный анализ ие применим. Однако, по-видимому, можно предположить, что при импульсах < 4,0 Гэв/с ρ -обменная модель, приводящая к образованию N* /1238/ - изобары, будет также приводить к рождению более высоких изобар, например, N* /1518/ или N* /1688/. Тогда для области М ", доступной при этих энергиях, сильный вклад в виртуальный процесс $\rho + \pi \to \pi + p$ должен быть следствием пионного обмена в t-канале, а образование изобар - в s -канале. Пионный обмен в t-канале для процесса $\rho + \pi \to \pi + p$ должен приводить к пику в распределении по Сов $\theta_{p,p}$ при величине Сов $\theta_{p,p} = \pm 1$. Как видно из рис. 9, в экспериментальных распределениях по Cos 0 действительно наблюдается пик при указанных следствием процесса Maor 'а и О'Halloran 'а, т.е. процесса виртуальной диссоциации взаимодействующего пиона *π → ω + ρ* с последующим сильно асимметричным неупругим процессом $\rho + \pi + \pi + p$, было построено распределение масс $\omega \pi$ -системы для случаев с Сов $\theta_{p,p}$ > 0,6 (см. рис. 9(с- g). Оказалось, что В -отклонение и сильная асимметрия в распределения по Сов в являются результатом одних и тех же случаев. Следовательно, прове-Chung 'ом анализ экспериментальных данных указывает на то, что денный пик в распределении масс ωπ -системы при М_{сил} = 1220 Мэв (В-мезон) является кинематическим следствием механизма Maor 'а и О'Halloran 'а.

Таким образом, суммируя результаты обсужденных выше работ, трудно придти к какому-либо определенному выводу относительно интерпретации В-иика. В этой связи можно рассмотреть следующие возможные объяснения этого пика:

1) <u>В-мезон на самом деле является резонансом</u>, но он не обязательно связан с ω° -мезоном, который имеет квантовые числа $J^{PG} = 1^{-1}$. Тогда появляются две возможности: а) В -мезон - резонанс, но его распад на $\omega \pi$ строго запрещен (например, это может быть когда $J^{PG} = 0^{++}$) и разрешен распад на четыре π -мезона; б) В -мезон - резонанс и он может распадаться на π -мезон и трехпионное состояние с массой, равной ω° -мезону, но с $J^{P} \neq 1^{-1}$. Конечно, такого рода объяснения возможны, од-

нако, можно привести целый ряд фактов против. Например, если принять утверждение la, то сразу же потребуется объяснение, почему три из четырех π-мезонов от распада В-мезона оказываются сгруппированными вблизи массы ω⁰ -мезона; а, если принять утверждение lб, необходимо объяснять распределение плотности точек на диаграмме Далитца для трехпионной системы с возможными квантовыми числами J^{PG} ≠ 1⁻ (например, J = 0⁻⁻, 1⁺⁻, 2⁻⁻ и т.д.).

2) <u>В -мезон не является резонансом</u>, но есть следствие кинематического эффекта, подобно описанному Maor 'ом и O'Halloran 'ом. Эта интерпретация В -пика нам кажется наиболее разумной, хотя и она требует дополнительных экспериментов. Прежде всего это относится, например, к проверке зависимости положения максимума В -отклонения от энергии налетающей частицы и поиску В -пика в рр -аннигиляциях, где указанный выше эффект не должен иметь места.

4. Поиски В -мезона в РР-аннигиляциях

До последнего времени попытки найти В -мезон в РР -взаимодействиях не приводили к положительным результатам ^{/16/}. Только в начале 1967 года появилась единственная работа С. Baltay ^{/17/}, в которой В -мезон наблюдался.

Baltay и др. изучали реакцию РР -аннигиляции в покое

$$\tilde{P} + p + \pi^{+} + \pi^{+} - \pi^{-} + \pi^{\circ}$$
(14)

с помощью водородной пузырьковой камеры.

Из 16934 случаев реакции (14) был отобран 3221 случай с рождением ω⁰ -мезона:

Для всех случаев реакции (15) был построен спектр эффективных масс системы $\omega \pi^{\pm}$ (см. рис. 10). Видно, что в распределении по массам системы $\omega^{0} \pi^{\pm} -$ частиц наблюдается пик при $M_{\omega\pi} = 1200$ Мэв. В аналогичных распределениях случаев из двух контрольных областей "справа" и "слева" от области ω^{0} -мезона (см. рис. 10а,с) никакого пика в $\omega \pi$ -системе не наблюдалось. Отсюда авторы делают вывод, что они наблюдают рождение В-мезона в реакции:

$$\vec{p} + p \rightarrow B^{\pm} + \pi^{\pm}$$

$$\omega^{0} + \pi^{\pm}$$

$$(16)$$

$$\mu^{+} + \pi^{-} + \pi^{0} .$$

Для того чтобы проверить, является ли ник при $M_{\omega\pi} = 1200$ Мэв действительно связанным с ω^0 -мезоном (как это ожидается для В -мезона), или же он связан с некоррелированными пионами фона, данные были разбиты на две группы. Это разделение проводилось по методу Goldhaber 'а, который описан выше. Фон в "центральной" области диаграммы Далитца приблизительно в 2 раза меньше, чем в "периферической". области. Для случаев из каждой области диаграммы Далитца были построены распределения эффективной массы

ωπ -системы. После сравнения этих распределений с кривой фона плюс брайтвигнеровской кривой в распределении по массам случаев ωπ из центральной области получено 218<u>+</u> 49 событий В -мезона, а в периферической области -155 <u>+</u> 54. Эти величины находятся в лучшем согласии с 1 : 1 отношением, предсказываемым для В -мезона, когда он распадается на ω-и π[±]-мезоны, чем 1 : 2 - для В -мезона, когда он распадается на некоррелированные пионы.

Для того чтобы проверить, является ли пик В кинематическим отражением $\pi^+ \pi^-$ -взаимодействия вблизи больших значений эффективных масс двух пионов, менее трети случаев $\omega \pi \pi$ на диаграмме Далитца, соответствующих малым кинетическим энергиям ω^0 -мезона, были исключены из гистограммы эффективных масс $\omega \pi$. Оставшиеся случаи ясно показывают отклонение в области масс В -мезона.

Выше отмечалось, что кроме работы Baltay и др., имеется еще ряд работ , в которых также искали В -мезон в РР -взаимодействиях. Основ-

$$\tilde{\vec{p}} + p \rightarrow \eta^0 + \pi^+ + \pi^-$$
(17)

$$\rightarrow K^{0} + K^{\pm} + \pi^{\pm}$$
(18)

$$\rightarrow K + K + \pi + \pi .$$
(19)

Однако ни в одной из указанных реакций В -мезон не был найден. Эти результаты и данные работы Baltay приводят к следующим оценкам (верхний предел) распада В -мезона на отдельные каналы:

$$\frac{B \rightarrow \eta \pi^{\pm}}{B \rightarrow \omega \pi} < 25\%$$
(20)

$$\frac{B \rightarrow K_{1}^{0} K^{\pm}}{B \rightarrow \omega \pi} < 5\%$$
(21)

$$\frac{B \to K_1 K^{\pm} \pi^0}{B \to \omega \pi} < 4\%$$
(22)

$$\frac{B \rightarrow K_{1} K_{1} \pi^{\pm}}{B \rightarrow \omega \pi} < 2\%$$
(23)

$$\frac{B \rightarrow K_1 K_2 \pi^{\pm}}{B \rightarrow \omega \pi} < 6\%$$
(24)

5. <u>Выводы</u>

Анализ всех приведенных выше данных, имеющихся на апрель 1967 года, приводит к следующим выводам о В-мезоне:

имеется убедительное доказательство сушествования пика в распределении по массе ω π[±] -системы при Μ_{ω π} = 1220 Мэв и с полной шириной
 80 + 120 Мэв, как в π⁺ р - так и р р -взаимодействиях;

2) до сих пор нет достоверных экспериментальных данных относительно квантовых чисел этого отклонения;

3) не наблюдалось каких-либо других каналов распада В –отклонения (например, распада на 2π , $K \tilde{K}$, $K \tilde{K} \pi$ и др.), кроме распада на $\omega \pi$;

4) имеется ряд серьезных фактов, указывающих на то, что появление

В-пика при массе 1200 Мэв является следствием кинематического эффекта некоторого периферического процесса.

Таким образом, несмотря на большое количество данных, проблема В-мезона остается нерешенной. В этой связи необходимо дальнейшее накопление экспериментальных данных о В-мезоне. В частности, важное место в решении этого вопроса должны иметь эксперименты по поиску В-мезона в

рр -взаимодействиях.

Литература

1. A.H.Rosenfeld, P.Soding, W.Willis et al. Rev. Mod. Phys., January 1967.

- 2. M.Abolins, R.L.Lander, W.A.Mehlhop et al. Phys.Rev.Lett, 11, 381 (1963).
- 3. Nguyen-Hun Xuong, R.L.Lander, W.A.Mehlhop et al.Phys.Rev.Lett.<u>11</u>,227 (1963).
- S.U.Chung, O.I.Dahl, R.I.Hess et al. Proceed of the Sienna Intern. Conf. on Elementary Particles 1963, p.2019 G.Goldhaber, S.Goldhaber, I.A.Kadyk et al. Phys.Rev. Lett.<u>15</u>,118 (1965); S.U.Chung, M.Neveu-Rene, O.I.Dahl et al.Phys.Rev.Lett.<u>16</u>,481 (1966); F.Conte, G.Tomasini, P.Dittmann et al.Phys.Lett. <u>22</u>, 702 (1966).

- 5. D.D.Carmony, R.L.Lander, C.Rindfleisch et al. Phys. Rev. Lett. 12, 254 (1964).
- 6. F.R.Halpern. Phys.Rev.Lett. 12,252 (1964).
- 7. Вопросы физики элементарных частиц, Ереван, 1963, стр. 325.
- Материалы XII Международной конференции по физике высоких энергий. Дубна, 1964г., стр. 422.
- N.Gelfand, G.Lütjens, M.Nussbaum et al. Phys.Rev.Lett. <u>12</u>, 567 (1964);
 G.Banson, L.Lovell, E.Marquit et al. Phys.Rev.Lett. <u>12</u>,600(1964);
 ABBBHLM-Collaboration Phys.Lett. <u>10</u>,240(1964); F.Bruyant, M.Goldberg, M.Holder et al. Phys.Lett. <u>10</u>,232 (1964); S.U.Chung, O.I.Dahl, L.M.Hardy et al. Phys.Rev.Lett <u>12</u>,621 (1964).
- 10. G.Goldhaber, S.Goldhaber, I.A.Kadyk et al. Phys. Rev. Lett. 15, 118(1965).
- 11. U.Maor, T.A.O'Halloran, Phys.Lett. 15,281(1965).
- 12. R.T.Deck Phys. Rev.Lett. 13, 169 (1964).
- 13. S.U.Chung, MNevenu-Rane, O.I.Dahl et al. Phys. Rev. Lett. 16, 481 (1966).
- 14. B.E.Y.Svensson, Nuovo Cim. 37,714 (1965).
- 15. ABBBHLM- Collaboration Nuovo Cim.35,659 (1965).
- N.Barash, P.Franzini, L.Kirsch et al. Phys. Rev. <u>139</u>, B 1659 (1965);
 N.Barash, L.Kirscz, D.Miller et al. Phys. Rev. <u>145</u>, B 1095 (1966).
- 17. C.Baltay, I.C.Severiens, N.Yeh et al.Phys.Rev.Lett.18,93 (1967).

Рукопись поступила в издательский отдел 14 июня 1967 года.

- Рис. 1. (a) Диаграмма Далитца для реакции π⁺ р → р π⁺ ω.
 - (в) Гистограмма эффективных масс системы ω π⁺.
 - (с) Гистограмма эффективных масс системы $\omega \pi^+$ из реакции $\pi^+ \mathfrak{p} \to \mathfrak{p} \pi^+ \omega$, когда случаи с 1150 $\leq M_{\mathfrak{p}} \pi^+ \leq 1350$ Мэв исключены из рассмотрения.

Рис. 2. Пространственные распределения пнотности точек для распада $B + \pi + \omega = c$ различиным значениями J^p .

Рис. 3. Диаграмма Пађети′а для 114 случаев из области В-пика (1120 < М_{ф. д} < 1320 Мэв); (в) то же самое, но для 111 случаев из контрольной области (1340 < М_{ф. д} < 1600 Мэв).

Рис. 4. Распределения плотности точек на диаграмме Halpern'a : (a-c) в полосах ОZ, O'X, O'Y (см. рис. 3c) (d-f) по ра диусу (см. рис. 3).

Рис. 5. Гистограммы M ($\pi^+\pi^-\pi^0$) для случаев реакции $\pi^{\pm}p \to \pi^+\pi^-\pi^0\pi^{\pm}p$ для

(А) центральной области диаграммы Далитца,

(в) периферической области диаграммы Далитца.

Рис. 6. Гистограммы М₄ с триплетами пионов ($\pi^+ \pi^- \pi^0$) из: (а) центральной области диаграммы Далитца; в) периферической области диаграммы Далитца. Заштрихованы случаи без изобари N^{*++}

Рис. 7. Днаграммы Далитца и распределения плотности случаев по радиусу для триплетов пионов ($\pi^+ \pi^- \pi^0$) из контрольной области и области В -мезона. Объяснение кривой в тексте.

Рис. 8. (a, d) Распределение Сьем-Low **для случаев** ω^{5} -мезона и язобары; (c) диаграмма Далитца для случаев с Δ_{p}^{2} < 0,35 (Гэв/с)².

Рис. 9. Распределение по углам: (а) Сов θ_{πN} (в) φ_{TY} для случаев с М_{рπ} в области изобары N* (1238) g (с-д) Сов θ_{pp} для случаев из разлячных интервалов М_{рπ}.

