ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

1-2001-186

На правах рукописи УДК 539.123+539.1.074

H-342

НАУМОВ Дмитрий Вадимович

РОЖДЕНИЕ СТРАННЫХ АДРОНОВ И ПОЛЯРИЗАЦИЯ Л[°] И Л[°] ГИПЕРОНОВ В НЕЙТРИННЫХ ВЗАИМОДЕЙСТВИЯХ В ЭКСПЕРИМЕНТЕ NOMAD

Специальность: 01.04.16 — физика атомного ядра и элементарных частиц

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 2001

Работа выполнена в Лаборатории ядерных проблем им. В.П.Джелепова Объединенного института ядерных исследований

Научные руководители:

доктор физико-математических наук, профессор С.А. Бунятов кандидат физико-математических наук

Б.А. Попов

Официальные оппоненты:

доктор физико-математических наук, профессор доктор физико-математических наук, профессор

А.В. Ефремов (ЛТФ ОИЯИ) С.Б. Нурушев (ИФВЭ)

Ведущая организация:

Институт теоретической и экспериментальной физики, Москва

Защита диссертации состоится 2001 г. в " часов на заседании диссертационного совета Д 720.001.03 в Объединенном институте ядерных исследований, г. Дубна, Московской области.

Автореферат разослан "____ 2001 г.

С диссертацией можно ознакомиться в библиотеке Объединенного института ядерных исследований.

Ученый секретарь диссертационного совета доктор физико-математических наук

Ю.А.Батусов

Общая характеристика диссертации

Актуальность

Одной из актуальных задач физики высоких энергий является изучение механизмов рождения странных адронов в глубоконеупругих взаимодействиях нейтрино с веществом. Для этой цели могут быть изучены нейтральные странные адроны (Λ^0 , $\bar{\Lambda}^0$ гипероны и K^0_s мезоны), рожденные прямым образом или в результате распадов тяжелых странных адронов (барионов - Σ^0 , Ξ , Σ^* , $\overline{\Sigma^*}$ и мезонов - K^* , соответственно). Изучение выходов тяжелых странных адронов является чрезвычайно важной задачей, также, по следующим двум причинам:

1. определение набора параметров в модели ЛУНД [1], отвечающих за выходы странных частиц, что необходимо для корректного моделирования физических процессов в детекторе.

经济性的 化合理 化合理管理 化合理管理管理管理管理

2. теоретическая интерпретация результатов измерений поляризации Λ^0 ($\bar{\Lambda}^0$) гиперонов существенным образом зависит от доли Λ^0 ($\bar{\Lambda}^0$) гиперонов, происходящих из распадов более тяжелых странных барионов.

Измерение поляризации Λ^0 , $\bar{\Lambda}^0$ гиперонов, родившихся в глубоконеупругих взаимодействиях нейтрино с нуклоном тесно связано с актуальными задачами современной физики высоких энергий: исследование спиновой структуры адронов и изучение спиновых эффектов в процессах адронизации кварков. Возросший интерес к изучению спиновых явлений в физике высоких энергий, в первую очередь, связан с измерением доли спина нуклона, переносимой кварками [2, 3, 4, 5]. Измеренная величина оказалась существенно меньше по сравнению с ожидаемой в кварковой SU_F(3) модели. Это открытие получило звучное название "спиновый кризис" или "проблема спина нуклона". Данная проблема не является до конца решенной до сих пор, несмотря на активные теоретические и экспериментальные усилия физиков.

Одним из возможных следствий "спинового кризиса" является указание на отрицательную поляризацию морских странных кварков в нуклоне. Такая поляризация могла бы проявить себя в процессе глубоконеупругого рассеяния поляризованного заряженного лептона или (анти) нейтрино на нуклоне с фрагментацией странного кварка (анти-кварка) из моря нуклона в Λ^0 ($\bar{\Lambda}^0$) гиперон. Авторы модели поляризованной странности в нуклоне [6], основываясь на результатах коллаборации

Bourzast Hubble Burgaryr

ЕМС, предсказывают отрицательную по отношению к направлению импульса W бозона продольную поляризацию Λ^0 ($\bar{\Lambda}^0$) гиперонов, рождающихся в области фрагментации мишени в процессе глубоконеупругого рассеяния (анти) нейтрино на нуклоне.

Глубоконеупругое рассеяние 100% поляризованного по своей физической природе нейтрино (антинейтрино) на левом (правом) кварке в нуклоне является источником поляризованных кварков, фрагментирующих в изучаемый адрон. Таким образом, измеряя поляризацию Λ^0 $(\bar{\Lambda}^0)$ гиперонов, рожденных в процессе фрагментации поляризованного кварка, можно изучить спиновую структуру Λ^0 ($\bar{\Lambda}^0$) гиперонов. Впервые такое предложение было сформулировано в работе [7]. Особый интерес к измерениям поляризации в области фрагментации тока вызван также тем, что u и d кварки в Λ^0 гипероне могут быть отрицательно поляризованными на уровне 20%, тогда как ${\rm SU}(3)_{\rm F} \times {\rm SU}(2)_{\rm S}$ кварковая модель предсказывает нулевой вклад этих кварков в спин Λ^0 . Возможная поляризация u и d кварков связана с тем, что согласно [2, 3, 4, 5] кварки переносят малую долю спина адрона, что в равной степени применимо и к Λ^0 гиперону как к члену октета барионов [7]. Вычисления в рамках разных моделей спиновой структуры адронов и различных механизмов фрагментации кварков дают количественную оценку поляризации Λ^0 ($\bar{\Lambda}^0$) гиперонов, рожденных в глубоконеупругих взаимодействиях (анти) нейтрино на нуклоне в области фрагментации тока в различных кинематических областях [8, 9, 10, 11]. Экспериментальное измерение поляризации Λ^0 ($\bar{\Lambda}^0$) гиперонов с хорошей точностью позволило бы выделить наиболее вероятную модель спиновой структуры Λ^0 гиперонов. Этограния и слава сталина сталистично состание стра

Начиная с первых экспериментов с адронными пучками, было обнаружено, что Λ^0 гипероны поляризованны вдоль нормали к плоскости рождения, тогда как $\bar{\Lambda}^0$ гипероны, рожденные в центральной области по переменной x_F , не обладают поляризацией [12]. Заметим, однако, что поляризация Λ^0 гиперонов, рожденных в центральной области по переменной x_F , также сравнима с нулевой. Поляризация Λ^0 гиперонов усиливается с увеличением поперечного импульса Λ^0 по отношению к оси адронного пучка и с ростом x_F . С тех пор накоплен богатейший экспериментальный материал и обнаружена поляризация также и у других гиперонов. Однако, до сих пор, ни в одном эксперименте с (анти) нейтринными пучками не было обнаружено поперечной поляризации Λ^0 ($\bar{\Lambda}^0$) гиперонов. Из множества теоретических моделей, развитых для объяснения накопленной экспериментальной информации, ни одна не способна описать всей совокупности данных. Нужно признать, что фи-

2

and the second of the Article of the second s

зическая природа поперечной поляризации адронов, рождающихся в глубоконеупругих взаимодействиях, на данный момент не является хорошо понятой теоретически, несмотря на заметную теоретическую активность [13, 14]. Измерение поперечной поляризации Λ^0 ($\bar{\Lambda}^0$) гиперонов в глубоконеупругих реакциях $\nu N \rightarrow I \Lambda^0 (\bar{\Lambda}^0) X$ может дать ключ к пониманию механизмов, приводящих к поляризации гиперонов в процессе фрагментации.

Измерение интегральных и дифференциальных выходов K⁰_s мезонов, и Λ⁰, Λ
⁰, π
⁰, гиперонов в ν_μN глубоконеупругих взаимодействиях по каналу заряженного тока. Изучение переменных, описывающих поведение K⁰_s мезонов, и Λ⁰, Λ
⁰ гиперонов в адронной струе.
 Измерение выходов барионов Σ⁰, Ξ⁻, Σ^{*±}, Σ^{*±} и векторных мезонов.

Цели работы: не не ставить ставить ставить в стави

нов $K^{\star\pm}$. Исследование зависимости выходов тяжелых странных резонансов от типа нуклона мишени и от области фрагментации нейтральной странной частицы.

• Измерение продольной и поперечной компонент вектора поляризации Λ^0 и $\bar{\Lambda}^0$ гиперонов. Исследование вектора поляризации $\Lambda^0(\bar{\Lambda}^0)$ гиперонов в зависимости от области фрагментации, от типа нуклона мишени и от кинематических переменных.

se and and the set of a straight a set of a set of a set of the set

Практическая ценность

 Реализована программа идентификации нейтральных странных частиц на основе кинематического анализа продуктов распада нейтральных частиц, распавшихся на две противоположно заряженные частицы (V⁰ сигнатура).

2. Предложен и реализован новый метод измерения одновременно трех проекций вектора поляризации, учитывающий эффекты реконструкции и аксептанс детектора.

an ing an tao kaominina dia kaominina

Научная новизна

1. Измерен вектор поляризации Λ^0 гиперонов. Детально исследованы систематические ошибки при измерении вектора поляризации.

网络美国美国大学学校

- 2. Обнаружена отрицательная продольная поляризация относительно направления тока W бозона.
- 3. В области фрагментации мишени установлено существенное увеличение модуля продольной поляризации, что находится в согласии с ожиданиями в модели поляризованной странности в нуклоне [6]. В области фрагментации тока измерение продольной поляризации Λ⁰ гиперонов дало возможность оценить коэффициент передачи спина от *u* кварка к Λ⁰ гиперону.
- 4. Впервые в нейтринных экспериментах обнаружена поперечная поляризация Λ^0 гиперонов.
- 5. Впервые в нейтринных экспериментах измерен вектор поляризации $\bar{\Lambda}^0$ гиперонов. Величины продольной и поперечной компонент вектора поляризации $\bar{\Lambda}^0$ гиперонов совместимы с нулем.
- 6. Впервые измерены дифференциальные выходы $\bar{\Lambda}^0$ гиперонов в $u_{\mu}N$ глубоконеупругих взаимодействиях по каналу заряженного тока.
- 7. Измерены выходы странных резонансов и тяжелых странных адронов в $\nu_{\mu}N$ глубоконеупругих взаимодействиях по каналу заряженного тока.
- Идентифицированный набор K⁰_s мезонов, и Λ⁰, Λ
 ⁰ гиперонов может быть использован для исследования многих физических процессов с участием этих частиц:
 - изучение множественного рождения нейтральных странных частиц;
 - измерение тензора поляризации $K^{\star\pm}$ мезонов;
 - исследование распадов очарованных частиц с образованием нейтральных странных адронов;

измерение поляризации Λ^0 , $\bar{\Lambda}^0$ гиперонов и изучение рождения нейтральных странных частиц и странных резонансов в $\nu_{\mu}N$ глубоконеупругих взаимодействиях по каналу нейтрального тока.

and the second of the second of the second second

فعيدها الجاجية فالجد وتكن وتحادر والحاد وتاليو توري

Апробация работы

Результаты, защищаемые в диссертации, докладывались автором на научных семинарах ЛЯП (ОИЯИ), ЛФЧ (ОИЯИ), университета Лозанны (Швейцария), технического университета Мюнхена (Германия), отделений ИНФН Турина, Кальяри, Флоренции (Италия), на рабочих совещаниях ИФВЭ-ОИЯИ, на рабочих совещаниях коллаборации NOMAD. Автор докладывал защищаемые в диссертации результаты на международных конференциях: QUARKS2000 (14-20 мая 2000, Пушкино), ISHEPP XV (25-29 сентября 2000, Дубна), COMPASS WEEK (9-15 октября 2000, Дубна), SPIN2000 (16-21 октября 2000, Осака, Япония).

化化学物理学会 化化学物理学 化化学物理学 化化学物理学 化化学物理学 化化学物理学

Основные результаты, вошедшие в диссертацию, опубликованы в 5 работах.

Структура и объём диссертации

Диссертация состоит из 8 глав, заключения и двух приложений, выделенных в четыре части: "Введение", "Реконструкция событий в эксперименте NOMAD", "Анализ данных" и "Приложения".

Beer and a particular particular and a start of the start of

and a state of the second s

Содержание диссертации

<u>В первой главе</u> дается краткий обзор современных представлений о спиновой структуре нуклона и "спиновом кризисе". Дано описание $SU(6) = SU(3)_F \times SU(2)_S$ кварковой модели. Приводится явный вид спиновых волновых функций, вычисленных в рамках SU(6) модели. Показано, что спиновые волновые функции, диктуемые SU(6) моделью, позволяют вычислить магнитые моменты гиперонов в разумном согласии

с экспериментальными значениями, а также предсказать индивидуальный вклад спина кварка в спин бариона.

В следующем разделе первой главы приводятся теоретические основы и экспериментальные результаты по изучению спиновой структуры нуклонов в реакциях глубоконеупругого рассеяния поляризованных лептонов на поляризованной нуклонной мишени. Рассматривается экспериментальная проверка двух важных правил сумм: Бьёркена и Эллиса-Джаффе.

Во второй главе обсуждаются физические задачи, которые могут быть решены при изучении поляризации Λ^0 и $\bar{\Lambda}^0$ гиперонов, рожденных в глубоконеупругих взаимодействиях. Одной из физических задач, рас-

Рис. 1: Диаграмма, описывающая рождение Λ^0 гиперона в области фрагментации мишени за счет рассеяния нейтрино на d кварке в нейтроне. Стрелочками показано направление спина частии.

смотренных в этой главе, является возможная проверка утверждения о том, что странные кварки в нуклоне отрицательно поляризованы на уровне 10%, что следует из экспериментов по изучению спиновой структуры нуклона [2, 3, 4, 5]. Модель поляризованной странности в нуклоне [6] подразумевает отрицательную (против тока W бозона) поляризацию Λ^0 и $\overline{\Lambda}^0$ гиперонов, рожденных в области фрагментации мишени (см. рис. 1). Другой важной задачей является изучение спиновой структуры Λ^0 и $\bar{\Lambda}^0$ гиперонов, что может быть выполнено в области фрагментации лево-поляризованного *и* кварка (область фрагментации тока). На рис. 2

Рис. 2: Диаграмма, описывающая рождение Λ^0 гиперона в области фрагментации тока за счет рассеяния нейтрино на д кварке в нуклоне. Стрелочками показано направление спина частиц.

приведена диаграмма, описывающая рождение Λ^0 гиперона в области фрагментации тока за счет рассеяния нейтрино на d кварке в нуклоне. Измеренение поляризации Λ^0 гиперонов позволяет оценить коэффициент передачи спина $C_u^{\Lambda} \approx -P_{\Lambda}$, где P_{Λ} дается формулой:

$$P_{\nu}^{\Lambda} = -\frac{d(x)\Delta D_{u}^{\Lambda}(z) - (1-y)^{2}\bar{u}(x)\Delta D_{d}^{\Lambda}(z)}{d(x)D_{u}^{\Lambda}(z) + (1-y)^{2}\bar{u}(x)D_{d}^{\Lambda}(z)},$$
(1)

где d(x), $\bar{u}(x)$ — распределения d и \bar{u} кварков в нуклоне, $\Delta D_q^{\Lambda}(z)$, $D_q^{\Lambda}(z)$ — поляризованная и неполяризованная функции фрагментации кварка q в Λ^0 гиперон, z —доля энергии адронной струи, переносимая Λ^0 гипероном. Легко видеть, что второе слагаемое в числителе и в знаменателе ур. (1) сильно подавлено по сравнению с первым из-за сравнительно малой величины \bar{u} , и подавляющего множителя $(1-y)^2$. Таким образом, измерение поляризации Λ^0 гиперонов, рожденных в области фрагмен-

тации тока в глубоконеупругих взаимодействиях нейтрино с нуклоном, дает оценку для коэффициента передачи спина C_u^{Λ} .

Ситуация с интерпретацией поляризации $\bar{\Lambda}^0$ гиперона менее однозначная. В данном случае поляризация $\bar{\Lambda}^0$ гиперонов описывается формулой:

$$P_{\nu}^{\bar{\Lambda}} = -\frac{\left[d(x) + \omega s(x)\right] \Delta D_{u}^{\bar{\Lambda}}(z) - (1-y)^{2} \bar{u}(x) \left[\Delta D_{\bar{d}}^{\bar{\Lambda}}(z) + \omega \Delta D_{\bar{s}}^{\bar{\Lambda}}(z)\right]}{\left[d(x) + \omega s(x)\right] D_{u}^{\bar{\Lambda}}(z) + (1-y)^{2} \bar{u}(x) \left[D_{\bar{d}}^{\bar{\Lambda}}(z) + \omega D_{\bar{s}}^{\bar{\Lambda}}(z)\right]}$$

где $\omega = tg \,\theta_C, \,\theta_C - y$ гол Кабиббо. Теперь оба члена в числителе и знаменателе могут быть сравнимы по величине. Таким образом, измерение коэффициента передачи спина C_u^{Λ} при помощи измерения поляризации $\bar{\Lambda}^0$ гиперонов в области фрагментации тока требует дополнительных модельных предположений или комбинации различных измерений [15].

В следующем разделе этой главы дается обзор существующих экспериментальных данных по измерению поляризации Λ^0 и $\bar{\Lambda}^0$ гиперонов в экспериментах с адронными пучками, с пучками заряженных лептонов, в реакциях аннигиляции e^+e^- с энергией $\sqrt{s} = m_{Z^0}$, и в экспериментах по изучению рассеяния (анти) нейтрино на нуклоне, выполненных ранее с использованием пузырьковых камер.

8

В третьей главе дается описание пучка нейтрино и всех важнейших компонентов установки NOMAD на ускорителе SPS в ЦЕРН. Определяется система координат детектора, кратко описываются система вето, передний калориметр, дрейфовые камеры, триггерные плоскости, детектор переходного излучения, детектор ливней, электромагнитный калориметр, адронный калориметр и мюонные камеры. На рис. 3 представлена схема детектора NOMAD.

Рис. 3: Детектор NOMAD (вид сбоку)

Далее, в третьей главе определяются триггеры, используемые при наборе данных. Дается принципиальная схема моделирования пучка нейтрино и событий взаимодействия нейтрино в установке NOMAD.

В четвертой главе излагаются вопросы, связанные с реконструкцией и отбором глубоконеупругих взаимодействий нейтрино по каналу заряженного тока и с идентификацией нейтральных странных частиц, оставляющих V⁰ сигнатуру в детекторе.

В разделе, посвященном реконструкции и отбору глубоконеупругих взаимодействий мюонного нейтрино по каналу заряженного тока, опи-

сывается процедура реконструкции треков и вершин, вычисление кинематических переменных, а также критерии качества, накладываемые на нейтринные события. Использумый в анализе набор глубоконеупругих взаимодействий нейтрино по каналу заряженного тока обладает ничтожно малой примесью фоновых событий: 0.4%.

Подробно излагается метод идентификации V^0 частиц, основанный на предварительном отборе кандидатов и последующим кинематическом фите V^0 вершины. Приводятся подробные результаты идентификации K_s^0 мезонов, и Λ^0 , $\bar{\Lambda}^0$ гиперонов, рожденных в глубоконеупругих взаимодействиях мюонного нейтрино по каналу заряженного тока. В эксперименте NOMAD отобрано рекордное количество нейтральных странных частиц, идентифицированных в глубоконеупругих взаимодействий нейтрино по каналу заряженного тока, которые характеризуются высокими чистотой и эффективностью идентификации (см. таб. 1).

Таблица 1: Эффективность и чистота идентификации V^0 (%). Число идентифицированных V^0 частиц в данных.

	K ⁰ s	Λ ⁰	Ā٥
εi	93.1 ± 0.1	86.6 ± 0.1	72.0 ± 0.5
чистота	97.2 ± 0.1	95.9 ± 0.1	89.7 ± 0.5
N_{V^0}	15075	8087	649

<u>В пятой главе</u> проводится сравнение реконструированных кинематических переменных в Монте Карло моделировании и в данных. Рассматриваются глобальные переменные нейтринного взаимодействия, переменные, описывающие рождение и распад V^0 , а также, переменные, характеризующие поведение нейтральных странных адронов в адронной струе.

Завершается глава сравнением распределений переменных, характеризующих поведение нейтральных странных адронов в адронной струе, до и после реконструкции этих переменных.

<u>В шестой главе</u> излагаются физические результаты, относящиеся к рождению странных адронов:

- 1. измерение инвариантной массы и времени жизни нейтральных странных адронов;
- 2. измерение интегральных и дифференциальных выходов K_s^0 мезонов, и Λ^0 , $\bar{\Lambda}^0$ гиперонов, рождающихся в глубоконеупругих взаимодействиях мюонного нейтрино по каналу заряженного тока;
- 3. измерение и изучение распределений переменных, описывающих поведение нейтральных странных адронов в адронной струе;
- измерение выходов странных резонансов и тяжелых странных адронов в зависимости от области фрагментации нейтральной странной частицы и от типа нуклона мишени. Изучены следующие реакции:

(a)
$$K^{\star\pm} \rightarrow K_s^0 \pi^{\pm}$$
,
(b) $\Sigma^{\star\pm} \rightarrow \Lambda^0 \pi^{\pm}$,
(c) $\Sigma^0 \rightarrow \Lambda^0 \pi^-$,
(c) $\Sigma^0 \rightarrow \Lambda^0 \gamma$,
(c) $\overline{\Sigma^{\star\pm}} \rightarrow \overline{\Lambda}^0 \pi^{\pm}$.

Результаты, излагаемые в этой главе, можно суммировать следующим образом. Измеренное значение инвариантной массы и времени жизни нейтральных странных адронов находится в согласии с табличными значениями [16]. На рис. 4 представлены зависимости дифференциальных выходов K_{g}^{0} мезонов, Λ^{0} и $\bar{\Lambda}^{0}$ гиперонов как функции энергии нейтрино (E_{ν}) и квадрата инвариантной массы адронной системы (W^{2}).

Обнаружено заметное отличие на уровне 40-60% выходов в данных от предсказаний модели ЛУНД [1] со стандартным набором параметров.

Впервые в нейтринных экспериментах измерены дифференциальные распределения множественного рождения $\bar{\Lambda}^0$ гиперонов. Измерены распределения по переменным: x_F (в системе центра масс W - N), p_T^2 (квадрат поперечной проекции импульса V^0 к оси W бозона), z_V (доля энергии адронной системы, переносимая V^0 частицей). Измерены параметры асимметрии

$$1 = \frac{N_{x_F>0} - N_{x_F<0}}{N_{x_F>0} + N_{x_F<0}}$$

Рис. 4: Множественность K_s^0 , Λ^0 , $\bar{\Lambda}^0$ в $\nu_{\mu}N$ взаимодействиях по каналу заряженного тока как функция E_{ν} (левый рис+) и W^2 (правый рис.).

для K_s^0 мезонов, и Λ^0 , $\bar{\Lambda}^0$ гиперонов. Распределения p_T^2 отфитированы функцией вида: $C \exp(-Bp_T^2)$. Такая зависимость предсказывается моделью ЛУНД [1] в области $p_T^2 \leq 0.5 \ \Gamma \ni B^2/c^2$. Оценка параметра наклона *B*, полученная в настоящем анализе, является наиболее точной в экспериментах с нейтринными пучками.

В моделированных событиях и в реальных данных хорошо виден сигнал от распадов $K^{\star\pm} \to K_s^0 \pi^{\pm}$, $\Sigma^{\star\pm} \to \Lambda^0 \pi^{\pm}$, $\Xi^- \to \Lambda^0 \pi^-$, $\Sigma^0 \to \Lambda^0 \gamma$. В качестве иллюстрации, на рис. 5 приведены распределения по инвариантной массе для $K_s^0 \pi^{\pm}$ и $\Lambda^0 \pi^{\pm}$ комбинаций в данных.

Измеренные выходы $K^{\star\pm}$, $\Sigma^{\star\pm}$, Σ^0 находятся в серьезном противоречии с предсказаниями модели ЛУНД, соответствующими заложенным по умолчанию параметрам модели в программе JETSET [17]. Это наблюдение приводит к важному выводу: теоретические описания поляризации Λ^0 гиперонов, использующие генератор JETSET [17], должны быть пересмотрены, чтобы принять во внимание данное разногласие.

<u>В седьмой главе</u> детально описана процедура измерения поляризации Λ^0 и $\bar{\Lambda}^0$ гиперонов, использованная в защищаемом автором анализе.

В этой главе определена система координат, в которой проводится измерение поляризации Λ^0 , $\bar{\Lambda}^0$ гиперонов и асимметрии в распределении K_s^0 мезонов. Обсуждаются две другие системы координат, в которых также можно провести измерение вектора поляризации. Подробно изучены эффекты, к которым приводит реконструкция треков, а также исследовано влияние различных источников фона на угловые распре-

12

деления продуктов распада V^0 . Обсужден стандартный метод измерения поляризации и границы его применимости. Предложен новый метод измерения сразу трех компонент вектора поляризации, свободный от недостатков стандартного метода, и обладающий рядом практических преимуществ. Продемонстрирована работоспособность программы, реализующей этот метод. Количественно изучено влияние фона в случае его отклонения от предсказаний Монте Карло.

В этой главе рассматриваются различные источники систематических ошибок при измерении поляризации Λ^0 и $\bar{\Lambda}^0$ гиперонов в $\nu_{\mu}N$ глубоконеупругих взаимодействиях по каналу заряженного тока. Полная систематическая ошибка меньше статистической.

<u>В восьмой главе</u> представлены результаты измерения векторов поляризации Λ^0 и $\bar{\Lambda}^0$ гиперонов, рожденных в $\nu_{\mu}N$ глубоконеупругих взаимодействиях по каналу заряженного тока, в эксперименте NOMAD. Обнаружена отрицательная продольная и отрицательная поперечная компоненты вектора поляризации Λ^0 гиперонов. В таб. 2 приведены результаты измерения вектора поляризации Λ^0 гиперонов в зависимости от x_F .

Таблица 2: Зависимость поляризации Λ^0 гиперонов от x_F

		se en es	поляризация Λ^0 гиперонов -		
	N _Λ	$\langle x_F \rangle$	P_x	P_y	P_z
все Λ^0 .	8087	-0.18	-0.15 ± 0.03	-0.22 ± 0.03	-0.04 ± 0.03
$\begin{array}{c} x_F < 0 \\ x_F > 0 \end{array}$	5608 2479	-0.36 0.21	-0.21 ± 0.04 -0.09 ± 0.06	-0.26 ± 0.04 -0.10 ± 0.06	-0.08 ± 0.04 0.02 ± 0.06

Абсолютная величина продольной поляризации Λ^0 увеличивается в области фрагментации мишени. Это находится в качественном согласии с предсказаниями модели поляризованной странности в нуклоне [6]. Значение продольной поляризации Λ^0 в области фрагментации тока позволяет оценить коэффициент передачи спина от *и* кварка к Λ^0 гиперону (C_u^Λ). Измеренное нами значение коэффициента передачи спина согласуется с предсказаниями SU(6) модели с учетом вклада от промежуточных тяжелых гиперонов, распадающихся на Λ^0 в конечном состоянии, и противоречит вычислениям [8] для модели Буркардта-Джаффе [7]. Зависимость поперечной поляризации Λ^0 гиперонов, рожденных в области фрагментации мишени, от p_T и x_F находится в качественном согласии с хорошо установленной зависимостью поперечной поляризации Λ^0 гиперонов, рожденных в адронных экспериментах, что можно интерпретировать в пользу единой физической природы этих явлений. На рис. 6, 7 представлены зависимости поперечной поляризации Λ^0 ги

Рис. 6: Зависимость поперечной поляризации Λ^0 гиперонов от р в области фрагментации мишени.

Рис. 7: Зависимость поперечной поляризации Λ^0 гиперонов от p_T в области фрагментации тока.

перонов от р_Т в области фрагментации мишени и тока соответственно.

Третья компонента вектора поляризации Λ^0 гиперонов сопоставима с нулем.

Исследована зависимость вектора поляризации от различных кинематических переменных и от типа нуклона мишени (см. таб. 3).

Вектор поляризации $\bar{\Lambda}^0$ гиперонов, измеренный впервые в нейтринных экспериментах, сравним с нулевым (см. таб. 4).

Приложение А посвящено изучению глубоконеупругого рассеяния лептонов на нуклоне. Кратко излагается формализм глубоконеупругого рассеяния. Приводятся формулы для сечений поляризованного и неполяризованного рассеяния заряженных лептонов на нуклоне. Даются теоретические предсказания для различных правил сумм, которые сравниваются с экспериментальными измерениями.

Рассматривается глубоконеупругое рассеяние нейтрино и антиней-

Таблица 3: Зависимость поляризации Λ^0 гиперонов от типа нуклона мишени.

in și	8 8.94 - 17 4 . Stational -	ng tanàn (s. 1977) Na kaong mang tanàng	Поляризация Л ⁰		
-	Реакция	N_{Λ^0}	$P_{m{x}} \sim P_{m{x}}$	P_{y}	P_{z} , P_{z} , P_{z}
	νp	3472	-0.26 ± 0.05	-0.09 ± 0.05	-0.07 ± 0.05
	$x_F < 0$	2407	-0.29 ± 0.06	-0.10 ± 0.06	-0.09 ± 0.06
	$x_F > 0$	1065	-0.23 ± 0.09	-0.06 ± 0.09	-0.02 ± 0.10
	νn	4615	-0.09 ± 0.04	-0.30 ± 0.04	-0.03 ± 0.05
4	$x_F < 0$	3201	-0.16 ± 0.05	-0.37 ± 0.05	-0.07 ± 0.05
	$x_F > 0$	1414	0.01 ± 0.08	-0.11 ± 0.08	0.04 ± 0.09

Таблица 4: Зависимость поляризации $\bar{\Lambda}^0$ гиперонов от x_F

			Поляризация $\bar{\Lambda}^0$		
	िंदर दिश्व हे है। अ	$N_{\overline{\Lambda}}$ 0	P_x	P _y	P_z
1	BCE $\bar{\Lambda}^0$	649	-0.07 ± 0.12	0.09 ± 0.13	0.10 ± 0.13
994 3 4	$egin{array}{c} x_F < 0 \ x_F > 0 \end{array}$	248 401	$0.23 \pm 0.20 \\ -0.23 \pm 0.15$	0.04 ± 0.20 0.10 ± 0.17	-0.08 ± 0.21 0.25 ± 0.16

трино на нуклоне, вычисляются соответствующие сечения, вводятся структурные функции. Приводится экспериментальная проверка различных правил сумм для (анти) нейтринного рассеяния на нуклоне.

Заканчивается приложение рассмотрением полуинклюзивных реакций. Кратко излагаются основы адронизации и модель ЛУНД [1]. Вводится понятие функции фрагментации.

Приложение В завершает диссертацию более детальной информацией относительно разных методов идентификации V^0 частиц, и свойствах распадов Λ^0 и $\bar{\Lambda}^0$ гиперонов. Выводятся формулы для углового распределения продуктов распа-

Выводятся формулы для углового распределения продуктов распада поляризованного Λ^0 ($\bar{\Lambda}^0$) гиперона. Вычисляется эффект прецессии спина Λ^0 ($\bar{\Lambda}^0$) гиперона в магнитном поле.

В заключении

приведены основные результаты и выводы

- 1. В дрейфовых камерах магнитного детектора NOMAD с электронным съёмом информации зарегистрировано 15075 распадов K_s^0 мезонов, 8087 Λ^0 и 649 $\bar{\Lambda}^0$ гиперонов, образованных в нейтринных взаимодействиях по каналу заряженного тока.
- 2. Предложена и реализована идентификация нейтральных странных частиц на основе кинематического фита V^0 вершин.
- 3. Предложен и реализован новый метод измерения одновременно всех трех проекций вектора поляризации, с учетом эффективности реконструкции треков и аксептанса детектора.
- 4. Измерены интегральные выходы K_s^0 мезонов, Λ^0 и $\bar{\Lambda}^0$ гиперонов в $\nu_{\mu}N$ глубоконеупругих взаимодействиях по каналу заряженного тока:

 $\mathcal{T}_{K_s^0} = (6.76 \pm 0.06)\%, \ \mathcal{T}_{\Lambda^0} = (5.04 \pm 0.06)\%, \ \mathcal{T}_{\bar{\Lambda}^0} = (0.37 \pm 0.02)\%.$ Обнаружено отличие измеренных выходов от предсказаний модели ЛУНД [1] на уровне 40-60%.

- 5. Измерены дифференциальные выходы K_s^0 мезонов, Λ^0 и $\bar{\Lambda}^0$ гиперонов в $\nu_{\mu}N$ глубоконеупругих взаимодействиях по каналу заряженного тока как функции E_{ν} , W^2 , Q^2 , x, y. Дифференциальные выходы $\bar{\Lambda}^0$ гиперонов измерены впервые в $\nu_{\mu}N$ глубоконеупругих взаимодействиях.
- 6. Изучены распределения по переменным x_F , p_T^2 , z, характеризующим поведение K_s^0 мезонов, Λ^0 и $\bar{\Lambda}^0$ гиперонов в адронной струе, в $\nu_{\mu}N$ глубоконеупругих взаимодействиях по каналу заряженного тока. Найдены следующие величины: параметры асимметрии в распределениях по переменной x_F и средние значения $\langle x_F \rangle$, $\langle z \rangle$; параметр наклона p_T^2 -распределений.
- 7. Измерены выходы Σ^0 , Ξ^- , $\Sigma^{\star\pm}$ барионов и $K^{\star\pm}$ мезонов, по отношению к выходам Λ^0 гиперонов и K_s^0 мезонов соответственно, в $\nu_{\mu}N$ глубоконеупругих взаимодействиях по каналу заряженного тока. Обнаружено, что относительные выходы в данных меньше по сравнению с предсказаниями модели ЛУНД [1] на факторы

 $3.3 \pm 0.3 \ (\Sigma^{*+}), 1.7 \pm 0.3 \ (\Sigma^{*-}), 1.8 \pm 0.5 \ (\Sigma^{0}),$ что очень важно для правильной теоретической интерпретации измерения поляризации Λ^{0} гиперонов, и на факторы 2.0 ± 0.1 и 1.5 ± 0.1 для K^{*+} и K^{*-} мезонов соответственно.

. Измерен вектор поляризации Λ^0 гиперонов, рожденных в $\nu_{\mu}N$ глубоконеупругих взаимодействиях по каналу заряженного тока. Детально исследованы систематические ошибки при измерении вектора поляризации Λ^0 гиперонов. Увеличение абсолютного значения продольной поляризации Λ^0 гиперонов в области фрагментации мишени

 $P_x(x_F < 0) = -0.21 \pm 0.04$ (стат.) ± 0.02 (сис.)

- согласуется с предсказаниями модели поляризованной странности в нуклоне [6]. Измерение продольной поляризации Λ^0 гиперонов в области фрагментации тока ($x_F > 0$) позволяет оценить коэффициент передачи спина $C_u^{\Lambda^0} = 0.09 \pm 0.06$ (стат.) ± 0.03 (сис.) при $\langle z \rangle = 0.44$. Это значение не противоречит предсказаниям наивной кварковой модели [8] и не согласуется с моделью Буркардта-Джаффе [7].
- Впервые в нейтринных экспериментах обнаружена ненулевая поперечная поляризация Λ⁰ гиперонов, модуль которой увеличивается в области фрагментации мишени:

 $P_y(x_F < 0) = -0.26 \pm 0.04$ (стат.) ± 0.01 (сис.)

Знак поперечной поляризации Λ^0 гиперонов, рожденных в области фрагментации мишени, и ее зависимость от x_F и p_T находятся в качественном согласии со свойствами поперечной поляризации Λ^0 гиперонов, рожденных в адронных экспериментах.

- 10. Обнаружена существенная зависимость продольной и поперечной компонент вектора поляризации Λ^0 гиперонов от типа нуклона мишени (протон, нейтрон).
- 11. Вектор поляризации Λ^0 гиперонов детально изучен как функция кинематических переменных, а также переменных, описывающих поведение Λ^0 в адронной струе.
- 12. Впервые в нейтринных экспериментах измерен вектор поляризации $\bar{\Lambda}^0$ гиперонов, рожденных в $\nu_{\mu}N$ глубоконеупругих взаимодействиях по каналу заряженного тока. Вектор поляризации $\bar{\Lambda}^0$ гиперонов совместим с нулевым.

Результаты диссертации опубликованы в следующих работах:

1. P. Astier, ...<u>D. V. Naumov</u>, ... [NOMAD Collaboration], "Measurement of the Λ polarization in ν_{μ} charged current interactions in the NOMAD experiment," *Nucl. Phys.* **B588**, (2000) 3; CERN-EP/2000-111

- 2. P. Astier ...<u>D. V. Naumov</u>, ... [NOMAD Collaboration], "Measurement of the $\overline{\Lambda}$ polarization in ν_{μ} charged current interactions in 'the NOMAD experiment," *Nucl. Phys.* **B605**, (2001) 3; CERN-EP/2001-028
- 3. Dmitry Naumov [for NOMAD Collaboration], "Measurement of the Lambda polarization in ν_{μ} charged current interactions in the NOMAD experiment," Proceedings of 14th International Spin Physics Symposium, October 16-21, SPIN2000 (Osaka, Japan), AIP CONFERENCE PROCEEDINGS 570 (2001) 489; hep-ph/0101325
- 4. Dmitry Naumov [for NOMAD Collaboration], " Λ^0 Polarization in ν_{μ} CC interactions in NOMAD", Proceedings of ISHEPP, XV, Dubna, September 25-29, 2000
- 5. D. V. Naumov and B. A. Popov, "A Study of Strange Particle Production in ν_{μ} CC Interactions in the NOMAD Experiment", Сообщение ОИЯИ E1-2001-139 (2001).

[14] T.Skatazan T.C.(2014) A.S. (2004) A.S.F. (2014) A. (2014)
 [17] T.Skata (1995); hep-ph/20143334;
 [17] T. Shittand (1995); hep-ph/20140 a.S. (1983) 207, 43 (1985) (44)
 [17] Shittand (1995); Figure 19 (1984) 207, 43 (1985) (44)
 [17] Shittand (1995); hep-ph/20140 a.S. (1984) 207, 43 (1985) (44)
 [17] Shittand (1995); hep-ph/20140 a.S. (1984) 207, 43 (1985) (44)

Список литературы

- B. Andersson, G. Gustafson, G.Ingelman and T.Sjöstrand, *Phys.Rep.* 97 (1983); T.Sjöstrand et al., *Int. J. Mod. Phys* A3 (1988) 751
- [2] J.Ashman et al., [EMC Collaboration], Phys. Lett. B206, (1988) 364; Nucl. Phys. B328 (1989) 1
- [3] D.Adams et al. [SMC Collaboration], Phys. Rev. D56, (1997) 5330;
 B.Adeva et al., [SMC Collaboration], Phys. Lett. B420, (1998) 180
- [4] K.Abe et al., [E143 Collaboration], Phys. Rev. D58, (1998) 112003
- [5] K.Ackerstaff et al., [HERMES Collaboration], Phys. Lett. B464, (1999) 123
- [6] J.Ellis, D.Kharzeev, A.Kotzinian, Z. Phys. C69 (1996) 467; J.Ellis, M.Karliner, D.E.Kharzeev and M.G.Sapozhnikov, Nucl. Phys. A673 (2000) 256
- [7] M.Burkardt and R.L.Jaffe, Phys. Rev. Lett. 70 (1993) 2537
- [8] A.Kotzinian, A.Bravar, D. von Harrach, Eur. Phys. J. C2 (1998) 329
- D.Ashery and H.J.Lipkin, hep-ph/0002144
 D.Ashery and H.J.Lipkin, *Phys. Lett.* B469 (1999) 263, hep-ph/9908355
- [10] B.Ma and J.Soffer, Phys. Rev. Lett. 82 (1999) 2250
- [11] D.de Florian, M.Stratmann and W.Vogelsang, Phys. Rev. Lett. 81 (1998) 530
- [12] A. Lesnik et al., *Phys.Rev.Lett.* 35 (1975) 770; G. Bunce et al., *Phys.Rev.Lett.* 36 (1976) 1113
- [13] A.D.Panagiotou, Int. J. Mod. Phys. A5 (1990) 1197;
 J.Félix, Mod. Phys. Lett. A14 (1999) 827;
- [14] M. Anselmino, D. Boer, U. D. Allesio and F.Murgia, hep-ph/0008186
- [15] B.Ma, I.Schmidt, J.Soffer and J.Yang, Eur. Phys. J C16 (2000) 657
- [16] Review of Particle Properties, Eur. Phys. J. C15 (2000)
- [17] T.Sjöstrand, "PYTHIA 5.7 and JETSET 7.4: physics and manual", LU-TP-95-20 (1995); hep-ph/9508391
 T.Sjöstrand, Comp. Phys. Comm **39** (1986) 347, **43** (1987) 367
 Рукопись поступила в издательский отдел 5 сентября 2001 года.