СООБЩЕНИЯ Объединенного института ядерных исследований дубна

1 - 12347

3/1x-79

+ (3439

3445/2-79

C3436 A-79

> ОЦЕНКА ВЫХОДОВ ОДНОЗАРЯДНЫХ ФРАГМЕНТОВ ПО ОТНОШЕНИЮ К ВЫХОДУ ПРОТОНОВ В РЕАКЦИЯХ р 12 C, d 12 C И a 12 C

1 - 12347

С. Г. Аракелян, Б.А. Шахбазян

ОЦЕНКА ВЫХОДОВ ОДНОЗАРЯДНЫХ ФРАГМЕНТОВ ПО ОТНОШЕНИЮ К ВЫХОДУ ПРОТОНОВ В РЕАКЦИЯХ р 12 С, d 12 С И α 12 С

Superiori Duerary EXELEX DECARDORNEL

1		
	Аракелян С.Г., Шахбазян Б.А. 1 - 1234	17
	Оценка выходов однозарядных фрагментов по отношению к выходу протонов в реакциях $p^{12}C$, d ^{12}C и $a^{12}C$	
	Рассматривается фрагментация ядер углерода при облучении пр пановой пузырьковой камеры релятивистскими протонами, дейтронами и α -частицами. На основе имеющихся экспериментальных данных сделаны оценки выходов вторичных дейтронов, ядер трития и других фрагментов по отношению к выходу протонов в реакциях $p^{12}C$, $d^{12}C$ и $a^{12}C$.Как показали оценки, выходы вторичных дейтронов и тритонов по отношению к выходу протонов для треков разных длин.	ю- : : :
	Работа выполнена в Лаборатории высоких энергий ОИЯИ.	
	Сообшение Объединенного института ядерных исследований. Дубна 1	979
	Arakelian S.G., Shahbazian B.A. 1 12347	
	An Estimate of Yields of Singly Charged Fragments with Respect to Yields of Protons in the p^{12} C, d^{12} C, and a^{12} C. Reactions	
	The fragmentation of carbon nuclei at the irradiation of the propane chamber with relativistic protons, deuterons and α -particles is considered. On the basis of experimental data yields of secondary deuterons, tritons and other fragments were estimated with respect to secondary proton production in p ¹² C, d ¹² C, d ¹² C reactions. These ratios depend on track length.	ne If
	The investigation has been performed at the Laboratory of High Energies, JINR.	
	Communication of the Joint Institute for Nuclear Research. Dubna 1979	,

🕲 1979 Объединенный институт ядерных исследований Дубна

Двухметровая пропановая пузырьковая камера ЛВЭ ОИЯИ облучалась пучками релятивистских протонов, дейтронов, альфачастиц и ядер углерода различных импульсов. При столкновении частиц высоких энергий и ядер с ядрами происходит сильная фрагментация. Фрагменты мишени в основном медленные и поэтому будут останавливаться в камере. Для широкого круга задач релятивистской ядерной физики из всего многообразия излучений звезды необходимо идентифицировать протоны. Однако есть опасность, что при идентификации за протоны могут быть приняты и другие фрагменты, в особенности однозарядные дейтроны и ядра трития. Необходимо оценить вклад этих ошибок. Критерием такой оценки принято отношение дифференциального сечения рождения дейтронов, ядер трития и более тяжелых фрагментов к дифференциальному сечению рождения протонов.

т.е. величина $\beta_{d,t} = \frac{(d^2 \sigma/ dP d\Omega)_{d,t}}{(d^2 \sigma/ dP d\Omega)_p}$ в процентах. Изучение ли-

тературы по фрагментации ядер показало, что в работах, как правило, приводится зависимость дифференциального сечения от импульса вторичной частицы. Поскольку при обработке фотографий пузырьковой камеры импульсы останавливающихся в камере частиц вычисляются по длине их пробега, то нагляднее всего иметь отношение выходов протонов и более тяжелых фрагментов (β) с одинаковыми пробегами, но различными импульсами. Для перевода значений импульсов в величины пробегов воспользуемся зависимостью пробега частицы от ее кинетической энергии ^{/1./}. Для протона эта формула имеет следующий вид:

$$S_p = \rho_1^{-1} \{ R(2 M_{\partial B}, J) + \frac{A}{2Z} \Phi_{A1}(T_p) \cdot G \},$$
 /1/

где S_p - пробег протона в *см*; T_p - его кинетическая энергия в *МэВ*; ρ - плотность рабочей жидкости камеры в *г/см*³; A - атомный вес наполнения камеры; Z - атомный номер рабочего вещества камеры, J - потенциал ионизации жидкости камеры в *эВ*; R / 2 *МэВ*, J / - пробег протона с $T_p = 2$ *МэВ* в камере в *г/см*²;

$$G = 1 + G_{1\chi} + G_{2\chi}^{2} + G_{3\chi}^{3}; \chi = lg(J/J_{A1}); J_{A1} = 166 \ \mathfrak{B}.$$

G₁, G₂, G₃, Ф_{A1} даны в работе ^{/1/}в виде таблицы,как функции кинетической энергии протона. Для произвольной частицы х формула зависимости пробега от кинетической энергии имеет вид:

$$S_{x}(T_{x}) = (m_{x}/m_{p}) \cdot S_{p} (T_{x} \cdot m_{p}/m_{x}),$$
 /2/

где S_x - пробег частицы х в *см*, T_x - ее кинетическая энергия в *МэВ*, m_x - ее масса, m_p - масса протона, S_p вычисляется по формуле /1/.

В работе ^{/2/} рассматриваются реакции взаимодействия протона с импульсом $P_p = 808 \ M \rightarrow B/c$ с углеродом. В *таблице 1* приведены дифференциальные сечения $d_{\sigma/}d\Omega$ вторичных протонов, имеющих кинетические энергии $T_p \ge 36 \ M \rightarrow B$, что соответствует /согласно формулам /1/ и /2// пробегам в пропане $S_p \ge 2,5 \ cm$; вторичных дейтронов с $T_d \ge 48 \ M \rightarrow B$, что соответствует $S_d \ge 2,3 \ cm$; вторичных тритиевых ядер с $T_t \ge 58 \ M \rightarrow B$,

Таблица 1

Дифференциальные сечения рождения вторичных протонов с $T_p \ge 36 M \mathcal{B}$, дейтронов с $T_d \ge 48 M \mathcal{B}$ н вторичных ядер трития с $T_t \ge 58 M \mathcal{B}$ под углами $\theta_{\pi a 6} = 26 \text{ H 40}^\circ$ в реакции $p + {}^{12}$ С при импульсе протона 808 $M \mathcal{B}/c$

- <u>dα</u> р (мб/ср.)	- <u>dσ</u> _(мб/ср.)	-dσ _t (мб/ср.)	θ _{лаб}
70,0 <u>+</u> 4,0	1,72 <u>+</u> 0,41	0,120 <u>+</u> 0,068	26°
52,3 <u>+</u> 4,0	1,90 <u>+</u> 0,35	0,148 <u>+</u> 0,069	40°

что соответствует S_t _ 2,2 *см*, рождающихся под углами 26° и 40° в лабораторной системе. Из этих данных следует, что среди вторичных треков, имеющих пробеги в пропане $\geq 2,5$ *см*, выход дейтронов по отношению к протонам β_d равен 2,46% при $\theta_{Ja\bar{0}} = 26^\circ$ и 3,63% при $\theta_{na\bar{0}} = 40^\circ$.Выход же ядер трития по отношению к протонам равен 0,17% при $\theta_{na\bar{0}} = 26^\circ$ и 0,28% при $\theta_{Ja\bar{0}} = 40^\circ$.

В работе ^{/3/} изучались взаимодействия p + ¹²C - при импульсе налетающего протона 6,57 ГэВ/с. Измерялись спектры вторичных протонов, дейтронов и ядер трития, вылетающих под углом 137° в лабораторной системе. Значения дифференциальных сечений вторичных протонов и дейтронов для различных импульсов и пробегов в пропане приведены в *таблицах 2* и 3. Значения

Таблица 2

Дифференциальные	сечения	образования	протонов	под	углом
	θ_{ABD}	$= 137^{\circ}$			

_	S _р (см)	P _p (M∋B/c)	d ² σ/dPdΩ (см ² /cp/MэB/c)
	4,0	300	2,5x10 ⁻²⁹
	10,5	400	2×10^{-29}
	23,5	500	1 × 10 ⁻²⁹
	43,0	600	5×10^{-30}
	67,5	700	2×10 ⁻³⁰

для β_d н β_t , вычисляемые из данных этой и последующих работ, приведены в *табл.* 8. На *рис.* 1 в полулогарифмическом масштабе приведена зависимость дифференциального сечения вторичных протонов и дейтронов от их пробегов в пропане. На *рис.* 2 приведена зависимость дифференциальных сечений вторичных протонов и дейтронов от их импульсов, при этом импульс дейтронов вычислялся по пробегу в предположении, что это протон, т.е. имитировался тот случай, когда протоны и дейтроны неразличимы. Легко посчитать, что среди треков, имеющих импульсы в ЗОО $M \ni B/c$, выход дейтронов по отноше-

Таблица З

S _d (см)	P _d (M∋B/c)	$d^2\sigma/dPd\Omega$ (cm ² /cp/MəB/c)
4,0	500	1×10^{-30}
13,0	700	$4x10^{-31}$
21,0	800	1,6x10 ⁻³¹
32,0	900	5×10^{-32}
46,5	1000	6 ,3 x10 ⁻³³

Дифференциальные	сечения	образовання	дейтронов	под	углом
	$\theta_{\pi a 6}$	= 137 ^{°°}			

нию к протонам равняется 4%. С увеличением импульса это отношение уменьшается, как видно из графика.

В работе ^{/4/} рассматривается взаимодействие протонов энергии 2,9 ГэВ ядрами бериллия. Здесь приводятся импульсные спектры $(d^{2}N/dP \cdot d\Omega = f(P))$ вторичных протонов, дейтронов и ядер трития, рождающихся под углами $\theta = 13$, 30, 60 и 93° в лабораторной системе. $d^{2}N/dP d\Omega$ - число вторичных частиц данного сорта на ГэВ/с на стерадиан. Можно допустить, что при взаимодействии протона с ядром углерода импульсные спектры вторичных частиц близки к соответствующим спектрам при р ⁹Ве взаимодействии. Пользуясь зависимостью пробег-импульс для вторичных протонов, дейтронов и ядер трития в пропане, мы получили их распределения по пробегам для углов 13, 30, 60 и 93° в лабораторной системе / рис. 3,4,5 и 6 соответственно/.

В работе $^{.5.7}$ приведены экспериментальные данные энергетической зависимости инвариантных сечений для вторичных протонов, дейтронов и ядер трития, рождающихся под углом 180 ° в лабораторной системе, в реакции $p + {}^{12}C \rightarrow$ при импульсе первичного протона 8,6 ГэВ/с. Соответствующие данные представлены в виде зависимости дифференциального сечения от импульса /пробега в пропане/ вторичных протонов, дейтронов и ядер трития и приведены в *табл. 4*.

В работе ⁷⁶⁷ представлены экспериментальные результаты по фрагментации ядер углерода релятивистскими дейтронами

Рис. 1. Зависимость дифференциального сечения вторичных протонов и дейтронов от пробега в пропане для реакции $p + {}^{12}C \rightarrow$ под углом 137° в лаб. системе при $P_p = 6,57 \ \Gamma 3 B/c$.

Рис. 2. Зависимость дифференциального сечения вторичных протонов и дейтронов от их импульсов /импульс дейтрона рассчитывается по пробегу в предположении, что это протон/для реакции $p + {}^{12}C \rightarrow nod$ углом 137° в лаб. системе, при $P_p = = 6,5 \Gamma \Rightarrow B/c$.

Рис. 5. Распределения вторичных протонов, дейтронов и ядер трития под углом 60° в зависимости от их пробега в пропане в реакции р+⁹Ве→ при энергии первичного протона 2,9 ГэВ.

Рис. 6. Распределения вторичных протонов, дейтронов и ядер трития под углом 93° в лаб. системе, в зависимости от их пробега в пропане, в реакции р + ⁹ Ве., при энергии первичного протона 2,9 ГэВ.

4
ø
2
25
ю
,a
-

в лабораторной системе сечения образования вторичных протонов, при импульсе первичного протона 8,6 ГэВ/с тритонов под углом 180° Дифференциальные дейтронов н

r/dPdΩ 'Γ∋B/c/cp.	100,001	11±0,000				
d ² c) M6/	0,00	0,00				
Pt (Γ∍B/	0,700	0,901				
S t (см)	5,1	12,0				
d ² ơ/d PdΩ мб/ГэВ/с/ср.	0,244+0,027	0 ,200<u>+</u>0,0 44	0,060 <u>+</u> 0,004	0,021 <u>+</u> 0,005	0,007 <u>+</u> 0,000	0,003 <u>+</u> 0,001
P _d (Γ∋B/c)	0,498	0,602	0,699	0,799	0,901	1,000
S _d (cm)	4,0	7,9	13,0	21,5	33,1	46,9
d ² ₀/dPdΩ m6/Γ∋B/c/cp.				$2,221\pm0,136$	0,980 <u>+</u> 0,064	0,277 <u>+</u> 0,014
Pp (ГэВ/с)				0,500	0,599	0,699
S _p (cM)				23,2	42,5	67,8

н *а*-частицами. Здесь получены дифференциальные сечения образования изотопов H, He, Li и Be в реакции $d + {}^{12}C \rightarrow$ при энергии дейтрона 3,1 *ГэВ/нукл*. и в реакции $a + {}^{12}C \rightarrow$ при энергии *а*-частицы 2,5 *ГэВ/нукл*. под углом $\theta_{\pi a b} = 90^{\circ}$. Точность разделения фрагментов по массе и заряду для изотопов водорода и гелия оценивается в 1%.

Максимальная систематическая ошибка в определении абсолютных дифференциальных сечений фрагментации оценивается в 10%. Отношение фоновых событий к полезным не превышает 3%.

Дифференциальные сечения изотопов H, He, Li и Ве измерялись в интервале энергий от 5 до 70 *МэВ*. В работе графически и в виде таблицы дана зависимость инвариантного дифференциального сечения фрагмента $2E_n d^3\sigma/dP^3$ от его кинетической энергии. С помощью формулы пробег-импульс вычислена зависимость дифференциального сечения фрагмента $d^2\sigma/dP d\Omega$ от его пробега в пропане. В *табл.* 5 и 6 приводятся дифференциальные сечения фрагментов, в зависимости от из пробегов в пропане для реакций $a + {}^{12}C \rightarrow H d + {}^{12}C \rightarrow \text{соответ$ $ственно.}$

Из табл. 5 следует, что относительный выход ² H к ¹H для треков, нмеющих длину О,2 см, составляет 27,00%; ³H к ¹H - 10,05%; ³He к ¹H - 9,78%; ⁴He к ¹H - 16,63% и ⁶He к H - 0,056%. Из табл. 6 следует, что для треков с S = = 0,2 см относительный выход ²H к ¹H составляет 27,06%; ³H к ¹H - 10,80%; ³He к ¹H - 9,90%; ⁴He к ¹H - 18,06%. Выходы же остальных фрагментов по отношению к ¹H равны сотым долям процента.

В работе $^{77/}$ рассматривается взаимодействие $p + {}^{12}C \rightarrow$ при импульсе налетающего протона 2,3 ГэВ/с. В табл. 7 приведены дифференциальные сечения образования низкоэнергетичных изотопов Н. рождающихся под углом 90° в лабораторной системе, для небольшого интервала энергий, которому соответствуют пробеги в пропане не более чем О,3 см. Для таких треков, как следует из таблицы, выход дейтронов по отношению к выходу протонов равен 25,00%, выход же ядер трития по отношению к выходу протонов составляет 11,88%.

Значения отношений выходов вторичных дейтронов и ядер трития к выходам вторичных протонов, имеющих одинаковые

10

Таблица 5

Дифференциальные сечения рождения фрагментов H и He в реакции α + ¹²C под углом $\theta_{лаб}$ = 90° при энергии альфачастицы 2,5 ГэВ/нукл.

_		d ² σ∕dF	PdΩ (<u>-</u> c	мб р•МэВ/с	-)		Puporous (MaB/c)
S (см)	¹ H	² H	³ H	³ He	⁴ He	⁶ He	протона
0,2	0,2248	0,0607	0,0226	0,0220	0,0374	0,128 · 10 ⁻³	130,0
0,3	-	0,0553	0,0191	0,0192	0,0246	0,796 ·10 ⁻⁴	150,5

Таблица б

Дифференциальные сечения рождения фрагментов H , He, Li и Ве в реакции d + 12 C под углом $\theta_{\rm JHO} = 90^{\circ}$ при энергии дейтрона 3,1 ГэВ/нукл.

S	$d\tilde{\delta}/dPd\Omega\left(\frac{M\delta a D H}{CTEPPA J. M B B/c}\right)$								(МэВ/с) Протона 130 4 I30 4 I50,5 4 I68,4 4 I79,4 4 I89,7 4 200, I		
(CM)											
0,2	0,1726	0,0467	0,0187	0,0171	0,0312	2,0.10-4	8,6.IO ⁻⁴	4,8.10-4	0,6.10-4	3,9.10-4	130
0,3	0,1551	0,0429	0,0161	0,0148	0,0202	1,3.10 ⁻⁴	3,8.IO ⁻⁴	3,0.10-4	0,4.10-4	2,6.10-4	I50,5
0,5	0,1350	0,0357	0,0114	0,0106	0,0091	0,7.IO -1	2,7.10-4	-	0,2.10-4	I,0.10 ⁻⁴	I68 ,4
0,7	0,1217	0,0300	0,0084	0,0083	-	-	-	0,7.IO . 4	0,1.10-4	0,6.10-4	179,4
0,8	-	-	-	0,0073	-	0,4.10-4	I,I.I0 ⁻⁴	0,5.10-4	0,1.10-4	0,5.10-4	I89,7
I,0	-	-	-			0,3.10-4	0,8.10-4	0,4.10-4	0,I.IO ⁻⁴	0,4.10-4	200,1
I,3	-	-	-	4,I.I0	3,0.I0	0,2.10-4	0,4.10-4	0,2.10-4	-	0,3.10-4	218,0
I,5	-	-	-	3,7.10	2,4.10	0,1.10-4	0,2.10-4	0,1.10-4	-	-	226,7
2,0	-	-	-	2,8.10	1,6.10	-	-	-	· _		243,2

Таблица 7

Дифференциальные сечения образования изотопов Н под углом $\theta_{\pi a \bar{0}} = 90^{\circ}$

Изотоп	Интервал энергий (МэВ)	dσ/dΩ (146/cp)
¹ H	3-11	16,4 <u>+</u> 0,5
² H	5-14	4,1 <u>+</u> 0,3
³ H	6-17	1,9 <u>+</u> 0,2

 $\beta_{\rm d,t}$ пробеги в пропане, т.е. значения $(d^{2}\sigma_{i}) dP d\Omega)_{p}$

$$= \frac{(d^2\sigma/dP d\Omega)}{(d^2\sigma/dP d\Omega)} = \mathbf{B} \ \mathbf{\%},$$

которые можно получить из данных вышеизложенных работ, приведены в табл. 8. Содержимое таблицы может служить для оценок вклада однозарядных нонов, ошибочно идентифицированных как протоны.

В заключение авторы благодарят П.П.Темникова за обсуждение.

Таблица 8

Значения отношений выходов вторичных дейтронов и ядер трития к выходам вторичных протонов β_d и β_t в % при различных условиях и для вторичных треков разных длин

	Pearcar	ілтульс спаряда (ГэВ/с)	Угол энце- син (град)	Длина трека ^В (с.:)	12.пульс соответ. протону (ТэВ/с)	Относит. выход β. (Я)	OTHOCHT BLEION Bt (%)	Сецика
I	p+°C+	3,70	IB	4	0,300	4,0	-	4
2	u	3,70	IΞ	23	0,505	6,2	-	4
9	II	3,70	15	43	0,610	6,I	-	4
4	11	3,70	50	6,5	0,350	I0,0	-	4
5	<u> </u>	3,70	30	22	0,500	6,3	0,30	4
6		3,70	30	42	0,600	4,0	0,16	4
7	II	3,70	60	4	0,300	10,0	-	4
3		3,70	60	28	0,500	3,8	0,10	4
9		3,70	60	43	0 ,6IO	3,10	0,06	4
10	II	3,70	93	5	0,320	10,0	-	4
II	it	8,70	93	22	0,500	2,7	0,07	4
12		3,70	93	43	0,6I0	I,2	-	4
13	<u> </u>	6,57	I37	4	0,300	4,0	-	З
14	<u> </u>	6,57	137	22	0,500	I,6	. 🗕	З
<u>15</u>	<u> </u>	8,60	I80	22	0,500	0,9	<u> </u>	5
18	d+"C+	3 ,9 0	9 0	0,2	0,I30	27,I	I0,I	6
17	<u> </u>	S,90	9 0	0,5	0,IC5	26,4	8,4	6
18		3,90	9 0	0,7	0,180	24,6	6,9	6
	d+ ¹² C	5,30	90	0,2	0,IB0	27,0	I,O	6

ЛИТЕРАТУРА

- 1. Strenheimer R.M. Phys. Rev., 1960, 118, p.1045.
- 2. Брилль и др. В сб.: Ядерные взаимодействия в защите космических кораблей. "Наука", М., 1968.
- 3. Баюков Ю.Д. и др. ЯФ, 1967, m.5, 2, c.337.
- 4. Pirone P.A., Smith A.J. Phys. Rev., 1966, 148, 4, p.1315.
- 5. Балдин А.М. ОИЯИ, Р1-11302, Дубна, 1978.
- 6. Безногих Г.Г. и др. ОИЯИ, РІ-10944, Дубна, 1977.
- 7. Авдейчиков В.В. и др. ЯФ, 1977, m.25, 1, с.3.

Рукопись поступила в издательский отдел 28 марта 1979 года.