

Объединенный институт ядерных исследований дубна

23/10-79

A-646

1 - 12108

Н.Ангелов, А.И.Аношин, В.Г.Гришин, В.Б.Любимов, М.И.Соловьев, М.К.Сулейманов, Д.Тувдендорж

1584 2-79

изучение реакции П⁺ ¹²С → р +.... ПРИ Р_π·=40 ГэВ/с

1 - 12108

Н.Ангелов, А.И.Аношин, В.Г.Гришин, В.Б.Любимов, М.И.Соловьев, М.К.Сулейманов, Д.Тувдендорж

ИЗУЧЕНИЕ РЕАКЦИИ П⁻+ ¹²С -- р +.... ПРИ Р_π-=40 ГэВ/с

Направлено в ЯФ

¹ Научно-исследовательский институт ядерной физики. МГУ, Москва. ²Институт физики АН АзССР, Баку.

017.	. Sec. S. L.
ST WERE	a an e da 🚵 a
Gest 1	J.SIA

Ангелов	н.	И	др.			
---------	----	---	-----	--	--	--

Изучение реакции $\pi^{-} + {}^{12}C \rightarrow p + ...$ при $P_{\pi^{-}} = 40 \ \Gamma_{9}B/c$

1 - 12108

Изучались π^{-12} С -взаимодействия, сопровождающиеся испусканием, по крайней мере, одного протона. Соотношения между вероятностями испускания разного числа протонов в заднюю полусферу лабораторной системы коорлинат показывают, что эти процессы независимы. Средние характеристики π^{\pm} -мезонов в этих взаимодействиях оказались такими же, как и во всех π^{-12} С -взаимодействиях. Изучены структурные функции для протонов, вылетающих под разными углами, в том числе и для событий с разным числом этих протонов.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1979

§ 1. ВВЕДЕНИЕ

В настоящей работе, являющейся частью систематического исследования свойств неупругих π^{-12} С -взаимодействий при $P_{\pi^{-}} = 40 \Gamma j B/c^{/1/}$ продолжено изучение инклюзивной реакции: $\pi^{-} + {}^{12}$ С \rightarrow р + ... /1/

с числом испущенных протонов $N_p \ge 1$. Часть результатов по анализу этой реакции опубликована в наших работах $^{2,3/}$. Экспериментальный материал, как и раньше, получен при обработке снимков с двухметровой пропановой камеры, облученной π^- -мезонами с импульсом $P_{\pi^-} = 40,00 \pm 0.24 \ \Gamma \ B/c$ на серпуховском ускорителе ИФВЭ. При просмотре снимков по стандартным критериям $^{1/}$ отбирались " π^- p" -, " π^- n" - н " π^- С"-взаимодействия. Полное число отобранных случаев приведено в *табл. 1*. Число π^{-12} С -взаимодействий, указанное в этой таблице, определялось по формуле:

$$N(\pi^{-12}C) = N(\pi^{-}C^{+}) + \alpha_{1}\beta N(\pi^{-}p^{+}) + \alpha_{2}N(\pi^{-}n^{+}).$$
 /2/

Здесь коэффициент β =0,44 определяет долю " π^- р" -взанмодействий, которую нужно отнести к соударениям на квазисвободных нуклонах ядра углерода. Он был вычислен с использованием полного неупругого сечения взаимодействия π^- -мезона с ядром углерода σ_{in} =179 мб. Коэффициенты a_1 и a_2 учитывают то обстоятельство, что " π^- р"-, " π^- п"- и " π^- С"события были отобраны на разном количестве снимков. Для статистики, приведенной в *табл.* 1, a_1 =0,55 и a_2 =0,57. Эта процедура вычисления числа всех π^{-12} С -взаимодействий была использована нами для определения числа событий типа /1/.

В табл. 1 приведены также числа идентифицированных вотобранных взаимодействиях протонов, разбитых на две группы по импульсам ($P_{\rm A}$). Протоны с $P_{\rm A}$ от 140 до 1000 $M_{2}B/c$ это все протоны, которые нам удалось идентифицировать. Идентификация протонов осуществлялась визуально по ионизации. На надежности идентификации протонов сказывается неравномерность условий освещения нижней и верхней частей камеры. Часть протонов, испущенных в нижнюю часть камеры, где наихудшие условия освещения /это относится в основном к высокоэнергичным протонам/, могут идентифицироваться как π^+ -мезоны. Поэтому при построении энергетических распределений мы ограничились протонами с импульсами не больше 620 $M_{2}B/c$. Кроме этого, для учета потерь протонов, вылетающих в нижнюю часть камеры, вводились веса, определяемые по формуле:

$$\omega(P) = 2g_1(P) / [g_1(P) + g_2(P)], \qquad (3)$$

где $g_1(P)$ и $g_2(P)$ - число протонов, испущенных соответственно в верхнюю и нижнюю часть камеры.

Результаты, полученные с учетом весов /3/, совпали с результатами для протонов, испущенных вобласть углов с наилучшими условиями идентификации. Это протоны, вылетающие под небольшими углами к горизонтальной плоскости камеры, причем в верхнюю часть. Конкретно для этого были выбраны протоны с азимутальными углами ϕ в интервалах 180° ÷ 240° и 300° ÷ 360°.

§2. ВЕРОЯТНОСТИ НАБЛЮДЕНИЯ π^{-12} С - ВЗАИМОДЕЙСТВИЙ С $N_p \ge 1$.

Основные результаты по вероятностям (^WN_p) наблюдения событий с разным числом идентифицированных протонов суммированы в *шабл. 2.*

В этой же таблице приведена соответствующая статистика событий, причем число событий с N_p =1 определялось по изложенной во введении процедуре.

		1	ıa	u	u	л	б	à	7
--	--	---	----	---	---	---	---	---	---

Статистика событий

Тип взаи- молействий	Число со- бытий	Число протонов			
		О,14≤Р_л≤1,0 ГэВ/с	$0,14 \leq P_{\pi} \leq 0,62$ Гэ		
"π¯p"	11640	2594	2117		
"π ⁻ n"	4146	310	213		
"π ⁻ C"	4931	7194	666 3		
$\pi^{-12}C$	10073	8019	7290		

Таблица 2 Вероятности наблюдения событий типа /1/ *

Np	Все события типа (1)		События ном с О _д -	с прото . < 90°	События с протоном с Θ _л ≥ 90 °		
	Число	W _{Np} (%)	Число	W _{Np} (%)	Число	W _{Np} (%)	
1	2638	26,2 <u>+</u> 0,6	26 3 6	26,2 <u>+</u> 0,6	1509	14,9 <u>+</u> 0,4	
2	1268	12,6 <u>+</u> 0,4	925	9,2 <u>+</u> 0,3	279	2,8 <u>+</u> 0,2	
3	521	5,2 <u>+</u> 0,2	314	3,1 <u>+</u> 0,2	33	0,33 <u>+</u> 0,06	
4	215	2,1 <u>+</u> 0,1	7 6	0,75 <u>+</u> 0,09	1	0,01 <u>+</u> 0,01	
5	70	0,69 <u>+</u> 0,08	1 6	0,16 <u>+</u> 0,04	-	-	
6	12	0,12 <u>+</u> 0,03	-		-	-	
все	4724	46,9 <u>+</u> 0,8	3 96 7	39,4 <u>+</u> 0,7	1822	18,0 <u>+</u> 0,5	

* В таблице $\theta_{,1}$ - угол испускания протона в лабораторной системе координат.

^{**}В нашей работе^{/3} в которой не учитывался вклад квазиупругих взаимодействий, для этой вероятности получилось значение /37 ± 1/%.

Из табл. 2 для вероятностей испускания протонов "назад" можно получить следующее приближенное эмпирическое выражение:

$$W_{N_p} \simeq W_1^{N_p}$$
 . $/4/$

Здесь W_1 - вероятность наблюдения событий с одним протоном, испущенным "назад", W_{N_p} - /как в *табл. 2*, но не в процентах!/ - вероятность наблюдения событий с числом испущенных "назад" протонов N_p . Выражение /4/ указывает на независимость излучения разного числа протонов в заднюю полусферу *.

То же самое наблюдается для вероятностей обнаружения π^{-12} С -взаимодействий, сопровождающихся испусканием "назад" протонов с импульсом больше данного (P_k). Соответствующие результаты приведены в *табл. 3*, из которой следует, что

$$W_{N_{p}} (P_{J} > P_{k}) \simeq W_{1}^{N_{p}} (P_{J} > P_{k}).$$
 /5/

\$3. СРЕДНИЕ ХАРАКТЕРИСТИКИ
π⁻¹²C - ВЗАИМОДЕЙСТВИЙ
С ОДНИМ И БОЛЕЕ ПРОТОНАМИ,
ИСПУЩЕННЫМИ "НАЗАД"

Экспериментальная информация о свойствах вторичных заряженных частиц в π^{-12} С -взаимодействиях, сопровождающихся испусканием, по крайней мере, одного протона назад, приведена в *таблицах* 4 ÷ 6. Это средние множественности заряженных π -мезонов ($\bar{n}_{\pi^{\pm}}$) - *табл.* 4, в том числе для событий с разным числом идентифицированных протонов / с обрезанием по импульсу испущенного назад протона/ - *табл.* 5; средние

Таблица 3

Вероятности обнаружения событий типа /1/, имеющих протон "назад" с импульсом $P_{_{\rm I\!I}} \geq P_{_{\rm I\!k}}$.

$\frac{P_{K}}{(\Gamma_{2}B/c)}$	₩ ₁ (%) ¹	W 2 (%) ²	W 3 (%)	₩4 (%)
0,1	14,9+0,4	2,8 <u>+</u> 0,2	0,32 <u>+</u> 0,06	0,01 <u>+</u> 0,01
0,2	11,9 <u>+</u> 0,4	1,5 <u>+</u> 0,1	0,16 <u>+</u> 0,04	-
0,3	7,3 <u>+</u> 0,4	0,46 <u>+</u> 0,07	0,01 <u>+</u> 0,01	-
0,4	3,1 <u>+</u> 0,2	0,02 <u>+</u> 0,02	-	-
0,5	1,1 <u>+</u> 0,1	-	-	-
0,6	0,48 <u>+</u> 0,07	-	-	-
0,7	0,20 <u>+</u> 0,06	-	-	-
0,8	0,08 <u>+</u> 0,03	-	-	-
0,9	0,05 <u>+</u> 0,02	-	-	-

۴.,

P

Таблица 4

Средние характеристики заряженных π -мезонов в событиях, имеющих, по крайней мере, один протон, испущенный "назад" $(\pi^- C)_B$.

	(л ⁻ С) _В	$(\pi^- C)_B / (\pi^- C)_{tot}$
\bar{n}_{π^+}	3,61 <u>+</u> 0,05	(0,95 <u>+</u> 0,02)
\bar{n}_{π} –	3,60 <u>+</u> 0,04	(1,01 <u>+</u> 0,01)
\overline{p}_{π^+}	2,46 <u>+</u> 0,04	(1,00 <u>+</u> 0,02)
p _{<i>n</i>} -	4,34 <u>+</u> 0,11	(1,03 <u>+</u> 0,03)
¯Ρ _{! π} +	0,348 <u>+</u> 0,004	(1,00 <u>+</u> 0,01)
$\overline{\mathbf{p}}_{\perp \pi}$ –	0,354 <u>+</u> 0,004	(0,99 <u>+</u> 0,01)

^{*} Отметим, что для протонов, испущенных "вперед", такого вывода сделать нельзя, т.к. для них не получается простого соотношения типа /4/.

Таблица 5

Р _k (ГэВ/с)	Np	\bar{n}_{π^+}	π _π -
0.3	1	3,58 <u>+</u> 0,08	3,62 <u>+</u> 0,07
0,3	2	3,78 <u>+</u> 0,30	3, 62 <u>+</u> 0,25
0,4	1	3,69 <u>+</u> 0,13	3,73 <u>+</u> 0,11
0,5	1	3 ,79 <u>+</u> 0,20	3,86 <u>+</u> 0,17

Средние множественности π^{\pm} -мезонов в событиях с одним или двумя протонами "назад" (N_p), имеющих импульс $P_{\pi} \ge P_k$.

Таблица 6

Средние характеристики протонов в событиях с испусканием, по крайней мере, одного протона назад.

	n _p	₽́р(ГэВ/с)	Р <u>́</u> (ГэВ/с)
Bce	2,13 <u>+</u> 0,03	0,312 <u>+</u> 0,002	0,242 <u>+</u> 0,002
протоны	(1,46 <u>+</u> 0,03)	(0,97 <u>+</u> 0,01)	(1,00 <u>+</u> 0,001)
Протоны ″назад″	0,22 <u>+</u> 0,01	0,285 <u>+</u> 0,003	0,240 <u>+</u> 0,003

импульсы $(\bar{P}_{\pi^{\pm}})$ и средние перпендикулярные импульсы $(\bar{P}_{\pm^{\pi^{\pm}}})$ - *табл.* 4, а также соответствующие характеристики для идентифицированных протонов - *табл.* 6. В *таблицах* 4 и 6 в скобках даны отношения указанных величин к соответствующим значениям для всех π^{-12} С -взаимодействий.

Из приведенных данных следует:

1. Средние характеристики заряженных π -мезонов в событиях с протоном "назад" такие же, как и во всех π^{-12} С-взаимодействиях.

2. Не наблюдается существенной зависимости средних множественностей π^{\pm} -мезонов от числа испущенных "назад" протонов и их импульсов.

3. Средние характеристики протонов в событиях с протоном "назад" и во всех π^{-12} С -взаимодействиях не отличаются друг от друга, за исключением средних множественностей протонов.

§4. ИНКЛЮЗИВНЫЕ СПЕКТРЫ ПРОТОНОВ

С использованием "весов" /3/ были получены распределения

величин $\frac{E}{P^2} \frac{\Delta N}{\Delta P}$ /здесь Е и Р - соответственно полная

энергия и импульс протона в лабораторной системе координат/ для протонов с Р от 14О до 620 *МэВ/с*. Эти распределения были пересчитаны в структурные функции:

$$f(P^2) = \frac{1}{\sigma_{in}} \frac{E}{P^2} \frac{d^2\sigma}{dP d\Omega}$$
 /6/

при помощи коэффициента

$$\dot{K} = \frac{1}{\Delta P N_{R3}} \Delta \Omega_{i}$$
 /7/

где N_{B3} - полное число рассматриваемых взаимодействий, ΔΩ, - телесный угол.

8

9

В качестве примеров на *рис.* 1 приведены структурные функции для протонов, испущенных "назад" $/\theta_{\pi} \ge 90^{\circ}/$ и "вперед" $/\theta_{\pi} < 90^{\circ}/$ из π^{-12} С -взаимодействий, вместе со структурной функцией для протонов из π^{-} р-взаимодействий; на *рис.* $2\div 5$ - для π^{-12} С-и π^{-} р-взаимодействий с разбиением протонов по углам испускания вместе с делением π^{-12} С взаимодействий на две группы по числу протонов /с N_p=1 и N_p > 2/.

Полученные распределения аппроксимировались одной или суммой двух экспонент в зависимости от условий достижения наилучшей аппроксимации. Полученные результаты для параметров наклона B_1, B_2 и B_3 в выражениях $f_1(P^2) = A_1 \exp(-B_1 p^2)$ и $f_2(P^2) = A_2 \exp(-B_2 P^2) + A_3 \exp(-B_3 P^2)$ приводятся в табл. 7,8 вместе с соответствующими данными для $\pi^- P - \mu$ $\pi^- n$ -взаимодействий. В скобках указаны значения величин χ^2 на одну степень свободы.

Отметим ряд наиболее существенных, на наш взгляд, фактов. Как видно из табл. 7, значения параметров В для $\pi^- p - \mu \pi^- n$ взаимодействий совпадают со значениями параметра В для протонов, испущенных "вперед" из π^{-12} С -взаимодействий, в том числе и в разных интервалах "передних" углов. Таким образом, среди протонов, испущенных из π^{-12} С -взаимодействий "вперед", существует группа, которая не "чувствует" влияния ядра.

С увеличением угла испускания намечается рост величин параметров B_3 во всем интервале углов от О° до 180° как в событиях с одним испущенным протоном / $N_p = 1/$, так и в событиях с $N_p \ge 2$. Причем, в событиях с $N_p = 1$ и $N_p \ge 2$ эти параметры оказываются одинаковыми по величине.

Параметры B_2 для протонов, испущенных "вперед" и "назад" в пределах ошибок одинаковы и не зависят от множественности протонов. По-видимому, это связано с большим вкладом испарительных протонов в "крутой" части спектров. Последнее подтверждается характером угловых распределений протонов с $P < O,2 \ \Gamma 3B/c$ и $P \ge O,2 \ \Gamma 3B/c$ /см. рис. 6/. Протоны первой группы оказываются более изотропными.

Рис.1. Распределения $f(P^2)$ для протонов, испущенных из $\pi^{-12}C - u \pi^- p$ -взаимодействий.

Рис.2. Распределение $f(P^2)$ для протонов, испущенных из $\pi^{-12}C$ - взаимодействий в интервалы углов $O^{\circ} \leq \theta_{\Lambda} < 3O^{\circ}$; $3O^{\circ} \leq \theta_{\Lambda} < 6O^{\circ}$; $6O^{\circ} \leq \theta_{\Lambda} < 9O^{\circ}$.

11

Рис.3. Распределения f(P²) для протонов, испущенных из π^{-12} С - взаимодействий с $N_p = I$ и $N_p \ge 2$ в интервалы углов 0° $\le \theta_{_{\rm J}} < 30^\circ$; 30° $\le \theta_{_{\rm J}} < 60^\circ$; 60° $\le \theta_{_{\rm J}} < 90^\circ$.

Рис.4. Распределение $f(P^2)$ для протонов, испущенных из π^{-12} С - взаимодействий в интервалы углов $90^\circ \le \theta_{\pi} \le 120^\circ$; $120^\circ \le \theta_{\pi} < 150^\circ$; $150^\circ \le \theta_{\pi} < 180^\circ$.

Рис.5. Распределения f(P²) для протонов, испущенных из π^{-12} С -взаимодействий с N =I и N ≥ 2 в интервалы углов 90°< $\theta_{\pi} < 120^{\circ}; 120^{\circ}; \theta_{\pi} < 150^{\circ}; p$ 150° $\leq \theta_{\pi} < p$ 180°.

Рис.6. Угловые распределения промонов, испущенных из π^{-12} С - взаимодействий.

13

IIa	раметр	ы наклона	для протоно	в, испущеннь	ах "вперед".
Тип взаи-	Пара-	Интервал	углов испус	кания прот	онов
модей- ствий	накло- на (ГэВ/с	0°÷30°) ²	30°÷60°	60° ÷ 90°	0°÷90°
π ⁻ p	В ₁	4,4 <u>+</u> 0,6 (0,79)	7,4 <u>+</u> 0,5 (1,05)	12,1 <u>+</u> 0,5 (1,77)	8,7 <u>+</u> 0,3 (1,61)
<i>π</i> ⁻ n	В ₁	-	-	-	7,9 <u>+</u> 12 (1,65)
π- 12 C	B 2	-	73,4 <u>+</u> 56,0	61,9 <u>+</u> 28,5	38,9 <u>+</u> 8,2
N _p = 1	В 3		11,1 <u>+0</u> ,7 (1,87)	15,2 <u>+</u> 0,8 (1,59)	8,8 <u>+</u> 0,7 (1,35)
$\pi - 12C$	B ₂	32,0 <u>+</u> 349,4	34,4<u>+</u>7,6	40,1 <u>+</u> 7,9	35,7 <u>+</u> 4,8
$N_p \geq 2$	В3	8,4 <u>+</u> 1,5 (1,13)	8,8 <u>+</u> 1,1 (1,07)	11,7 <u>+</u> 1,1 (1,54)	8,7 <u>+</u> 0,6 (1,40)
π^{-12} C	В ₂	17,7 <u>+</u> 29,0	36,6 <u>+</u> 6,3	46,2 <u>+</u> 9,9	37,4 <u>+</u> 4,7
Bce	B ₃	6,1 <u>+</u> 2,4 (0,86)	8,1 <u>+</u> 0,8 (1,17)	12,8 <u>+</u> 0,7 (2,60)	9,0 <u>+</u> 0,4 (1,35)

Таблица 7

ЗАКЛЮЧЕНИЕ

В работе на основе анализа ≈ 20000 взаимодействий π -мезонов в пропане выделены π^{-12} С -взаимодействия /~5000 случаев/, сопровождающиеся испусканием, по крайней мере, одного протона. Определена вероятность таких взаимодействий, в том числе и с испусканием протонов в переднюю и заднюю полусферы лабораторной системы координат. Соотношения между вероятностями испускания разного числа протонов в заднюю полусферу показывают, что эти процессы независимы.

Получены средние характеристики заряженных π -мезонов, которые оказались такими же, как и во всех π^{-12} С-взаимодействиях.

Таблица 8

Параметры	наклона	для	протонов.	испушенных	"назал'
				попущенных	пазад

Тип взаимо-	Пара- метр	Интер	овал углов	испускания г	потонов
действий	накло- на (ГэВ/с)	-2 90° ÷ 120°	120° ÷150°	150°÷180°	90° ÷180°
$\pi^{-12}C$	B ₂	23,6 <u>+</u> 5,1	100,7 <u>+</u> 70,4	_	44,9 <u>+</u> 15,9
N _p =1	B 3	5,9 <u>+</u> 8,4 (1,42)	19,7 <u>+</u> 2,9 (0,47)	-	15,0 <u>+</u> 2,4 (1,55)
$\pi^{-12}C$	B ₂	72,6 <u>+</u> 47,1	86,8 <u>+</u> 53,1	48,7 <u>+</u> 17,1	59,0 <u>+</u> 16,5
N _p ≥ 2	B ₃	15,7 <u>+</u> 1,1 (1,27)	20,7 <u>+</u> 1,9 (0,71)	10,9 <u>+</u> 5,9 (0,70)	14,9 <u>+</u> 1,1 (0,99)
$\pi^{-12}C$	B ₂	59,0 <u>+</u> 27,0	84,6 <u>+</u> 28,4	36,4 <u>+</u> 9,0	57,2 <u>+</u> 12,2
Bce	B_3	15,0 <u>+</u> 0,9 (1,37)	18,0 <u>+</u> 1,6 (0,93)	8,7 <u>+</u> 9,4 (0,64)	14,4 <u>+</u> 0,8 (1,32)

Изучены структурные функции для протонов, вылетающих под различными углами, в том числе и для событий с разным числом этих протонов. Аппроксимация этих функций экспоненциальными зависимостями показала, что как в π^{-12} С, так и в π^{-} р-взаимодействиях существует группа протонов, обладающих одинаковыми свойствами.

Параметры наклонов экспонент для высокоэнергичной части спектров растут с увеличением угла испускания протонов.

Авторы благодарны коллективу сотрудничества по обработке снимков с двухметровой пропановой камеры ОИЯИ за обсуждение и помощь в получении экспериментального материала.

ЛИТЕРАТУРА

Абдурахимов А.У. и др. Phys.Lett., 1972, 39В, p.571.
ЯФ, 1972, 16, с. 989; 1973, 18, с. 1251; 1974, 20, с. 384.
Ангелов Н. и др. ЯФ, 1976, 24, с. 356; 1976, 24, с. 732; 1977, 25, с. 350; 1977, 25, с. 1009; 1977, 25, с. 1013;

1977, 26, с. 1029; 1978, 27, с. 190; 1978, 27, с. 554; 1978, 27, с. 675; 1978, 28, с. 684; 1978, 28, с. 688. Аношин А.И. и др. ЯФ, 1978, 27, с. 1001; 1978, 27, с. 1240. ОИЯИ, 1-11737, Дубна, 1978.

- 2. Азимов С.А. и др. ЯФ, 1975, 22, с. 750; 1976, 23, с. 987. Ангелов Н. и др. ЯФ, 1975, 22, с. 1026.
- 3. Ангелов Н. и др. ОИЯИ, Р1-11951, Дубна, 1978.

Рукопись поступила в издательский отдел 20 декабря 1978 года.