СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

1 - 12006

19/11/79

Я.Антош, А.С.Курилин, В.С.Румянцев

947 2-79

C346,46

A-727

annann 18 mill unsetter

моделирование АССОЦИАТИВНОЙ МНОЖЕСТВЕННОСТИ В РЕАКЦИИ *π*⁻ р → *π*^o + X ПРИ 5 ГЭВ/С

1 - 12006

Я.Антош, А.С.Курилин,* В.С.Румянцев*

моделирование АССОЦИАТИВНОЙ МНОЖЕСТВЕННОСТИ В РЕАКЦИИ 77 гр→77°+ Х ПРИ 5 ГЭВ/С

MARGENESSIA INSTRUCT ABOPREEX SPECIAL DOMESTIC 5%5 AHOTEKA

* Институт физики АН БССР, Минск.

Антош Я., Курилин А.С., Румянцев В.С.

Моделярование ассоциативной множественности в реакции $\pi^- p \to \pi^{\circ} + x$ при 5 ГэВ/с

На основе получейных ранее парциальных сечений тр-взаимодействия при 5 ГэВ/с моделяруется инклюзивная реакция тр → т°+х как сумма эксклюзивных каналов. События в отдельном канале распределены пропорционально фазовому объему. Показано, что характерное поведение параметров распределения ассоциативной множественности как функции недостающей массы к т°~мезону в основном обусловлено законом сохранения энергия-импульса.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследования. Дубна 1978

Antoš J., Kurilin A.S., Rumyantsev V.S.

1 - 12006

Modelling of the Associated Multiplicity in the Reaction $\pi^- p + \pi^0 + x$ at 5 GeV/c

On the basis of the formerly obtained partical cross sections of π^-p reactions at 5 GeV/c the inclusive reaction $\pi^-p \rightarrow \pi^0 + \mathbf{x}$ is modelled as a sum exclusive channels. Events in the definite exclusive channel are distributed proportionally to the phase space. The characteristic of the parameters of the distributionassociated multiplicity as a function of the missing mass to the π^0 -meson is mainly due to energy-momentum conservation.

The invetsigation has been performed at the Laboratory of Nuclear Problems, JINR,

Communication of the Joint Institute for Nuclear Research. Dubna 1978

С 1978 Объединенный институт идерных исследований Дубна

В предыдущей работе^{/1/}были представлены результаты исследования ассоциативной множественности заряженных частиц системы X в реакции

$$\pi p \rightarrow \pi^{\circ} + X$$
 при 5 $\Gamma \partial B/c$

в зависимости от квадрата недостающей массы M_x^2 к π° -мезону /квадрат эффективной массы системы X /. При этом наблюдались закономерности, обнаруженные ранее при более высоких энергиях во взаимодействиях $\pi^{\pm} p/2-5/$, K[±] p⁶,7,8/ , pp^{9-11/}. Средняя ассоциативная множественность заряженных частиц $\,<\,n$ (M $_{v}^{\,2}$) > * монотонно растет с М² так же, как полная средняя множественность заряженных частиц <n(s)> с квадратом полной энергии в в системе центра инерции. Для области $M_x^2 / s_0 \le 0,5$ величины $\langle n(M_x^2) \rangle$ и $\langle n(s) \rangle$ при $M_x^2 = s$ совпадают в пределах ошибок, причем < n(s) >находится систематически ниже $< n (M_x^2) > .$ Для $M_x^2 / s_0 > 0,5$ величина $< n (M_x^2) > .$ как функция M_x^2 растет быстрее, чем <n(s)> как функция s /6,7/. Этот факт объяснялся переходом выделенной частицы /в нашем из областей фрагментации в случае π° -мезона/ центральную область и связывался с изменением механизма образования частиц /6,7,1/. Ни в одной из упомянутых работ не обсуждалось влияние корреляций, обусловленных законами сохранения энергии-импульса.

* Здесь и ниже ради простоты опущена зависимость от квадрата полной энергии в с.ц.и. s₀, так как для каждой рассматриваемой реакции эта величина фиксирована.

3

Puc.1. Экспериментальные и модельные значения средней ассоциативной множественности < n (M_{X}^{2})> в зависимости от M_{Y}^{2} .

В настоящей работе представлены результаты моделирования параметров распределения ассоциативной множественности в $\pi^- p$ -взаимодействиях при 5 $\Gamma_{\mathcal{B}}B/c$. Проведено сравнение с экспериментальными данными. Целью работы является изучение влияния корреляций, обусловленных законами сохранения /кинематикой/, на поведение параметров распределения по ассоциативной множественности в реакции $\pi^- p \rightarrow \pi^{\circ} + X$ при 5 $\Gamma_{\mathcal{B}}B/c$. Анализируется зависимость от M_{χ}^2 .

Инклюзивные реакции можно моделировать суммированием смоделированных эксклюзивных каналов. Трудность представляет вопрос о пропорции, в какой отдельные каналы входят в сумму. Например, при моделировании инклюзивных процессов" π^- р"при 40 Γ_{3B}/c'^{12} , 13/ для определения этой пропорции использовались топологические сечения и данные о среднем числе родившихся *п*[°]-мезонов в каждой топологии. В таком случае результат моделирования инклюзивной реакции отражает не только кинематические или динамические свойства, которые закладывались в матричные элементы эксклюзивных каналов, а также "разумность" пропорции этих каналов.

Результаты измерения полного набора парциальных сечений в π -р-взаимодействиях при 5 Γ э $B/c^{/14/}$ позволяют довольно точно определить нужные пропорции моделируемых каналов. Для генерации событий мы использовали программу FOWL^{/15/} /ее модификацию, которая позволяет в одном запуске программы генерировать любое количество каналов и складывать их в соответствующей пропорции/. События в отдельном эксклюзивном канале распределяются пропорционально фазовому объему.

5

В ошибках модельных распределений учитывались как статистические погрешности генерирования, так и ошибки в определении парциальных сечений.

Зависимость параметров распределения ассоциативной множественности заряженных частиц от M_x^2 , полученных с помощью такой модели, будет отражать распределение по полной множественности и закон сохранения энергии-импульса.

На *рис. 1* приведены значения $<n(M_x^2)>$, модельные и экспериментальные. Видно удовлетворительное согласие между моделью и экспериментом. Нужно сказать, что изменение скорости роста $< n(M_x^2)>$ около $M_x^2 \sim 0.5 s$ на модельной крнвой хорошо видно, хотя этот факт никаким явным образом в модели не учитывал-

Рис.3. Экспериментальные и модельные значения ассоциированных нормированных моментов $\rm C^{}_2$, $\rm C^{}_3$ в зависимости от $\rm M^2_x$.

Рис.4. Экспериментальные и модельные значения в торого момента f_2^{cc} в зависимости от M_x^2 .

ся. Еще лучше это видно на *рис. 2*, где представлена корреляционная функция

$$G(M_{\mathbf{x}}^{2}) = \frac{1}{\sigma_{\text{in}}} \frac{d\sigma}{dM_{\mathbf{x}}^{2}} (\langle n(M_{\mathbf{x}}^{2}) \rangle - \langle n(s) \rangle)$$

/предложенная в работе /7/ /.

Рис. 3, 4 представляют нормированные моменты C_2 , C_3 и корреляционный момент f_2^{cc} соответственно ($C_k = \langle n^k(M_x^2) \rangle / \langle n(M_x^2) \rangle^k$, $f_c^{cc} = \langle n(M_x^2)(n(M_x^2)-1) \rangle - \langle n(M_x^2) \rangle^2$).

В пределах ошибок модельные кривые совпадают с экспериментальными, хотя между ними и наблюдается систематическая разница.

7

6

Из этого следует, что характерные черты ассоциативной множественности заряженных частиц как функции M_x^2 для реакции $\pi \bar{p} \rightarrow \pi^\circ + X$ при 5 $\Gamma \partial B/c$ имеют в основном кинематическое происхождение. Так как эти черты являются общими, очень вероятно, что они и в других реакциях отражают только кинематику.

Авторы считают своим приятным долгом поблагодарить доктора Ю.А.Будагова и доктора В.Б.Флягина за внимание к работе и полезные обсуждения.

ЛИТЕРАТУРА

- 1. Амаглобели Н.С. и др. ОИЯИ, Е1-11534, Дубна, 1978.
- 2. Журавлева Л.Н. и др. ОИЯИ, 1-10555, Дубна, 1977.
- 3. Журавлева Л.Н. ОИЯИ РІ-10643, Дубна, 1977.
- 4. Абесалашвили Л.Н. и др. ОИЯИ, 1-10566, Дубна, 1977
- 5. Stroynowski R. In: Proc. IV Int. Conf. Oxford, April, 1972.
- 6. Chliapnikov P.V. e. a. Phys.Lett., 1974, 52B, p. 375.
- 7. Ажиненко И.В. и др. ЯФ, 1977, 25, с. 585.
- 8. Babintsev V.V. e. a. In: Proc. XVIII Int.Conf. on High Energy Phys., Tbilisi, July, 1976, JINR, D1,2-10400, p. 204 (A2-36).
- 9. Whitmore J. e. a. Phys. Rev., 1975, D11, p. 3124.
- 10. Alper B. e. a. Lett.Nuovo Cim., 1974, 11, p. 173.
- 11. Дерре Ж. и др. ЯФ, 1976, 23, с.1202.
- 12. Копылов Г.И., Пенев В.Н., Шкловская А.И. ОИЯИ, P1-7696, Дубна, 1974.
- 13. Комарова С.Н. и др. ОИЯИ, 1-8501, Дубна, 1974.
- 14. Амаглобели Н.С. и др. ЯФ, 1977, 25, с.983.
- 15. James F. CERN, Report 68-15, 1968.

Рукопись поступила в издательский отдел 2 ноября 1978 года.