ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

Р.Г.Аствацатуров, В.И.Иванов, Е.Кнапик, В.А.Крамаренко, А.И.Малахов, Г.Л.Мелкумов, Б.М.Старченко, М.Н.Хачатурян

11 11 11

11945

ЭНЕРГЕТИЧЕСКАЯ РЕКОНСТРУКЦИЯ СОБЫТИЙ В МНОГОКАНАЛЬНОМ ГАММА-СПЕКТРОМЕТРЕ

1945

1 - 11945

Р.Г.Аствацатуров, В.И.Иванов, Е.Кнапик, В.А.Крамаренко, А.И.Малахов, Г.Л.Мелкумов, Б.М.Старченко, М.Н.Хачатурян

ЭНЕРГЕТИЧЕСКАЯ РЕКОНСТРУКЦИЯ СОБЫГИЙ В МНОГОКАНАЛЬНОМ ГАММА-СПЕКТРОМЕТРЕ

Направлено в "Nuclear Instruments and Methods"

Аствецатуров Р.Г. и др.

Энергетическая реконструкция событий в многоканальном гамма-спектрометре

Описывается 90-канальный черенковский гамма-спектрометр плошадью 2,3 м², который использовался при исследовании структуры дифференциального сечения реакции $\pi^- p \rightarrow \eta n$ в области переданных импульсов от t_{min} до 0,3 (ГэВ/с)². Энергетическое разрешение гаммаспектрометра, измеренное с помощью электронов в интервале от 2 до 4 ГэВ, равно $\Delta E/E = (9,2/\sqrt{E}+0,7)$ %.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Превринт Объединенного института ядерных исследований. Дубна 1978

Astvatsaturov R.G. et al.

1 - 11945

Energy Reconstruction of Events in A Multichannel Gamma-Spectrometer

A 90-channel Cherenkov gamma-spectrometer with an area of 2.3 m² is described. The spectrometer is used to study the structure of differential cross-section of the $\pi^{-}p \rightarrow \eta n$ reaction in the range of momentum transfers from t_{min} to 0.3 (GeV/c)². The energy resolution of gammaspectrometer measured by electrons in an energy range of 2-4 GeV is equal to $\Delta E/E = (9.2/\sqrt{E} + 0.7)\%$, where E is expressed in GeV.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

1. ВВЕДЕНИЕ

Черенковские счетчики полного поглощения из свинцового стекла находят все большее применение в экспериментальных исследованиях физики высоких энергий. За последнее десятилетие наметилась тенденция к построению многосекционных годоскопических систем, в которых число спектрометрических каналов доходит до нескольких сотен $^{/1-6/}$. Такие системы перекрывают большие телесные углы, позволяют с высокой точностью измерять энергии и координаты большого числа фотонов и электронов и имеют малое время задержки для осуществления энергетического отбора событий при запуске аппаратуры.

В настоящем сообщении дано описание 90-канального черенковского гамма-спектрометра /6/ и проанализированы ошибки, возникающие при измерении энергии.

Гамма-спектрометр является основным элементом 90-канального масс-спектрометра /установка "Фотон", ЛВЭ ОИЯИ/, предназначенного для поиска и исследования резонансов, распадающихся на электроны и гаммакванты /8,9/.Идентификация резонансов осуществляется с помощью анализа эффективной массы продуктов распада /гамма-квантов и электронов/ и поэтому правильная энергетическая реконструкция события является задачей первостепенной важности.

2. ОПИСАНИЕ ГАММА-СПЕКТРОМЕТРА

Схема отдельного модуля черенковского детектора представлена на *рис. 1.* Радиатор модуля изготовлен из свинцового стекла ТФ-1 в форме шестигранной призмы с диаметром вписанного цилиндра 17,5 см и толщиной 35 см /14 радиационных единиц/. Основные свойства свинцового стекла: плотность - 3,86 г/см ³, радиационная единица - 2,5 см, критическая энергия - 15 МэВ, коэффициент преломления - 1,65. При изготовлении раднаторов были предприняты меры для улучшения прозрачности свинцового стекла. Фотоумножитель крепится к раднатору при помощи клея НЕ-10 КОДАК с коэффициентом преломления 1,58, имеющим промежуточное значение между коэффициентами преломления радиатора -1,65 и стекла фотокатода ФЭУ - 1,5. Отношение площадей рабочей области фотокатода и торца радиатора для летектора равно 68%.

Рис.1. Общий вид и схема модуля черенковского гаммаспектрометра.

Для улучшения спектрометрических характеристик гамма-спектрометра используются фотоумножители типа ФЭУ-49Б с чувствительностью фотокатода больше 100 мкА/лм. Рабочий режим фотоумножителей выбирался на основании специально проведенных исследований в работе /9/

Каждый модуль обернут алюминизированным лавсаном и /для светоизоляции/ черной пластмассовой лентой. Чтобы предотвратить влияние рассеяных магнитных полей на коэффициент усиления ФЭУ, используется два пермаллоевых экрана толщиной О,5 мм. Высоковольтный делитель крепится на разъеме ФЭУ с помощью непрозрачного пенопластового кольца,к которому жестко прикреплен пермаллоевый экран. Для контроля усиления спектрометрического канала во время измерений служат три калибровочные системы: радиоактивный альфа-источник 241 Am с кристаллом NaJ(Tl) /10/, термостатируемый светодиод /11/и система относительного контроля/12/, состоящая из искрового разрядника и пластмассовых световодов, транспортирующих свет ко всем модулям одновременно.

Описанная конструкция черенковского модуля позволяет легко компоновать различные конфигурации спектрометра благодаря их конструктивной независимости и малым зазорам между отдельными модулями. Созданный черенковский гамма-спектрометр состоит из независимых и идентичных детекторов, собранных в две секции по 45 штук в каждой /puc. 2/.

Для питания фотоумножителей разработан сильноточный высоковольтный источник стабилизированного напряжения и распределители штеккерного типа с шагом 5В и диапазоном регулировки 1200В /13/.

Спектрометрическая 90-канальная измерительная аппаратура имеет чувствительность 300 пикокулон. Применена система аналогового запоминания информации с последовательным считыванием на АЦП /9 бит//14/. Электронная аппаратура выполнена в стандарте КАМАК и работает на линии с ЭВМ HP -2116В /32 к/, которая осуществляет накопление, контроль и предварительную обработку информации. Время передачи - 90х9 бит слов в ЭВМ, с использованием аналогового запоминания, равно 1,22 мс.

Рис.2. Общий вид черенковского гамма-спектрометра.

3. КАЛИБРОВКА СПЕКТРОМЕТРА

Как упоминалось выше, 90-канальный черенковский гамма-спектрометр является частью масс-спектрометра. Схема масс-спектрометра приведена на *рис. 3.* Кроме черенковского гамма-спектрометра, установка включает: а/ сцинтилляционные счетчики для мониторирования пучка заряженных частиц /С1-С3, А1-2/; б/ жидководородную мишень - (H₂) длиной О,8 *м*; В/ 32 искровые камеры с магнитострикционным съемом информации /ИК1-32/, медные конверторы /К1-6/ для регистрации гамма-квантов; г/ сцинтилляционный годоскоп из 20 элементов /СГ1-20/, расположенный между искровыми камерами и черенковским гамма-спектрометром, позволяющий увеличить эффективность запуска установки от вторичных заряженных частиц.

Рис.3. Схема расположения детекторов в эксперименте по исследованию дифференциального сечения процесса $\pi^- p \rightarrow \eta n$ при импульсе $\pi^- - 3,26 \ \Gamma \ni B/c$.

Искровые камеры, счетчики сцинтилляционного годоскопа и черенковский гамма-спектрометр, как показано на *рис. 2,3*, смонтированы симметрично относительно пучка.

Для калибровки спектрометра используются электроны, содержащиеся в виде примеси /около 1-2%/ в пучке π^{-} мезонов. Электроны выделяются в пучке отрицательных частиц пороговым газовым черенковским счетчиком $C_{\rm G}$ Разброс пучка по импульсам $\Delta p/p$ равен $\pm 1,5\%$ и учитывается при обработке результатов калибровки.

Линейность характеристики модуля черенковского гамма-спектрометра была исследована в днапазоне энергий 2-4 ГэВ. Анализ результатов калибровки показывает, что нелинейность не превышает 1%. Среднее амплитудное разрешение для 90 детекторов (FWHM) равно /9,2/ \sqrt{E} +0,7/%, где Е измеряется в ГэВ /6,15/.

Важным условием правильной реконструкции амплитуды сигнала спектрометра является долговременная стабильность аппаратуры. Рис. 4 иллюстрирует долговременную /около 100 ч/ стабильность одного из спектрометрических каналов, полученную с помощью световых импульсов, генерируемых альфа-частицами радиоизотопа

Рис.4. Долговременная стабильность спектрометрического канала спектрометра.

²⁴¹ Ат в кристалле Nal(T1). Как видно из рисунка, нестабильность спектрометрического канала не превышает $\pm 1,8\%$ и определяется восновном дрейфом коэффициента усиления ФЭУ. Среднее значение нестабильности для всех спектрометрических каналов находится на уровне $\pm 1,3\%$.

Существует ряд факторов, влияющих на амплитуду сигналов и ухудшающих энергетическое разрешение спектрометра. Среди них следует указать:

1. Наличие промежутков между модулями спектрометра.

2. Неполное перекрытие площади торца радиатора фотокатодом.

3. Зависимость амплитуды сигнала от угла падения частиц к плоскости спектрометра.

4. Энергетические потери в конверторах.

5. Неполное поглощение энергии ливня на краях годоскопа и др.

Очевидно, что при энергетической реконструкции события необходимо вводить поправки, учитывающие влияние перечисленных выше факторов.

4. ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ АМПЛИТУДЫ СИГНАЛА ОТ КООРДИНАТЫ И УГЛА ПАДЕНИЯ ЧАСТИЦ НА ПЛОСКОСТЬ СПЕКТРОМЕТРА

Зависимость амплитуды сигнала от координаты ℓ , где ℓ - расстояние между точкой входа частицы в спектрометр и центром радиатора, была исследована на пучке электронов с импульсом 3,26 ГэВ/с. Область экспонирования гамма-спектрометра определялась сцинтилляционным счетчиком размерами 2x2 см². Измерения проводились для углов падения частиц θ по отношению к оси спектрометра от О° до 6°. На *рис.* 5 представлены экспериментальные данные суммы амплитуд импульсов двух смежных спектрометров в зависимости от ℓ и θ .

Рис.5. Зависимость суммарной амплитуды сигналов от места входа электронов в спектрометр для углов падения O $^\circ$ и 6 $^\circ.$

Из рисунка видно, что минимум амплитудной кривой находится в граничной области между двумя соседними спектрометрами. Экспериментальные данные зависимости амплитудного разрешения (FWHM) спектрометра от ℓ и θ иллюстрирует *рис.* **6**.

Рис.6. Зависимость амплитудного разрешения от места входа и угла наклона электронов к плоскости спектрометра.

Для углов падения электронов от 1,5° до 6°/интервал углов регистрации гамма-квантов в эксперименте/ с ростом угла область изменения амплитуды сигнала спектрометра смещается относительно щели и становится несимметричной. Зависимость амплитуды сигнала от угла θ для центральной области радиатора и интервала углов О°-6° хорошо описывается выражением A_0 . $\cos\theta$.

Зависимость амплитуды сигнала черенковского гамма-спектрометра от координаты и угла падения частиц можно описать с помощью эмпирической формулы /2/:

$$E_{\gamma} = E' \cdot K = E' \{1 + 0.08 [1 - (2X-1)^3]\}, \qquad /1/$$

где Е_у - амплитуда сигнала, Е' - измеренная величина амплитуды сигнала, X = А_{макс}, А_{сумм} (А_{макс} - наибольшая амплитуда сигнала в спектрометре, А_{СУММ.} - сумма амплитуды сигналов группы сработавших спектрометров/, к - коэффициент коррекции.

Ошибки параметра X на *рис.* 7 обусловлены статистическими погрешностями при определении средней амплитуды в спектрометре. Среднее значение величины амплитудной коррекции равно 3,5%, ее максимальное значение, как видно из рисунка не превышает 8%. Величина амплитудного разрешения, усредненная по площади спектрометра, равна ($\Delta E/E = 16/\sqrt{E}$)%, где E - энергия в ГэВ.

Рис.7. Величина суммарной амплитуды в спектрометре в зависимости от $X = A_{MAKC} / A_{CVMM}$. Кривая проведена по формуле /1/.

На пучке электронов было исследовано также влияние на амплитуду и амплитудное разрешение спектрометров, находящихся на границе годоскопа. Было найдено, что в интервале углов падения частиц $O^{\circ} - 6^{\circ}$ и для расстояний до 3 см от края спектрометра изменение амплитуды сигнала не превышает 1,5%.

5. ПОТЕРИ ЭНЕРГИИ В КОНВЕРТОРАХ

Потери энергии в медных конверторах исследовались на пучке электронов. Экспериментальные данные представлены на *рис.* 8 и хорошо описываются эмпирической формулой

$$\Delta E_{e} = 1.8 \cdot t^{3/2} \sqrt{E_{e} - 150} , \qquad /2/$$

где ΔE_e - потери энергии / МэВ/, E_e - энергия электрона / МэВ/, t - толщина конвертора / рад.ед./. Формула согласуется с экспериментальными данными для $E_a > 150$ МэВ и t < 1,5 рад.ед.

Для гамма-квантов использовалась формула:

$$\Delta E_{\gamma} = 3.6 \left(\frac{t}{2}\right)^{3/2} \sqrt{E_{\gamma} \cdot 0.5 - 150}, \qquad /3/$$

которая была получена при следующих допущениях:

а/ гамма-кванты конвертируют на глубине 🗓

б/ конверсионные электроны имеют энергию, равную $E_{\nu}/2$.

Зависимость амплитуды сигналов и амплитудного разрешения спектрометра от толщины конвертора для электронов с импульсом 3,26 ГэВ/с иллюстрируют рис.8, 9. Кривая на рис. 8 вычислена с помощью формулы /2/.

Ошибки при восстановлении энергии возникают также из-за:

1/ ошибок в определении величины "пьедестала" электронной аппаратуры /±0,5%/;

2/ погрешностей, связанных с нелинейностью электронных устройств /±0,6%/;

3/ статистических ошибок, возникающих при определении максимумов амплитудных распределений с помощью калибровочных систем /<u>+</u>1%/ и др.

Вклад указанных выше ошибок в амплитуду и амплитудное разрешение спектрометра равен ±1,3%.

Рис.9. Амплитудное разрешение спектрометра в зависимости от толщины расположенного перед ним конвертора.

6. ЗАКЛЮЧЕНИЕ

Гамма-спектрометр в течение 1975-1977 гг. экспонировался на пучке отрицательных пионов протонного синхротрона на 10 ГэВ Объединенного института ядерных исследований с целью изучения структуры дифференциальных сечений реакций $\pi^- p \rightarrow nn$. $n \rightarrow \gamma \gamma / 17/B o \delta nac$ нуклону импульсов от t_{min} до переданных ТИ О.3 /ГэВ/с/2. Распределение по эффективной массе уу -событий с учетом поправок на угол и точку входа гамма-квантов в спектрометр /3.5%/ и потери энергии в конверторах /3.6%/ представлены на рис. 10. При построении гистограммы рис. 10 была введена дополнительная поправка /около +3%/ с целью совмещения максимума экспериментального распределения с табличной величиной массы *n*-мезона /548.8 МэВ/. Последняя поправка, возможно, обусловлена неточным учетом толшины вещества. проходимого частицами конверсионной пары, потерь энергии, приближенным характером формулы /1/ и другими причинами.

Рис.10. Распределение по эффективной массе уу - событий.

В заключение авторы считают своим приятным долгом выразить благодарность В.В.Архипову, В.И.Прохорову, С.Н.Пляшкевичу за помощь при проведении экспериментов, А.Е.Сеннеру и П.В.Мойсензу за программное обеспечение установки, В.Д.Пешехонову, А.Б.Иванову, С.П.Черненко, Е.В.Черных - за помощь в обслуживании искровой аппаратуры и электроники связи с ЭВМ.

ЛИТЕРАТУРА

- 1. Blumenfeld B.I. et al. Nucl.Instr. and Meth. 1971, 97, p. 427.
- 2. Dydak F. et al. Nucl.Instr. and Meth. 1976, 137, p. 427.
- 3. Berger Ch. et al. Nucl.Instr. and Meth. 1975,130, p.507.
- 4. Akopdjanov G. et al. Nucl.Instr. and Meth. 1977, 140, p. 441.
- 5. Barber D.P. et al. Nucl.Instr. and Meth. 1977, 145, p. 453.
- 6. Аствацатуров Р.Г. и др. Nukleonika 1974, 19.16, р. 575.
- 7. Аствацатуров Р.Г. и др. ОИЯИ, 1-9832, Дубна, 1976.
- 8. Поиск новых резонансов /проект эксперимента/. ОИЯИ, 1-9506, Дубна, 1976.
- 9. Аствацатуров Р.Г. и др. Nukleonika 20. 1975, 5, р. 483.
- 10. Heo Kyok Buy u op. III3, 1974, Nº 6, c. 163.
- 11. Басиладзе С.Г. и др. ОИЯИ, 13-8386, Дубна, 1974.
- 12. Малахов А.И., Хачатурян М.Н. ОИЯЙ, Р13-8365, Дубна, 1975.
- 13. Басиладзе С.Г. и др. ОИЯИ, 13-10283, Дубна, 1976.
- 14. Аствацатуров Р.Г. и др. ОИЯИ, 13-10282, Дубна, 1976.
- 15. Astvatsaturov R.G. et al. Nucl.Instr. and Meth. 1973, 107, p. 105.
- 16. Holder M. et al. Nucl. Instr. and Meth. 1973, 108, p. 541.
- 17. Arkhipov V.V. et al. JINR, E1-11596, Dubna, 1978.

Рукопись поступила в издательский отдел 10 октября 1978 года.