СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

дубна

15/1-79

И.В.Богуславский, И.М.Граменицкий, З.Златанов, Р.Ледницки, В.И.Рудь, Л.А.Тихонова, Т.П.Топурия, В.Д.Цинцадзе

181 2-79

ИССЛЕДОВАНИЕ РЕАКЦИИ **рр** → **р** + **X** ПРИ ИМПУЛЬСЕ 36 ГэВ/с НА СОБЫТИЯХ С ИДЕНТИФИЦИРОВАННЫМ ПРОТОНОМ

1 - 11826

И.В.Богуславский, И.М.Граменицкий, З.Златанов, Р.Ледницки, В.И.Рудь, Л.А.Тихонова, Т.П.Топурия^{*}, В.Д.Цинцадзе^{*}

ИССЛЕДОВАНИЕ РЕАКЦИИ **рр** → **р** + **Х** ПРИ ИМПУЛЬСЕ 36 ГэВ/с НА СОБЫТИЯХ С ИДЕНТИФИЦИРОВАННЫМ ПРОТОНОМ

Объединенный институт RECOMMENT BOTACROPANE **GHEIMOTEKA**

* Тбилисский государственный университет.

Богуславский И.В. и др.

1 - 11826

Исследование реакции pp - p + X при импульсе 36 ГэВ/с на событиях с идентифицированным протоном

В работе представлены результаты экспериментального исследования реакции pp \rightarrow p(медл.) + X при 36 ГэВ/с. Полученные сечения одновершинной ($\sigma_{\rm g}$ = 2,07 ±0,21 мб) и полной ($\sigma_{\rm D}$ = 4,70 ± 0,44 мб) дифракционной диссоциации не противоречат данным других экспериментов. Проведен анализ поведения ассоциативной множественности <n(M_2)> как функции недостающей массы к идентифицированному протону. Показан различный характер поведения <n(M_2)> лля дифракционных (M_2/S \leq 0,1) и недифракционных событий. В рамках двухкомпонентной модели качественно объяснено поведение отношения <n(M_2)>/D как функции M_2^2. Введением новой масштабной переменной z'=(n_ch^{-1}-a)/(<n(M_2)^2)-a), где a = -0,87, для всех значений м^2 качествение X.

Сообщение Объединенного института ядерных исследований. Дубна 1978

Boguslavsky I.V. et al.

1-11826

Investigation of the $pp \rightarrow p + X$ Reaction at 36 GeV/c on Events with an Identified Proton

The experimental results of the reaction PP + P (slow) + X at 36 GeV/c are presented. The cross-sections of single and double diffraction dissociation ($\sigma_s = 2.07 \pm 0.21 \text{ mbn}, \sigma_D = 4.70 \pm 0.44 \text{ mbn},$ respectively) were obtained which are in agreement with other data. The associative multiplicity $\langle n(M_x^2) \rangle$ as a function of the missing mass squared to the identified proton was also analyzed. A different behaviour of $\langle n(M_x^2) \rangle$ for diffraction $(M_x^2/S \leq 0.1)$ and nondiffraction events is observed. The M_x^2 dependence of the ratio $\langle n(M_x^2) \rangle$ is qualitatively explained on the basis of the two-component model.

An analogue of KNO scaling in the system X is obtained for all values of M_{x}^{2} with the help of a new scaling variable

 $z' = (n_{ch}^{-1} - a)/(\langle n(M_x^2) \rangle - a)$, where a = -0.87.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Jaint Institute for Nuclear Research. Dubna 1978

С 1978 Объединенный институт ядерных исследований Дубна

В работе представлены результаты исследования реакции

 $pp \rightarrow p(MEDJ.) + X. \tag{1}$

Экспериментальный материал получен на двухметровой жидководородной камере "Людмила" при облучении ее протонами с импульсом 35,7 ГэВ/с на ускорителе У-70 (ИФВЭ, г.Серпухов).

Медленные протоны с импульсом до 1,5 ГэВ/с идентифицировались по ионизации. Из общего числа 3.500 взаимодействий было отобрано ~ 1.300 неупругих событий типа (1).

Вопросы, связанные с выделением упругого канала, введением поправок на потери неупругих двухлучевых событий с коротким следом протона отдачи рассмотрены в работе /1/.

1. Хорошо известно (см., например, $^{/2/}$), что в распределении по квадрату недостающей массы M_x^2 к медленному протону имеется четкий пик в районе малых M_x^2 , который может быть объяснен вкладом дифракционных процессов. При нашей энергии в эту область дают вклад только двух- и четырехлучевые события. При определении сечения дифракционной диссоциации наиболее сложным является вопрос оценки фона недифракционных процессов. Для учета влияния этого фона обычно используется метод экстраполяции распределения по M_x^2 из области больших M_x^2 в дифракционную область. При этом, как правило, по экспериментальным точкам проводится

3

от руки кривая, интерполирующая распределения по M_x^2 в недифракционной области, которая экстраполируется в область малых значений M_x^2 . Таким образом было определено сечение одновершинной дифракционной диссоциации σ_s для $M_x^2/S \leq 0,1$ (см. рис. 2).

Рис. 1. Распределение по квадрату недостающей массы к медленному протону. Сплошная линия – интерполяция экспериментальных данных в области больших M_{π}^2 .

Далее, используя простое выражение, основанное на факторизации вершин /2/, можно получить полное сечение дифракционной диссоциации:

$$\sigma_{\rm D} = 2\sigma_{\rm s} + \sigma_{\rm s}^2 / \sigma_{\rm el} , \qquad (2)$$

где $\sigma_{\rm el}$ - упругое сечение.

Экспериментальные данные о величинах о и о р, полученные описанным способом в широком интервале импульсов для pp -взаимодействий, приведены в табл.1.

Таблица 1

Р _{лаб.} (ГэВ/с)	σ _s (мб)	σ _D (мб)	
19 28,5 35,7 102 205 303	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$-$ $-$ $4,70 \pm 0,44$ $5,89 \pm 0,80$ $5,69 \pm 0,40$ $5,00 \pm 0,60$	
405	2,09 ± 0,25	4,64 ± 0,60	

2. Рассмотрим поведение средней множественности заряженных частиц $< n(M_x^2) >$ системы X как функции недостающей массы к медленному протону. Величина $< n(M_x^2) >$ определяется как

$$\langle n(M_{x}^{2}) \rangle = \frac{\sum (n-1) d\sigma_{n} / dM_{x}^{2}}{d\sigma / dM_{x}^{2}},$$
 (3)

где $d\sigma_n/dM_x^2$ и $d\sigma/dM_x^2$ – полуинклюзивное и инклюзивное дифференциальные сечения в реакции (1) соответственно.

На рис. 2 приведена зависимость $< n(M_x^2) >$ от M_x^2 . В интервале масс $6 < M_x^2 < 36$ ГэВ² была проведена аппроксимация наших экспериментальных данных выраже-

Рис. 2. Средняя множественность $<n(M_{\chi}^2)>$ системы X, ассоциированной с медленным протоном, в зависимости от M_x^2 . Для сравнения приведены данные при 19 ГэВ/с (см./3/) и 69 ГэВ/с (см./4/). Сплошная линия - результат аппроксимации данных при 36 ГэВ/с в интервале $6 < M_{x}^{2} < 36$ ГэВ² зависимостью (4).

нием

$$< n(M_{x}^{2}) > = a_{1} + b_{1} ln(M_{x}^{2}/M_{0}^{2})$$
 (4)

(сплошная линия, $M_0^2 = 1 \ \Gamma \ni B^2$). В области дифракции ($M_x^2 \le 6 \ \Gamma \ni B^2$) использовалась зависимость

$$=a_{2}+b_{2}\sqrt{M_{x}^{2}}.$$
 (5)

Логарифмический рост ассоциативной множественности с M_x^2 предсказывается моделями мультипериферического типа (см., например, $^{/5/}$), а линейный – моделями с об-разованием кластеров типа "NOVA" $^{/6/}$.

Результаты аппроксимации совместно с данными. полученными в FNALe, приведены в табл. 2.

3. Зависимость отношения
$$< n(M_x^2) > /D$$
 от M_x^2 , где

$$D = (< n^{2} (M_{x}^{2}) > - < n (M_{x}^{2}) > {}^{2})^{\frac{1}{2}}, \qquad (6)$$

приведена на рис. 3. Характерной особенностью этой зависимости является намечающийся минимум в области масс 2÷5 ГэВ². Это явление можно объяснить, предположив, например, что в области дифракции проявляются два механизма взаимодействия. В этом случае дисперсию D можно записать в виде

$$D = (\beta_1 D_1^2 + \beta_2 D_2^2 + \beta_1 \beta_2 (< n_1(M_x^2) > - < n_2(M_x^2) >)^2)^{\frac{1}{2}}.$$
 (7)

Индексы 1 и 2 относятся к двум различным видам механизмов взаимодействия, осуществляющихся с вероятностью β_i и характеризующихся различными значения-

Рис. 3. Зависимость отношения $< n(M_x^2) > /D$ от M_x^2 для реакции (1).

ми дисперсии D_i . Величины β_i удовлетворяют условию нормировки $\beta_1 + \beta_2 = 1$. При $M_x^2 \approx 1$ ГэВ² $D = D_1$, при $M_x^2 > > 6$ ГэВ² $D = D_2$. В промежуточной области существенным становится "интерференционный" член, что приводит к увеличению дисперсии и, следовательно, минимуму величины $< n(M_x^2) > / D$. Первый механизм можно отождествить с дифракцией, второй – с процессами недифракционного типа.

4. Исследуем возможность выполнения аналога KNOскейлинга (см. $^{7/}$) в системе X. В табл. 3 приведены нормированные ассоциативные моменты $C_q = \frac{\langle n(M_x^2)^q \rangle}{\langle n(M_x^2) \rangle^q},$

Интервал М ² (ГэВ ²)	$\langle n(M_{\kappa}^{2}) \rangle$	C2	c,	
0 - 6	I,53I±0,072	I,398±0,032	2,577±0,168	5,607±0,728
6 – I2	2,7I4±0,I46	1,251±0,039	I,800±0,I43	2,900 ±0 ,472
I2 - 20	3,045±0,119	I,225±0,028	I,7I0±0,I04	0,633±0,392
20 - 26	3,266±0,162	I,268±0,032	I,862±0,120	3,020±0,283
26 - 34	3,723±0,158	I,243±0,029	I,763±0,107	2,729±0,228

величины которых различны для области дифракции $(0 < M^2 \le 6 \ \Gamma \ni B^2)$ и для остальной области. Зависимость моментов C_q от M^2_x приводит к невыполнению ассоциативного KNO -скейлинга, и функция

$$\Psi(z, M_{x}^{2}) = \frac{\langle n(M_{x}^{2}) \rangle d\sigma_{n} / dM_{x}^{2}}{d\sigma / dM_{x}^{2}}, \qquad (8)$$

где $z=(n_{ch}-1)/{<}\,n(\,M_{\,x}^{\,2})>$, существенно зависит от $M_{\,x}^{\,2}.$ Введя новую переменную (см. $^{/8/}$)

$$z' = (n_{ch} - 1 - \alpha) / (\langle n(M_{x}^{2}) \rangle - \alpha),$$
 (9)

можно добиться независимости функции Ψ от M_x^2 . Величина α определяется из условия

$$\left[(\langle n(M_{x}^{2}) \rangle - \alpha) / D \right]_{d} = \left[(\langle n(M_{x}^{2}) \rangle - \alpha) / D \right]_{nd}, \quad (10)$$

где d означает, что соответствующие величины вычисляются в интервале $0 < M_x^2 \le 6 \ \Gamma \ni B^2$, nd – в интервале $6 < M_x^2 < 34 \ \Gamma \ni B^2$, при этом a = -0.87.

8

9

На рис. 4 приведено распределение модифицированной ассоциативной множественности $\Psi(z')$ в событиях с медленным протоном в интервале $0 < M \frac{2}{x} < 34$ ГэВ. Сплошная линия – результат аппроксимации экспериментальных данных выражением

$$\Psi(z') = (0,068 \pm 0,024) \exp[(7,779 \pm 1,065) z' - (11) - (5,089 \pm 1,041) z'^{2} + (0,672 \pm 0,323) z'^{3}],$$

 $\chi^2/\text{ND} = 17/15$.

Рис. 4. Распределение $\Psi(z') = \frac{(\langle n(M_x^2) \rangle - a) d\sigma_n / dM_x^2}{d\sigma / dM^2}$, где $z' = (n_{ch} - 1 - a) / (\langle n(M_x^2) \rangle - a), a = -0.87$, в интервале масс $0 < M_x^2 < 34$ ГэВ². Сплошная линия – результат аппроксимации экспериментальных данных выражением (11). На основании полученных результатов можно сделать следующие выводы.

1. Сечение дифракционной диссоциации, определенное в этом эксперименте, не противоречит данным, полученным при других энергиях.

2. Поведение величины $< n(M_x^2) > в$ области дифракции согласуется с предсказаниями модели "NOVA" и не зависит, в широких пределах, от импульса налетаюшего протона; в области $6 < M_x^2 < 36$ ГэВ² $< n(M_x^2) >$ логарифмически зависит от M_x^2 , что согласуется с моделями мультипериферического типа.

3. Поведение величины < n(M²_x)>/D как функции M²_x может быть качественно объяснено в рамках двухкомпонентной модели.

4. Введение новой масштабной переменной $z' = \frac{(n_{ch} - 1 - \alpha)}{(n(M_{\tilde{x}}^2) > -\alpha)}$ где $\alpha = -0.87$, для всех значений $M_{\tilde{x}}^2$ позволяет получить аналог KNO-скейлинга в системе X.

Авторы выражают свою благодарность персоналу, обеспечивающему работу ускорителя У-70 ИФВЭ и канала № 9, техническому персоналу установки "Людмила", а также лаборантам ЛВЭ и ЛВТА за помощь в работе. Авторам приятно также поблагодарить Н.К.Куциди за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Богуславский И.В. и др. ОИЯИ, 1-10134, Дубна, 1976.
- 2. Whitmore S. Phys. Rep., 1974, 10C, p. 274.
- 3. Boggild H. e.a. Nucl. Phys., 1974, B72, p. 221.
- 4. Биалковская Х. и др. Препринт ИФВЭ, М 11, Серпухов, 1975.
- 5. Chan C.F. Phys. Rev., 1973, D8, p.179.
- 6. Berger E.L., Jacob M., Slansky R. Phys. Rev., 1972, D6, p.2580.
- 7. Barshay S. e.a. Phys. Rev. Lett., 1974, 32, p.1390.
- 8. Clifford T.S. e.a. Phys.Rev., Lett., 1974, 33, p. 1239.

Рукопись поступила в издательский отдел 9 августа 1978 года.

11