ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

A-697

9/4-78 1 - 11737

А.И.Аношин, В.Б.Любимов, М.И.Соловьев, М.Сулейманов, Д.Тувдендорж

БЫСТРАЯ И МЕДЛЕННАЯ КОМПОНЕНТЫ ДЛЯ ЧАСТИЦ, ОБРАЗОВАННЫХ В **л⁻¹²С** ВЗАИМОДЕЙСТВИЯХ ПРИ 40 ГэВ/с. РАСПРЕДЕЛЕНИЯ ПО БЫСТРОТАМ

1 - 11737

А.И.Аношин, В.Б.Любимов, М.И.Соловьев, М.Сулейманов, Д.Тувдендорж

БЫСТРАЯ И МЕДЛЕННАЯ КОМПОНЕНТЫ ДЛЯ ЧАСТИЦ, ОБРАЗОВАННЫХ В **π⁻¹²C**-ВЗАИМОДЕЙСТВИЯХ ПРИ 40 ГэВ/с. РАСПРЕДЕЛЕНИЯ ПО БЫСТРОТАМ

Направлено в ЯФ

объединонный кнатитут перь на последования БИБЛИСТЕКА

¹ Научно-исследовательский институт ядерной физики МГУ, Москва.

² Институт физики АН АЗССР, Баку.

Аношин А.И. и др.

1 - 11737

Быстрая и медленная компоненты для частиц, образованных в π^{-12} С-взаимодействиях при 40 ГэВ/с. Распределения по быстротам

Получена экспериментальная информация о распределении по быстротам π^{\pm} -мезонов, образованных в π^{-12} С-взаимодействиях с углом вылета в лабораторной системе координат $\theta > 8^{\circ}$ и $\theta < 8^{\circ}$. В интервале быстрот от $\tilde{-}0.9$ до $\tilde{-}2.65$ спектры π^{\pm} -мезонов совпадают со спектрами π^{-} -мезонов, причем этот интервал увеличивается с ростом числа образовавшихся в π^{-12} С-взаимодействиях медленных протонов.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

Anoshin A.I. et al.

1 - 11737

Fast and Slow Component for Particles Produced in π^{-12} C-Interactions at 40 GeV/c. The Rapidity Distribution

The rapidity distribution of π^{\pm} -mesons produced in π^{-12} C-interactions is obtained for the laboratory angle intervals $\theta > 8^{\circ}$ and $\theta \le 8^{\circ}$. The spectra of π^{+} and π^{-} coincide in the rapidity region 0.9-2.65 and this region increases when the number of slow protons produced in π^{-12} C-collision is increasing.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

© 1978 Объединенный институт ядерных исследований Дубна

§1. ВВЕДЕНИЕ

В основных теоретических подходах, используемых для понимания экспериментальной информации по адронядерным взаимодействиям, считается, что в результате столкновения высокоэнергичного адрона с ядром возникают две компоненты: проникающая быстрая компонента, уносящая большую часть энергии и дающая малую множественность, и более медленная компонента, дающая основную долю рождающихся частиц /см. по этому поводу /1/ /.

В настоящей работе этот подход использован для изучения распределений по быстротам π^{\pm} -мезонов из π^{-12} С-взанмодействий при Р $_{\pi^{-}}$ = 40 ГэВ/с. События отбирались на снимках с двухметровой пропановой камеры ОИЯИ, облученной π^{-} -мезонами с импульсом 40 ГэВ/с. Проведено сравнение с результатами для π^{-} р -взаимодействий, найденных на этих же снимках. Методика выделения и классификации событий, введения соответствующих поправок на квазинуклонные взаимодействия изложена в наших предыдущих работах /2/. Для анализа было использовано ~10000 π^{-} р- и ~8000 π^{-12} Свзаимодействий.

§2. КРИТЕРИЙ ВЫДЕЛЕНИЯ БЫСТРОЙ И МЕДЛЕННОЙ КОМПОНЕНТ

Вопрос выделения быстрой и медленной компонент среди вторичных частиц является в достаточной мере

3

условным. Мы использовали для этого часто применяемый критерий по углу вылета частиц. Частицы, вылетающие под углом θ в лабораторной системе координат /л.с.к./, большим некоторого граничного угла $\theta_{\Gamma p}$, были отнесены к медленной компоненте, все остальные - к быстрой. В качестве $\theta_{\Gamma p}$ взято значение 8°. Для π р-взаимодействий это значение соответствует т.н. половинному углу, т.е. углу, который делит число всех вторичных частиц пополам.

Отметим, что в подходе, развиваемом в гидродинамической модели и в партонном варианте мультипериферической модели, используется такой же угол для деления процесса взаимодействия частиц с ядрами на два феномена, проявляющихся в продольном и поперечном направлениях /см. обзор /3//.

Будем называть частицы с углом вылета $\theta > \theta_{\Gamma P}$ частицами "внешнего" конуса, а частицы с $\theta \le \theta_{\Gamma P}$ -частицами "внутреннего" конуса.

§3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Распределения всех заряженных п-мезонов по быстротам в двух указанных выше конусах /вместе с суммарным распределением/ показаны на рис. 1. Распределения нормированы на полное неупругое сечение взаимодействия л - мезонов с ядром углерода. Как видно, спектры п-мезонов "внешнего" и "внутреннего" конусов имеют максимумы соответственно при у $\stackrel{\sim}{=} 2$ и у $\stackrel{\sim}{=} 3$, в области быстрот ~0,9÷2,65 спектры перекрываются с точкой пересечения при у=2,55. Суммарное распределение в этом интервале быстрот имеет широкий максимум. В нашем подходе изучение распределений по быстротам в этой области представляет особый интерес, т.к. именно здесь распределения для п-мезонов "внешнего" и "внутреннего" конусов отличаются от распределения по быстротам всех п-мезонов.

Рис. 1. Распределение по быстротам всех заряженных π - мезонов / • - π - мезоны "внутреннего конуса, ▲ π - мезоны "внешнего" конуса, ■ - суммарное распределение/. По этим точкам от руки проведены соответственно пунктирная, штрих-пунктирная и сплошная кривые.

На рис. 2 и 3 приведены распределения по быстротам π^+ – и π^- мезонов из π^- ¹²С – и π^- р – взаимодействий вместе с величиной отношения

$$R = \left(\frac{1}{\sigma} \frac{d\sigma}{dy}\right)_{\pi^{-12}C} / \left(\frac{1}{\sigma} \frac{d\sigma}{dy}\right)_{\pi^{-p}} . / 1/$$

Спектры π -мезонов для взаимодействий обоих типов по форме близки друг к другу, но различаются по абсолютной величине. Эта разница для π^{\pm} -мезонов "внешнего" конуса уменьшается с ростом у от \simeq 50% до \simeq 20%, а для π^{\pm} -мезонов "внутреннего" конуса в пределах экспериментальных ошибок не зависит от у и остается на уровне /10 \div 15/%.

٢,

Рис. 2. Распределение по быстротам π^+ - мезонов из π − 12 С - / • - "внешний" конус. А - "внутренний" конус/ и п – р – взаимодействий / в – "внешний" конус. ∆ - "внутренний" конус/.

Рис. 3. То же, что и на рис. 2, но для π^- - мезонов.

Если сравнить по абсолютной величине спектр п⁺ мезонов / puc. 2/ со спектром π^- -мезонов / puc. 3/, то можно видеть превышение спектра π^+ - мезонов "внешнего" конуса над спектром л -- мезонов этого конуса вне области "перекрытия". Для п-мезонов "внутреннего" конуса разница в спектрах намечается также вне этой области.

Область совпадения спектров π^+ -и π^- -мезонов как "внутреннего", так и "внешнего" конусов расширяется по мере роста числа идентифицированных в π^{-12} Свзаимодействиях медленных протонов * N_D /см. puc. 4÷8/.

Рис. 4. Спектры π^+ - мезонов как "внутреннего" (\blacktriangle), так и "внешнего" (п) конусов вместе со спектрами π -ме-зонов / Δ - "внутренний" конус, • - "внешний" конус/ для π^{-12} С - взаимодействий с $N_{\rm p} = 0$. $N_{n} = 0$.

^{*}В настоящей работе, как и в наших предыдущих работах /2/, протоны идентифицировались в интервале от 140 до 700 МэВ/с, положительные частицы с импульсом > 700 $M \ni B/c$ считались π^+ -мезонами.

3, 35

2,55

2,55

2,95

2,95

3,35

ЗАКЛЮЧЕНИЕ

Получена экспериментальная информация о распределении по быстротам (у) π^{\pm} -мезонов, образованных в π^{-12} С-взаимодействиях с углом испускания θ вл.с.к. >8°/ π^{\pm} -мезоны "внешнего" конуса/ и с $\theta < 8°$ / π^{\pm} -мезоны "внутреннего" конуса/. В интервале быстрот от \simeq 0,9 до \simeq 2,65 спектры π -мезонов как "внутреннего", так и "внешнего" конусов совпадают со спектрами π^{-} -мезонов, причем этот интервал увеличивается с ростом числа образовавшихся в π^{-12} С-взаимодействиях медленных протонов. В этом же интервале число π^{\pm} -мезонов от π^{-12} С-взаимодействий не зависит от у и на /10-15/% больше числа π^{\pm} -мезонов от π^{-} р-взаимодействий при той же энергии первичного π -мезона.

Авторы благодарны коллективу Сотрудничества по обработке снимков с двухметровой пропановой камеры ОИЯИ за обсуждение и помощь в получении экспериментального материала.

ЛИТЕРАТУРА

- 1. Андреев И.В., Дремин И.М. УФН, 1977, 122, 6.1, с.37.
- 2. Абдурахимов А.У. и др. ЯФ, 1972, 16, с.989; 1973, 18, с.1251; 1974, 20, с.384; Ангелов Н. и др. ЯФ, 1977, 25, с.1013.
- 3. Никитин Ю.П., Розенталь И.Л., Сергеев Ф.М. УФН, 1977, 121, в.1, с.3.

Рукопись поступила в издательский отдел 10 июля 1978 года.