ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

1-25 3466 2-78

11 11 11

.....

1 - 11540

В.Н.Пенев, А.И.Шкловская

ИЗУЧЕНИЕ КОРРЕЛЯЦИЙ МЕЖДУ П[±]-МЕЗОНАМИ В П[¬]р-ВЗАИМОДЕЙСТВИЯХ С РОЖДЕНИЕМ ЧАСТИЦ, ИМЕЮЩИХ БОЛЬШИЕ ПОПЕРЕЧНЫЕ ИМПУЛЬСЫ

1 - 11540

В.Н.Пенев, А.И.Шкловская

ИЗУЧЕНИЕ КОРРЕЛЯЦИЙ МЕЖДУ П[±]-МЕЗОНАМИ В П⁻р-ВЗАИМОДЕЙСТВИЯХ С РОЖДЕНИЕМ ЧАСТИЦ, ИМЕЮЩИХ БОЛЬШИЕ ПОПЕРЕЧНЫЕ ИМПУЛЬСЫ

Направлено в ЯФ

Пенев В.Н., Шкловская А.И.

1 - 11540

Изучение корреляций между π^{\pm} -мезонами в π^{-} Р-взаимодействиях с рождением частиц, имеющих большие поперечные импульсы

Изучались взаимодействия π^- -мезонов с протонами при импульсе π^- -мезонов 40 ГэВ/с, в которых образовывались частицы, имеющие большие поперечные импульсы ($\mathfrak{p}_T > 0.8$ ГэВ/с). Рассмотрены азимутальные асимметрии π^+ -мезонов, сопровождающих такие частицы, и зарядовые корреляции между ними. Взаимодействия были зарегистри-рованы в двухметровой пропановой пузырьковой камере ОИЯИ. Для событий с двумя π^+ -мезонами с $\mathfrak{p}_T > 0.8$ ГэВ/с в распределениях быстрот обнаружены максимумы при $Y_1 \cong Y_2$, которые можно интерпретировать, как быстродействующие корреляции между частицами, имеющия большие поперечные импульсы.

Работа выполнена в Лаборатория высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследования. Дубна 1978

Penev V.N., Shklovskaya A.I.

1 - 11540

Investigation of Correlations between π^{\pm} -Mesons in $\pi^{-}P$ -Interactions with the Production of Particles with Large Transverse Momenta

On the basis of the investigation of π^-p -interactions at 40 GeV/c, further study of the azimuthal asymmetry of the π^{\pm} mesons, accompanying a particle with $P_T > 0.8$ GeV/c, as well as of the charge correlations between them, is carried out. In the case of events with two π^{\pm} -mesons with $P_T > 0.8$ GeV/c, in the distributions of rapidity at $Y_1 \neq Y_2$, maxima are observed, which may be interpreted as short-range correlations between particles with high transverse momentum.

The investigation has been performed at the Laboratory of High Energies, JINR,

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

C 1978 Объеджиенный институт адерных исследований Дубиа

В работе представлены результаты дальнейшего исследования образования частиц с большими поперечными импульсами в π^- р-взаимодействиях при 40 ГэВ/с. Описание этого эксперимента и его методических особенностей содержится в работах^{/1-4/}. Использованный статистический материал, критерии отбора событий, оценка возможных примесей, точности и погрешности измерений для π^- р-взаимодействий с рождением частиц, имеющих поперечный импульс больше чем O,8 ГэВ/с, обсуждались в предыдущей работе ^{/5/}.

Настоящая работа посвящена исследованию корреляций между быстротами частиц в событиях типов

$$\pi^{-} p \rightarrow \pi^{\pm}_{p_{T}} > 0.8^{+} \dots, \qquad /1/$$

$$\pi^{-} p \rightarrow \pi^{\pm}_{p_{T}} > 0.8^{+} \pi^{\pm}_{p_{T}} > 0.8^{+} \dots, \qquad /2/$$

где через $\pi_{p_T} > 0.8$ обозначены π^{\pm} - мезоны, имеющие величину поперечного импульса больше О,8 *ГэВ/с*.

Инклюзивные сечения этих взаимодействий составляют, по нашим оценкам, для событий типов /1/ и /2/ /4_89±0,05/ мби /1,1±0,1 /мб соответственно.

§1. АСИММЕТРИЯ ВЫЛЕТА ЧАСТИЦ

В нашей предыдущей работе^{/5/} мы показали, что при 40 ГэВ/с в событиях типа /1/ имеет место азиму-

тальная асимметрия вылета частиц по отношению к частице с большим поперечным импульсом. Этот факт был истолкован нами как возможное указание на существование струи вылета адронов в направлении, противоположном вылету частицы с $p_T > 0.8 \Gamma \beta B/c$.

Обозначим через $\Delta \phi$ разность азимутальных углов между направлениями вылета частицы с р_Т > 0,8 ГэВ/с и остальными. Будем считать, что при $|\Delta \phi| < 60^\circ \pi$ -мезон летит вместе с частицей, имеющей большой поперечный импульс /область I/, а при $120^\circ < \Delta \phi < 180^\circ$ направление вылета его противоположно /область II/. Отношение между частицами II и I областей характеризует степень наблюденной асимметрии.

Рис. 2б

В настоящей работе проведено разделение вторичных частиц, сопровождающих частицу с $p_T > 0.8 \ \Gamma \Im B/c$, по поперечному импульсу и показано, что для интервала Δp_T /0,4-0,8/ $\Gamma \Im B/c$ указанная асимметрия проявляется сильнее, чем для интервала /0-0,4 $\Gamma \Im B/c$ /. В табл. 1 представлены отношения n_{II} / n_I и средние значения быстрот для частиц, сопровождающих частицы с $p_T > 0.8 \ \Gamma \Im B/c$, в этих двух интервалах Δp .

~	۰.	~			
- 1	α	n /	11	un	_ /
_	-	~~			-

Δр _{т,} ГэВ/с	n _{II} /n I	< y _c > _I	< y _c > _I
0-0,4	1,43 <u>+</u> 0,6	0,15 <u>+</u> 0,02	0,20 <u>+</u> 0,02
0,4-0,8	3 ,35 <u>+</u> 0,19	0,09 <u>+</u> 0,04	0,13 <u>+</u> 0,02

Как видно из *табл.* 1, средние быстроты "сопровождения" $\langle y_c \rangle$ слабо зависят от области $\Delta \phi$ и от Δp_T . Отношение n_{II} / n_I для Δp_T в интервале /O÷ \div O,4 ГэВ/с/ значительно выше, чем для Δp_T интервала /O,4 \div O,8/ ГэВ/с.

Увеличение асимметрин вылета для разных интервалов p_T наглядно проявляется на *рис.* 2*а*,*б*, где крестиками указаны распределения частиц по $\Delta \phi$ в области II, а треугольниками - в области I. *Рис.* 2*а* соответствует Δp в интервале /O-O,4/, *рис.* 2*б* - в интервале /O,4÷O,8/. Видно, что треугольники на *рис.* 2*а* расположены значительно выше, чем на *рис.* 2*б*, что позволяет сделать вывод о том, что частиц, летящих назад по отношению к частице с $p_T > O,8 \Gamma \beta B/c$, больше и они имеют в среднем большее значение поперечного импульса, чем летящие вместе с ней.

§2. РАСПРЕДЕЛЕНИЯ ПО БЫСТРОТЕ ДЛЯ РАЗНЫХ ОБЛАСТЕЙ АЗИМУТАЛЬНОГО УГЛА

В событнях типа /1/ мы исследовали зависимость между быстротой Y частицы с $p_T > O, 8 \Gamma \beta B/c$ и быст-

		1			1
√у _c > Без разделения п ∆ф	ия по Y Y>1	1,5	-1 < Y < 1,5	Y<-1	1
0 ⁰ -60 ⁰ (I область) 0,139 <u>-</u> 0,021	-0,248	<u>+</u> 0,068	0,143 <u>+</u> 0,023	0,394 <u>+</u> 0,064	I
120 ⁰ -180 ⁰ (П область) 0,173 <u>-</u> 0,16	-0,278	<u>+</u> 0,047	0,174 <u>+</u> 0,018	0,509 <u>+</u> 0,48	1

£.

ротами сопровождающих ее частиц для различных интервалов Y и $\Delta \phi$. Для каждого из трех интервалов быстроты Y(Y>1,5;Y<-1 и -1<Y<1,5) были рассчитаны средние быстроты "сопровождения", представленные в табл. 2.

Как следует из рассмотрения табл. 2, средняя быстрота частиц "сопровождения", $\langle y_c \rangle$, почти не зависит от области $\Delta \phi$ и определяется быстротой У частицы с большим поперечным импульсом. Чем больше У, тем с меньшей быстротой движутся частицы, сопровождающие ее, и обратно.

К такому же выводу приходим, рассматривая рис. 1, который представляет распределение по быстротам в I и II областях по $\Delta \phi$ частиц, сопровождающих частицу р_т > 0,8 ГэВ/с для двух интервалов быстроты Ү. С Из этих рисунков видно, что для $\Delta \phi$ как в интервале /0°:60°/, так и в интервале /120°÷180°/ в области $p_{T} > 0,8 \quad \Gamma \ni B/c (Y > 1,5)$ фрагментации п - мезона с наблюдается смещение спектров "сопровождения" в направлении фрагментации мишени. Вылет же частицы с большим поперечным импульсом в область Y < -1 влечет за собой смещение спектра быстрот "сопровождения" в сторону положительных быстрот. Величина наблюдаемого эффекта, по-видимому, не может быть объяснена одной лишь кинематикой, так как влияние фазового объема более существенно в области I, чем в области II, а в *табл. 2* мы видим обратный эффект. Следует, однако, отметить, что чисто кинематический сдвиг при Y>1,5 может достигать значения ≈ O,4, т.е. того же порядка, что и величины, приведенные в табл. 2.

§3. ЗАРЯДОВЫЕ КОРРЕЛЯЦИИ

Имеется ли корреляция между зарядом частицы с р_т> 0,8 ГэВ/с и зарядом частиц, сопровождающих ее?

Как было показано в работах ^{/6-8/} и предыдущей нашей публикации ^{/5/}, наблюдается сильная зарядовая асимметрия среди частиц, вылетающих с большим р_т,

Зарали частиц с р _т 0,8 ГэВ/с	+	I	+	I
А.6 Ления" сопровож-	+	1	I	+
$n^{0} - 60^{0} \cdot y_{c} > \langle Y \rangle - \langle y_{c} \rangle $	$0,069\pm0,045$ $0,312\pm0,042$	$0,252\pm0,044$ $0,401\pm0,032$	0,339 <u>+</u> 0,041 -0,582 <u>+</u> 0,021	-0,079 <u>+</u> 0,037 0,738 <u>+</u> 0,031
120 ⁰ -180 ⁰ <y<sub>6 > <y>-<v_> </v_></y></y<sub>	0,114 <u>+</u> 0,036 -0.357+0.029	0,197 <u>+</u> 0,034 0.462+0.028	0,367 <u>+</u> 0,030 -0.610+0.022	-0,011 <u>+</u> 0,003 0.670+0.033

Ταблица

8

что подтверждается резкой двугорбой структурой распределения dN/dY, приведенной в работе⁷⁵⁷. Полученные там значения для средних быстрот пионов с р_т> >0,8 $\Gamma_{3B/c}$ (<Y>_ = -0,24±0,029 , <Y_>= 0,659±0,028) были использованы нами в настоящей работе. Можно проследить, как меняется разность между средней быстротой "сопровождения" и быстротой частицы с р , > 0,8 ГэВ/с для различных комбинаций знаков этих частиц. В табл. З приведены средние значения быстрот сопровождения, <y_c>, разности между средними быстротами частиц с р_т >0,8 ГэВ/с и частиц из "сопровождения" (<Y > - <y_ >) для различных областей $\Delta \phi$ и различных комбинаций знаков. Здесь, так же как и в §2, были использованы события только с одной частицей, имеющей р_т> 0,8 ГэВ/с.

Как видно из приведенной таблицы, средняя быстрота "сопровождения" слабо зависит от области $\Delta \phi$ для данной комбинации заряда частицы с р_т > О,8 ГэВ/с и зарядов *п* -мезонов, ее сопровождающих. Рассматривая далее различные комбинации этих зарядов, можно прийти к выводу о том, что они влияют на разность между средними быстротами частиц с р_т > 0,8 ГэВ/с и частиц, ее сопровождающих. Так, средняя разность является минимальной, если частица $| < Y > - < y_{c} > |$ с большим р т и частица из ее "сопровождения" имеют одинаковые заряды, и эта разность существенно возрастает, если знаки их зарядов противоположны.

§4. КОРРЕЛЯЦИИ МЕЖДУ ДВУМЯ ^{"±}МЕЗОНАМИ С БОЛЬШИМИ ПОПЕРЕЧНЫМИ ИМПУЛЬСАМИ

Здесь мы рассмотрим только такие события /тип 2/, в которых образовалось два π^{\pm} -мезона, имеющих поперечные импульсы р_Т> О,8 ГэВ/с. Изучение распределений по быстротам таких частиц, dN обнару $dy_{\pi_{p_{T}}^{\pm}\geq 0.8}$

живает интересные особенности.

На рис. З приведено распределение по быстротам обычное, dN/dy_i , где i=1,2 /обозначено $\frac{\pi^{\pm}}{P_{m}} > 0.8$ крестиками/, а также распределение по быстроте систе-

мы центра инерции двух π^{\pm} -мезонов с $P_T > 0,8 \ \Gamma \beta B/c$, dN/dY_{C.Ц.М.}. Как видно из приведенного *рис. 3*, pаспределение dN/dY_{C.Ц.М.} для всех экспериментальных точек является более узким, чем инклюзивное распределение dN/dy_i. Это обстоятельство может быть указанием на существование корреляции между адронами с $P_T > 0,8 \ \Gamma \beta B/c$ и, скорее всего, на то, что оба таких адрона образовались при одном жестком соударении, а не являются парой случайных частиц с поперечным импульсом, большим среднего поперечного импульса пнона во взаимодействии.

На рис. 4 дано распределение абсолютной разности между быстротами обенх частиц с $P_T > O,8 \Gamma_3 B/c$ во взаимодействиях типа /2/. Обращает на себя внимание факт, что близких к нулю разностей Δy встречается больше, т.е. чаще всего рождаются адроны с близкими быстротами.

Более полную картину поведения быстрот частиц $\pi_{P_T}^+$ >0,8 дают "лвумерние" то т из-за малого количества событий интервалы, в которых одна из быстрот зафиксирована, очень большие. Тем не менее оказалось, что если разделить все события по величине быстроты одного из *п*-мезонов с р_т > >0,8 ГэВ/с на 3 группы / Y₂ >1,5; -1 < Y₂ <1,5 н Y₂ < -1 / и для них построить распределения быстрот для другого π -мезона с $p_T > O,8 \ \Gamma \mathcal{B} B/c$, то обнаружн-вается следующая картина. При $Y_2 > 1.5$ в распределении dN/dY₁ / puc. 5a/ наблюдаются две области: одна-с резким пиком при $Y_1 \cong Y_2$ и вторая - с менее выраженным максимумом в области Y₁ ≆-Y₂ Аналогично ведет себя распределение dN/dY_1 , если $Y_2 < -1$. В этом случае / рис. 5б/ мы наблюдаем резкий максимум при Ч₁ ≆ Ч₂ и более слабо выраженную структуру в области, противоположной У2 на шкале быстрот. Наконец, в центральной области / рис. 56/ также имеется максимум при Y1 = Y2, котя распределение по У1 имеет значительную ширину. Таким образом, очевидно, что среди отобранных взаимодействий четко выделяется группа событий, в которых оба *п*-мезона с р_Т > >0,8 ГэВ/с имеют близкие быстроты, $< Y_1 > = < Y_2 > .3a$ -

метен также и другой вид взаимодействий, для которых $< Y_1 > = - < Y_2 >$.

В рамках мультипериферической модели максимум при $Y_1 \cong Y_2$ может быть объяснен наличием короткодействующих корреляций, если только столь характерная форма /быстрое спадание при Y < -1 и небольшая ширина/ не связана с рождением какого-то, сравнительно тяжелого резонанса /например, A_1 -мезона или N(1700)изобары и т.д./. Короткодействующая корреляция может возникнуть и в модели жесткого соударения кварков, если сечение кварк-к-кваркового рассеяния быстро падает с ростом парной энергии \hat{S}_{qq} , например, как $d\sigma_{qq} / dt_{qq} \sim \frac{1}{S_{qq}^2}$.

Дальнодействующая корреляция /при $Y_1 = -Y_2$ / могла бы соответствовать либо столкновению валентных кварков, которые после упругого рассеяния дают $(Y_1 - 0,2) = -(Y_2 - 0,2)$, где $0,2 = 1/2 \ln 1,5 = y_{C.II.M.}$ кварков, либо процессу типа двойной дифракционной диссоциации /puc. 6/. В этих процессах /DD -процессах/ распределение по $q_m^2 = t$ оказывается весьма широким:

 $\frac{d\sigma}{dt} \sim a \exp(Bt)$, где $B_{DD} = 1 \Gamma \partial B^{-2}$, и за счет этого

они могут приводить к рождению частиц с р_т 1 ГэВ/с.

Причем здесь не требуется обязательно иметь большой интервал **Ду между линиями частиц М, и М**, и не обязательно, чтобы реджеон был помероном. Для обменов другими реджеонами /с $a(0) \simeq 1/2$ / наклон В. определенный из трехреджеонной области, даже меньше, чем для обмена помероном. Для событий из области максимума при Y₁ = - Y₂ / puc. 5/ нами было получено распределение по множественности заряженных частиц. Для случая /a/ на рис. 5 полученная средняя множественность равна n_{ch} = 4,65±0,24, что значительно ниже значения средней множественности для всех событий с рождением частиц с $p_{T} > 0,8 \Gamma \beta B/c$, приведенной в работе $^{/5/}$ и составляющей $n_{ch} = 6,33\pm0,07$, а также ниже значения средней множественности для всех неуп $n_{ch} = 5,37\pm0,06.$ *π* [−] р -взаимодействий: DVLHX Наблюдаемый эффект падения средней множественности может свидетельствовать о существенной роли DD -- процессов в рассматриваемой области (Y>1.5). С помощью DD -процесса можно было бы объяснить и пик при но в этом случае он должен бы состоять из $Y_1 \cong Y_0$, адронов из области с близкими азимутальными углами /∆ф <60°, например/. Для выбора одной из предложенных гипотез необходимо изучить спектры частиц из области максимумов распределений по $\Delta \phi$, по зарядам и т.д., что невозможно в данной работе из-за крайне

Puc. 6

ограниченного количества рассматриваемых взаимодействий.

В любом случае такое поведение максимумов при $Y_1 = Y_2$ для π^{\pm} -мезонов с большими поперечными импульсами ранее не наблюдалось и, как нам кажется, представляет определенный интерес.

Авторам приятно выразить свою благодарность участникам Сотрудничества по обработке снимков с 2-метровой пропановой пузырьковой камеры за предоставленный экспериментальный материал, полезные дискуссии и советы, В.Г.Гришину за постановку задачи, Е.М.Левину за плодотворные обсуждения, И.А.Первушиной за оформление рисунков, Ю.Йордановой за помощь в расчетах.

Мы глубоко признательны М.Г.Рыскину, чей постоянный интерес к работе, критические замечания, конкретные советы и предложения, касающиеся теоретического обоснования полученных результатов, а также чрезвычайно плодотворные дискуссии в значительной степени стимулировали настоящую работу.

Приятно поблагодарить лаборантов за просмотр и измерение событий.

ЛИТЕРАТУРА

- 1. Абдурахимов А.У. и др. ЯФ, 1972, 16, с.989.
- 2. Абдурахимов А.У. и др. ОИЯИ, 1-8501, Дубна, 1974.
- 3. Ангелов Н.С. и др. ОИЯИ, РІ-9810, Дубна, 1976. 4. Ангелов Н.С. и др. ОИЯИ, РІ-9785, Дубна, 1976. 5. Ангелов Н.С. и др. ОИЯИ, РІ-10672, Дубна, 1977.
- 6. Fretter W.B. e.a. Phys.Lett., 1975, 57B, 197.
- 7. Bartke J. e.a. Nucl. Phys., 1976, B117, 293.
- 8. Кладницкая Е.Н. и др. ОИЯИ, РІ-10969, Дубна, 1977.

Рукопись поступила в издательский отдел 3 мая 1978 года.