ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

31/11-78

5-441 3189/2-78

11 2 11

1 - 11480

А.А.Бельков, С.А.Бунятов, Б.Ж.Залиханов, В.С.Курбатов, А.Халбаев

матричный элемент реакции π⁻р→π°л°п вблизи порога

1 - 11480

А.А.Бельков,* С.А.Бунятов, Б.Ж.Залиханов, В.С.Курбатов, А.Халбаев**

матричный элемент реакции *π*р→*п*°л°в вблизи порога

Направлено в ЯФ

Институт физики высоких энергий, Серпухов.
 Институт ядерной физики АН УЗССР, Ташкент.

Бельков А.А. и др.

1 - 11480

Матричный элемент реакции *π* р → *п*^о*п*^оп вблизи порога

Получен феноменологический матричный элемент, который позволяет описать слектры у -квантов от реакции π⁻ 9 → π^оπ^ол вблизи порога. Матричный элемент имеет вид

 $M^2 = [1 + A(\vec{p}_n^* - \vec{p}_n^*)]^2 + B[(\vec{p}_n^* - \vec{p}_n^*)]^2_n,]^2_n$ При энергии 270 МоВ A=0.5 m²/₂₁ : B= 4 m⁴/₂₁ . Эффективности регистрации γ -квентов от реакции $\pi^- p + \pi^0 \pi^0 n$. рассчитанные с новым матричным элементом, согласуются с показаниями черенковских счетчиков в разной геометрии. Полное сечение реакции $\pi^- p + \pi^0 \pi^0 n$ при энергии 270 МэВ равно (0,26±0,02) мб. Провелен изотопический анализ реакции $N \to \pi^- N^-$ при этой энергик. Отношение коотопических омплитуд $X = F_{10} / F_{32}$ равно 4,4±0,4.

Работа выполнена в Лаборатория ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных ысследований. Дубна 1978

Beikov A.A. et al.

Matrix Element for the $\pi^- p \rightarrow \pi^0 \pi^0$ Reaction 1 - 11480 near the Threshold

The phenomenological matrix element which allows one to describe the y-spectra from the $\pi^- p \rightarrow \pi^0 \pi^0 n$ reaction near the threshold is obtained. It has the following form:

 $M^{2} = \frac{1}{1} + A(\vec{p}_{\pi}^{*}, \vec{p}_{\pi}^{*})^{2} + P(\vec{p}_{\pi}^{*}, \vec{p}_{\pi}^{*}, \vec{p}_{\pi}^{*}, \vec{p}_{\pi}, \vec{p}_{\pi}^{*}, \vec{p}_{\pi}, \vec{p}_{\pi}^{*}, \vec{p}_{\pi}, \vec{p}_{\pi}^{*}, \vec{p}_{\pi}, \vec{p}_{\pi}^{*}, \vec{p}_{\pi}, \vec{p}_{\pi}^{*}, \vec{p}_{\pi}, \vec{p}_{\pi}^{*}, \vec{p}_{\pi}^{$

At 270 MeV A = $0.5m^{-1}_{T}$ B = $4m^{-1}_{T}$ The efficiencies of the registration of the y from the π^{-1}_{T} B = $4m^{-1}_{T}$. The efficiencies of the registration matrix element, are in accordance with the Cerenkov counter data obtained at different geometries. The total cross-section of the reaction $\pi^{-1}_{T} + \pi^{0}\pi^{0}n$ at 270 MeV is equal to (0.26±0.02) mbr. The isotopic analysis of $\pi N + \pi\pi N$ reaction at this energy is performed. The isotopic amplitudes ratio $X = F_{10}/F_{32}$ is equal to 4.4±0.4.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

© 1978 Объединенный институт ядерных исследований Дубна

В работе ^{/1/} изучались спектры _у -квантов от реакции

$$\pi^- p \rightarrow \pi^{\circ} \pi^{\circ} n$$
 /1

при энергии 270 МэВ.

Экспериментальная установка состояла из двух пар черенковских γ -спектрометров², \check{C}_1 , \check{C}_2 и \check{C}_3 , \check{C}_4 , лежащих на одной прямой по разные стороны от жидководородной мишени. Измерения проводились в двух геометриях. В геометрии 1 обе пары спектрометров располагались под углами 90° к направлению пучка; в геометрии II пара \check{C}_1 , \check{C}_2 - под углом 120° а пара \check{C}_3 , \check{C}_4 - под углом 60° к пучку. Схематический вид экспериментальной установки показан на *рис. 1*.

Полученные экспериментальные данные сравнивались с результатами моделирования в предположении о постоянстве матричного элемента реакции /1/. Расчеты проводились методом Монте-Карло с точностью до 1%.

Реакция /1/ выделялась по $\gamma\gamma$ -совпаденням в следующих комбинациях черенковских спектрометров: $(\breve{C}_1 + \breve{C}_3)$, $(\breve{C}_1 + \breve{C}_4)$, $(\breve{C}_2 + \breve{C}_3)$, $(\breve{C}_2 + \breve{C}_4)$. Углы между направлениями γ -квантов, регистрируемых комбинациями $(\breve{C}_1 + \breve{C}_3)$, $u(\breve{C}_2 + \breve{C}_4)$, равны $180^\circ \pm 14^\circ$, а комбинациями $(\breve{C}_1 + \breve{C}_4)$ и $(\breve{C}_2 + \breve{C}_3)$ - $156^\circ \pm 14^\circ$. В обеих геометриях экспериментальные спектры γ -квантов от реакции /1/ существенно мягче, чем расчетные. Кроме того, в обеих геометриях число $\gamma\gamma$ -совпадений в комбинациях спектрометров, находящихся под углом 180° , на 20% больше,

 $\begin{array}{c}
\overline{5} \\
\overline$

10cm

Рис. 1. Схематический вид экспериментальной установки: а/ вид сверху; б/ вид со стороны пучка.

чем счет в комбинациях под углом 156°, в то время как расчетные эффективности регистрации двух у-квантов для разных комбинаций совпадают в пределах точности вычислений. Эффективности регистрации реакции '1/ по уу -совпадениям, рассчитанные при постоянном матричном элементе, использовались для вычисления полного сечения реакции. Полученное таким образом полное сечение реакции /1/, усредненное по трем сеансам,

σ = /O,32±O,O4/ мб; ошнбка измерений определялась по дисперсии результатов измерений сечения в трех сеансах.

Таким образом, в работе^{11'} показано, что спектры *у*-квантов и эффективности экспериментальной установки к регистрации *уу* -совпадений от реакции /1/ не описываются постоянным матричным элементом. В данной работе рассматривается возможность описания наблюдаемого спектра *у*-квантов от реакции /1/ за счет введения в матричный элемент угловых корреляций нейтрона и π° -мезонов.

Угловые зависимости матричного элемента реакции /1/ вводились как линейные добавки к константе соответствующих скалярных произведений импульсов:

$$\vec{p}_{\pi_{1}}^{*} \cdot \vec{p}_{2}^{*} = p_{\pi_{1}}^{*} p_{\pi_{2}}^{*} \cos \theta_{\pi_{1}}^{*} \pi_{2}^{\circ} , \qquad /2/$$

$$\vec{p}_{\pi^{-}}^{*} \cdot \vec{p}_{n}^{*} = p_{\pi^{-}}^{*} p_{n}^{*} \cos \theta_{n,\pi^{-}}^{*}$$
, /3/

$$\{(\vec{p}_{\pi_{1}^{\circ}}^{*} - \vec{p}_{\pi_{2}^{\circ}}^{*}) \cdot \vec{p}_{\pi}^{*}\}^{2} = F(E_{\pi}^{*})(\cos\theta_{\pi_{1}^{\circ}n}^{1} \pi_{2}^{\circ})^{2} .$$
 /4/

Здесь звездочки указывают на то, что соответствующие углы и импульсы берутся в общей с.ц.и., $\theta^{11}\pi^{o}\pi^{o}$ угол вылета нейтрона в с.ц.и. двух π^{o} -мезонос относительно импульса одного из π^{o} -мезонов, а

$$\mathbf{F}(\mathbf{E}_{n}^{*}) = \frac{\mathbf{E}_{n}^{*2}(\mathbf{E}_{n}^{*2} - \mathbf{m}_{n}^{2})(s - 2\sqrt{s} \mathbf{E}_{n}^{*} + \mathbf{m}_{n}^{2} - 4 \mathbf{m}_{\pi^{o}}^{2})}{s - 2\sqrt{s} \mathbf{E}_{n}^{*} + \mathbf{m}_{n}^{2}} / 5/$$

зависит только от полной энергин нейтрона в общей с.ц.н. Добавки второго порядка по импульсам описывают следующие угловые зависимости матричного элемента: член /2/ - зависимость от угла разлета π° -мезонов в общей с.ц.и.; член /3/ - анизотропию углового распредоления нейтрона в той же системе. Член четвертого порядка по импульсам /4/ описывает анизотропию углового распределения нейтрона в с.ц.и. двух π° -ме-

зонов. Четвертый порядок обусловлен требование и симметрии матричного элемента реакции /1/ относительно перестановки π_1° - и π_2° -мезонов в конечном состоянии.

Моделирование показало, что введение в матричный элемент добавки /2/ слабо влияет на спектры у-квантов и значения эффективностей в обеих геометриях. Результаты расчетов эффективностей регистрации двух У-квантов с матричным элементом, содержащим зависимость от угла $\theta^*_{\pi^0,\pi^0}$, отличались не более чем на 5% от прежних расчетов с постоянным матричным элементом, причем эффективности для разных комбинаций спектрометров совпадали в пределах точности вычислений. По этой причине член /2/ был отброшен, и в дальнейшем моделирование проводилось с матричным элементом, содержащим только добавки /3/ и /4/ к константе. После квадрирования матричного элемента члены выше четвертого порядка по импульсам отбрасывались, а константа нормировалась на единицу. Квадрат матричного элемента, полученный таким образом, имел вид

$$M^{2} = \{1 + A(\vec{p}_{\pi^{-}} \cdot \vec{p}_{n}^{*})\}^{2} + B\{(\vec{p}_{\pi^{+}_{1}} - \vec{p}_{\pi^{+}_{2}}^{*})\vec{p}_{n}^{*}\}^{2}.$$
 /6/

Моделирование с квадратом матричного элемента /6/ дает наилучшее описание спектров γ -квантов от реакции /1/ при значениях параметров $A = 0.5 \text{ m}^{-2}$ и $B = 4 \text{m}^{-4}_{\pi}$. При этом эффективности регистрации двух γ -квантов для комбинаций спектрометров, находящихся под углом 180°, на 15% больше эффективностей регистрации для комбинаций спектрометров, находящихся лод углом 156°. В среднем же эффективности регистрации на 20% больше, чем в расчетах с постоянным матричным элементом.

На рис. 2 и 3 экспериментальные спектры у-квантов сравниваются с результатами моделирования с постоянным матричным элементом и матричным элементом /6/. Получено удовлетворительное описание спектров у -квантов от реакции /1/ в геометрии I. Для геометрии II описание у спектров получено только для пары спектрометров \tilde{C}_3 , \tilde{C}_4 , хотя и для пары \tilde{C}_1 , \tilde{C}_2 спектры у -квантов значительно мягче, чем в расчетах с постоянным матричным элементом.

Puc. 2. Спектр у - квантов от реакции $\pi^- p \rightarrow \pi^0 \pi^0 n$. Геометрия 1. Сплошная линия с нанесенными на нее ошибками - эксперимент; пунктир - расчеты с постоянным матричным элементом M_1 ; тонкая сплошная линиярасчеты с матричным элементом M_2 /6/ при $A=0.5 m_\pi^{-2}$ и $B=4m_\pi^{-4}$. $a/\theta_\gamma = 90^\circ$, уу - совпадения в комбинациях ($C_1 + C_3$) и ($C_2 + C_4$). M_1 : $\chi^2/\bar{\chi}^2 = 10,6$, C.L.<1%; M_2 : $\chi^2/\bar{\chi}^2 = 1,2$, C.L. ~ 20%. 6/ $\theta_\gamma = 90^\circ$ уу - совпадения в комбинациях ($C_1 + C_4$) и ($C_2 + C_3$). M_1 : $\chi^2/\bar{\chi}^2 = 5$, C.L.<1%; M_2 : $\chi^2/\bar{\chi}^2 = 0,9$, C.L. ~ 50%.

Puc. 3. Cnekmp γ -kbahmob om peakyuu $\pi^{-p} \cdot \pi^{\circ} \pi^{\circ} n$. Feomempus II. Cnnownas nuhus c нанесенными на нее ошибками - эксперимент; пунктир - расчеты с постоянным матричным элементом M_1 ; тонкая сплошная линия расчеты с матричным элементом $M_2/6/$ при $A = 0.5 m_{\pi}^{-2}$ и $B = 4m_{\pi}^{-4}$. $a/\theta_{\gamma} = 60^{\circ}$, спектрометры C_1 и C_2 при $\gamma\gamma$ -совпадениях в комбинациях ($C_1 + C_3$) и ($C_2 + C_4$). $M_1: \chi^2/\bar{\chi}^2 = 34$, C.L. < 1%; $M_2: \chi^2/\bar{\chi}^2 = 5$, C.L. < 1%. $6/\theta_{\gamma} = 120^{\circ}$, спектрометры C_3 и C_4 при $\gamma\gamma$ -совпадениях в комбинациях ($C_1 + C_3$) и ($C_2 + C_4$). $M_1: \chi^2/\bar{\chi}^2 = 5,5$, C.L. < 1%; $M: \chi^2/\bar{\chi}^2 = 1.4$, C.L. ~ 15%. В табл. 1 сравниваются результаты вычисления полного сечения реакции /1/ при постоянном матричном элементе с новым расчетом полного сечения. Полное сечение реакции /1/, усредненное по трем сеансам, равно $\sigma = /0.26\pm0.02/$ мб.

Угловые распределения нейтрона, соответствующие вводимым в матричный элемент угловым корреляциям, показаны на *puc. 4*.

В настоящее время отсутствуют прямые измерения спектров и угловых распределений нейтронов в реакции /1/. Поэтому полученные результаты имеют особый интерес, т.к. позволяют извлечь эту информацию косвенным путем из данных о спектрах у-квантов от той же реакции. Эти результаты должны рассматриваться как серьезное указание на то, что матричный элемент реакции /1/ при энергин 270 МэВ существенно отличается от постоянного. Именно это обстоятельство служит главной причиной того, что экспериментальный спектр у-квантов оказывается значительно мягче спектра, рассчитанного в предположении о постоянстве матричного элемента. Это утверждение кажется тем более обоснодаже столь грубое введение угловых ванным. что корреляций позволило одновременно со смягчением успектров получить наблюдаемые в эксперименте различия эффективностей регистрации уу - совпадений в разных комбинациях спектрометров.

Анализ реакции $\pi^- p \to \pi^+ \pi^- n$ при близких энергиях^{/3/} показал, что отличия экспериментальных распределений от рассчитанных при постоянном матричном элементе в основном связаны с угловыми корреляциями вторичных частиц. В частности, наблюдаемое энергетическое распределение нейтронов может быть объяснено угловой корреляцией вторичных $\pi^+ - и \pi^-$ -мезонов. В данной работе аналогичный член /2/ был отброшен ввиду его слабого влияния на спектры у -квантов.

Отсутствие описания спектра y -квантов для пары спектрометров \tilde{C}_1 , \tilde{C}_2 в геометрии II может быть связано с ограниченностью самой параметризации /6/.

В пабл. 2 приведены результаты изотопического анализа реакций $\pi N \to \pi \pi N$ при энергии 270 $M \Rightarrow B^{/1/2}$ с но-

Рис. 4. Угловые распределения нейтрона. Сплошная линия - постоянный матричный элемент; пунктир - расчеты с матричным элементом /6/ при $A = 0.5 \text{ m}_{\pi}^{-2}$ и $B = 4 \text{ m}_{\pi}^{-4}$.

вым экспериментальным значением сечения канала реакции /1/. В результате фитирования получены следующие значения изотопических амплитуд вединицах / $M\delta/\frac{1}{2}$: $F_{10} = 1.35\pm0.05$, $F_{32} = 0.31\pm0.03$, $F_{31} = 0.28\pm0.11$, $F_{11} = 0.43\pm0.32$. Отношение амплитуд $X = F_{10}$ / F_{32} при энергии 270 *МэВ* /кинетическая энергия в общей с.ц.и. 83 *МэВ*/ равно 4.4±0.4. Полученные результаты согласуются с результатами работы ⁽⁶⁾. где был проведен изотопический анализ реакций неупругого пион-нуклонного рассеяния в интервале энергий 300-500 *МэВ*.

јэ Комбена— Цин	Ceanc \therefore I, I _{reom} , $M = 4, I \times 10^9$			Ceanc # 3, Π_{reon} , $M = 4.3 \times 10^9$			Ceanc B 3, I_{POOM} , $N = 4$, $I \times 10^{3}$		
	N ₅₁₋₁ -	б, мо		Nevern -	б, <u>м</u> б		N 3+5+n	<u>σ,</u> мо	
		MI	¹¹ 2	· •	^M I	¹¹ 2	•	1 ¹ I	
C _I + C ₃	360	0,41	0,27	276	0,36	0,27	3 65	0,41	0,27
C ₁ + C ₄	249	0,29	0,24	191	0,22	C,22	286	0,34	0,27
^c ₂ + ^c ₃	229	0,26	0,23	160	0,22	0,21	-	-	-
$c_{2} + c_{4}$	384	0,42	0*5a	273	C , 33	0,27	345	C,38	0,26
	1222	0,34 <u>+</u> 0,08	0,20 <u>+</u> 0,03	920	C,29 <u>+</u> 0,07	0,24 <u>+</u> 0,03	996	0,36±0,04	0,27 <u>+</u> 0,0I
M	= Const ;	,,,,,,,,,	5 = /0,32	0.01/ 110					
1.	- } = + I + (0,5 (j;.· j	$;) $ $\}^2 + 4,$	0 } (]	<i>p</i> ;;;)· <i>p</i> ;;}	2;	ء ک	/0,26 <u>+</u> 0,0	2/ мо

- -----

Таблица 1

в в п/п	Канал реакции	Энергия Т _п - МэВ	, Эксперимент, σ, м б	Результаты фита мб
I.	J-p→J+J-n	288	0,36 ± C.C9 /3/	C,35 ± 0,04
2.	Jī⁻p → J*∓*N	270	0,26 ± 0,02	0,26 <u>+</u> 0,02
з.	J-p→ J-J+p	276	C,C8 <u>+</u> C,C3 ^{/4/}	C,C8 <u>+</u> 0,08
4.	م • ټه ۲۰ ۲۰ م • ټه	275	0,C5 ± 0,O3 ^{/5/}	0,05 <u>+</u> 0,03
5.	Ji*p → Ji*J*H	280	0,039 ± 0,008 / 8	/ 0,039 <u>+</u> 0,08

Таблица 2

Величина полного сечения 0,26+0,02 мбн согласуется с полученным в работе 77 значеннем $\sigma = 0.27+$ +0,07 мб. Однако в данной работе смягченые спектров у-квантов объясняется анизотропней углового распределения вторечных частиц, в то время как в работе^{77/} матричный элемент предполагается постоянным, а смягчение спектров конвертированных электронов объясняется аппаратурными эффектами.

ЛИТЕРАТУРА

- 1. Бунятов С.А. и др. ЯФ, 1977, 25, с.325.
- 2. Бунятов С.А. и др. ПТЭ, 1976, 6, с.42.
- 3. Батусов Ю.А. и бр. ЯФ, 1965, 1, с.526.
- 4. Блохинцева Т.Д. и др. ЖЭТФ, 1963, 44, с.498. 5. Батусов Ю.А. и др. ЯФ, 1975, 21, с.308.
- 6. Макаров М.М., Обрант Г.З., Сараниев В.В. ЯФ, 1973. 17, c.170.
- 7. Кравцов А.В. и др. ЯФ, 1975, 20, с.308.
- 8. Кравцов А.В. и др. Преприня ЛИЯФ №290, 1976.

Рукопись поступила в издательский отдел 14 апреля 1978 года.