ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

13/11-28

5-287

1 - 11114

1219/2-78

11 # 11

......

Ю.А.Батусов, С.А.Бунятов, Л.Д.Визирева, Г.Р.Гулканян; Ф.Х.Мирсалихова; В.М.Сидоров, Х.М.Чернев, Р.А.Эрамжян

ИССЛЕДОВАНИЕ МНОГОЧАСТИЧНЫХ РЕАКЦИЙ С ОБРАЗОВАНИЕМ ⁸Li ПРИ ЗАХВАТЕ ОСТАНОВИВШИХСЯ µ-мезонов ЯДРАМИ ¹²С

1 - 11114

Ю.А.Батусов, С.А.Бунятов, Л.Д.Визирева, Г.Р.Гулканян, Ф.Х.Мирсалихова, В.М.Сидоров, Х.М.Чернев, Р.А.Эрамжян

исследование многочастичных реакций с образованием ⁸Li при захвате остановившихся µ⁻-мезонов ядрами ¹²с

Направлено в ЯФ

⁴Институт ядерных исследований и ядерной энергетики /София, НРБ/.

¹ Высший химико-технологический институт /София, /НРБ/.

² Ереванский физический институт.

³ Ташкентский политехнический институт.

Батусов Ю.А. и др.

1 - 11114

Исследование многочастичных реакций с образованием ⁸Li при захвате остановившихся µ⁻-мезонов ядрами ¹²С

С помощью фотоэмульски измерены относительные вероятности возможных многочастичных каналов реакций захвата µ⁻-мезонов ядрами углерода с образованием ⁸Li.

Показано, что основным каналом является реакция μ^{-12} С-⁸Li³Hen ν , имеющая величину относительной вероятности, по крайней мере на порядок превышающую относительную вероятность всех других рассмотреных каналов μ^{-} -захвата. Энергетические спектры и угловые корреляции вторичных частии выделенных каналов реакций сравниваются с рассчитанными по схеме резонансного захвата μ^{-} -мезонов и захвата на ассоциации ⁴Li.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного виститута ядерных всследований, Дубиа 1977

Batusov Yu.A. et al.

1 - 11114

Study of Many-Particle Reactions with the 8 Li Production at Slopped μ^{-} Meson Capture by 12 C Nuclei

With the help of photoemulsion there were measured the relative probabilities of possible many-particle reaction channels at μ^- meson capture by C nuclei with the ⁸Li production.

It is shown that the main channel is the reaction $\mu^{-12}C_*^8Li^3H_{env}$, its relative probability being, at least, by an order higher than the relative probability of all other considered μ^- meson capture channels. The energy spectra and angular correlations of secondary particles of assigned reaction channels are compared with those calculated over the scheme of the resonance μ^- meson capture and the capture by ⁴Li associations.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1977

ВВЕДЕНИЕ

В работах^{/1,2/} было найдено, что среди различных каналов реакций, образующих в фотоэмульсии двухлучевые σ_{μ} -звезды с Т-образным следом /следы ядер ⁸He, ⁸Li и ⁸ B /^{3/} /, наиболее вероятным является захват μ^{-} -мезона ядром углерода по реакции

 $\mu^{-} + {}^{12}C \rightarrow {}^{8}Li + {}^{3}He + n + \nu$. /1/

Измерение угловых корреляций продуктов реакции /1/ позволило установить возможные механизмы этого процесса. Было получено, что экспериментальные данные качественно описываются при моделировании реакции /1/ по схеме резонансного механизма, согласно которому на первой стадии захвата происходит возбуждение резонанса в системе ядра ¹² В*, а при дальнейшем распаде образуется возбужденное ядро ⁴He*:

Было установлено, что хорошее описание достигается и при расчете захвата μ^- -мезона частью ядра углерода ассоциацией ⁴Li, в результате которого также образуется возбужденное ядро ⁴He*.

С 1977 Объединенный инспинут ядерных исследований Дубна

Если предположить, что образование возбужденного ядра ⁴ He* при захвате μ^- -мезонов углеродом с образованием ⁸ Li является обязательным условием для протекания таких процессов, то кроме реакции /1/, в которой ⁴ He* распадается на ³ He и п, из-за различных каналов распада возбужденного гелия должны наблюдаться следующие реакции:

$$\mu^{-} + {}^{12}\text{C} \rightarrow {}^{8}\text{Li} + {}^{3}\text{H} + p + \nu, \text{ где } ({}^{4}\text{He}^{*} \rightarrow {}^{3}\text{H} + p); /2/$$

$$\rightarrow {}^{8}\text{Li} + {}^{2}\text{H} + {}^{2}\text{H} + \nu, \text{ где } ({}^{4}\text{He}^{*} \rightarrow {}^{2}\text{H} + {}^{2}\text{H}); /3/$$

$$\rightarrow {}^{8}\text{Li} + {}^{2}\text{H} + p + n + \nu, \text{ где } ({}^{4}\text{He}^{*} \rightarrow {}^{2}\text{H} + p + n); /4/$$

$$\rightarrow {}^{8}\text{Li} + {}^{2}p + 2n + \nu, \text{ где } ({}^{4}\text{He}^{*} \rightarrow {}^{2}p + 2n). /5/$$

Из анализа реакцин μ^{-12} С $\rightarrow {^8}$ Li 3 Hen ν /1/ ^{/1/} следует, что наилучшее описание экспериментальных данных достигается в предположении, что уровень возбуждения промежуточного ядра ⁴He* равен /22,5±2,O/ *МэВ*. Тогда на основании рассмотрения энергетических порогов развала и известных уровней возбуждения ⁴He /*puc.1*/^{/4/} можно заключить, что близкими по вероятности каналами μ^{-} -захвата могут быть реакции /1/ - /3/, тогда как реакции /4/ - /5/, имеющие высокие энергетические пороги, должны быть менее вероятными. Однако по закону сохранения полного изотопического спина распад ⁴He* на два дейтрона /peaкция /3// может происходить только с уровней, полный изотопический спин которых равен нулю, поэтому реакция /3/ также должна идти со значительно меньшей вероятностью, чем реакция /1/.

В фотоэмульсии в результате реакций /2/ - /5/ будут образовываться трехлучевые σ_{μ} -звезды с Тобразным следом. Они составляют 38% и после двухлучевых σ_{μ} -звезд являются наиболее вероятными. Исследованиям каналов μ -захвата по реакциям /2/ - /5/ и посвящена данная работа.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Постановка опыта описана в работах /1,6/.

В результате просмотра событий в четырех фотоэмульсионных камерах, облученных в пучке μ^- -мезонов с энергией 80 *МэВ*, в зоне остановок μ^- -мезонов было зарегистрировано 685 σ_{μ} -звезд с Т-образным следом. Вероятность образования такой звезды на одну остановку μ^- -мезона равна /0,30±0,01/·10⁻⁴.

5

Распределение звезд по числу лучей / рис. 2/ указывает на образование их на легких ядрах в фотоэмульсии, поскольку захват μ^- -мезонов тяжелыми ядрами в фотоэмульсии в 93% случаев сопровождается вылетом одной заряженной частицы, а при захвате легкими ядрами в 80% случаев вылетают две и более заряженные частицы /7/.

Рис. 2. Распределение событий захвата $\mu^- \cdot u \pi^-$ мезонов с Т-образным следом ядрами в фотоэмульсии по числу лучей /сплошная линия - μ^- захват, пунктирная - π^- захват/.

Из 685 σ_{μ} -звезд с Т-образным следом для дальнейшего анализа было отобрано 248 трехлучевых событий без видимого следа ядра отдачи с пробегом ≤ 1 мкм и электрона из центра звезды.

Для выделения реакций /2/ - /5/ отобранные события были обсчитаны на ЭВМ попрограммам кинематического анализа ядерных реакций в фотоэмульсии /8/. Рассматривались все возможные реакции с испусканием ⁸I.i на ядрах легкой компоненты фотоэмульсии / C, N, O /. Реакция предполагалась однозначно идентифицированной, если она имела решение только по одной гипотезе. Событиями, соответствующими кинематике реакций содной нейтральной частицей, $/2/\mu^{-12}C \rightarrow {}^{8}Li^{3}H_{D}\nu$ и /3/ $\mu^{-12}C \rightarrow {}^{8}Li^{2}H^{2}H\nu$, считались случан, удовлетворяющие критерию $\chi^2 \le 5^{/9/}$. В случае реакций с двумя и тремя нейтральными частицами / peakции /4/ μ ¹²C \rightarrow ²H pn ⁸Liv и /5/ μ^{-12} С $\rightarrow 2p 2n^{8}$ Li ν / необходимым условием для идентификации событий по этим каналам служило превышение недостающей массой реакции соответственно

Относительные вероятности выделенных каналов реакций /2/ - /5/ определялись по формуле /2/

$$W_{i} = \frac{n_{i}}{N_{\text{OCT, OCT, }} \lambda_{c} r_{m} \epsilon_{p}},$$

массы нейтрона и двух нейтронов.

где n_i - число событий, отнесенных к данной реакции; N_{OCT} . - полное число остановок μ^- -мезонов в просмотренном объеме эмульсии; η_{OCT} . - относительная частота атомного захвата μ^- -мезона ядрами углерода; λ_c и τ_m - скорость захвата и время жизни μ^- -мезона в ядре углерода; ϵ_p - эффективность регистрации σ_{μ} звезды /значения көэффициентов η_{OCT} ., λ_c , τ_m и ϵ_p приведены в работах / 1, 2, 6//.

Результаты расчетов относительных вероятностей каналов захвата μ^- -мезонов ядрами углерода по реакциям /2/ - /5/ и число идентифицированных событий по каждому из этих каналов представлены в *таблице*. Здесь же для сравнения приведены данные по реакции /1/^{/1/}.

Таблица					
Каналы реакций и - захвата	$\mu^- + {}^{12}C \rightarrow {}^{8}Li + \nu +$				
ядром угле рода	- + ³ He+n ^{/1}	^{⊥/} + ³ H+p	$+2^{2}$ H	+ ² H+p+n	+2p+2n
Число всех идентифици рованных событий	- 308	35	16	65	4
W ₁	$(1,6 \pm \pm 0,2) \cdot 10^{-3}$	$(1,9 \pm \pm 0,4) \cdot 10^{-4}$	(9 ± ±2)•10 ^{−5}	<3,5.10 ⁻⁴	<2,2.10 ⁻⁵
Число одно значно иде тифицирова ных событи	н- 220 нн- ий	18	2		
W ₂	(1,1 ± ±0,2)·10 ⁻³	$(1,0 \pm \pm 0,3) \cdot 10^{-4}$	(1,1 ± ± 0,8)-10	0 ⁻⁵	

Из таблицы видно, что полученные значения относительных вероятностей каналов /3/ и /5/ на два порядка, а /4/-на порядок меньше величины относительной вероятности реакции /1/. Отметим, что для каналов с двумя и более нейтральными частицами /реакции /4/ и /5// получена только верхняя граница относительной вероятности. Эти результаты не противоречат предположению о том, что в реакциях μ^- захвата ядрами углерода с образованием ⁸Li в промежуточном состоянии образуется ядро ⁴He* с энергией возбуждения в области /22-24/ МэВ.

Учитывая величины энергетического порога развала ⁴He^{*}, квантовых чисел и фазового объема, можно заключить, что величина относительной вероятности реакции /2/ μ⁻¹²С→ ⁸Li³Hpν должна быть того же порядка, что и величина относительной вероятности реакции /1/. Однако значение, полученное путем измерений, на порядок меньше. Это очень неожиданный результат, который требует дальнейших экспериментальных и теоретических исследований.

МЕХАНИЗМЫ РЕАКЦИЙ /2/ и /4/

.)

Реакция $\mu^{-12} C \rightarrow {}^{8}Li {}^{3}Hp\nu$ /2/была проанализирована в предположении, что вторичные заряженные частицы ³H и р возникают от развала промежуточного возбужденного ядра ⁴He^{*}. На *рис.* 3 приведены энергетические спектры для реакции /2/. Значения энергии возбуждения ⁴He^{*}, определенные из расчетов эффективной массы ³H и р, имеют максимум в интервале энергий /21-24/ *МэВ* /*рис.* 36/, а энергия возбуждения ¹²B^{*}, полученная путем вычислений эффективной массы трех заряженных частиц

Рис. 3. Энергетические распределения для реакции /2/: сплошная гистограмма - эксперимент; пунктир - расчет по резонансному механизму; штрих-пунктир - расчет по кластерному механизму μ^- захвата; кривая - фазовый объем. $/{^{8}}$ Li, , ${^{3}}$ H, , р/, группируется в области энергий /40-50/ МэВ/рис. Зв/. Найденные величины находятся в согласии с энергиями возбуждения как промежуточного ядра ${^{4}}$ He*, так и ${^{12}}$ B*, полученными на основе анализа реакции /1/ в работе/1/. Характер распределения энергии нейтрино / рис. За/ также указывает на то, что нейтрино, как и в реакции /1/, по-видимому, возникает в промежуточном двухчастичном процессе. Поэтому аналогично реакции /1/, предполагая резонансный механизм захвата μ^{-} -мезона/10/, мы произвели моделирование процесса по схеме:

с уровнями возбуждения ${}^{12}B^*$ - /44+6/ МэВ и ${}^{4}He^*$ -- /22,4<u>+</u>2,0/ МэВ и /24,5<u>+</u>2,0/ МэВ. Результаты этих вычислений представлены на рис. З и 4 штриховыми линиями. Из рисунков видно, что расчеты по схеме /1/ удовлетворительно описывают энергетические характеристики процесса и распределения углов между вторичными заряженными частицами. Это позволяет исключить из рассмотрения другие возможные схемы резонансного механизма с прямым испусканием возбужденным ядром ¹²В* протона или тритона. В то же время сравнение расчетов с угловыми распределениями нейтрино относительно направления вылета р, ³Н и особенно ⁴Не* /рис. 4г.е.ж/ показывает большое расхождение между расчетными и экспериментальными данными: так, согласие для распределения по $\cos({}^{4}\text{He}{}^{*}, \nu)$, *рис.* 4г, характеризуется величиной $(\chi^2/\chi^2 = 5)$.

р,

Другим механизмом, в котором в промежуточном состоянии может образоваться возбужденное ядро ⁴He^{*}, является захват μ^- -мезона частью ядра углерода - ассициение ⁴Li / *рис.* 5/. Было проведено моделирование реакции /2/ по схеме *рис.* 5 при предположении, что импульсное распределение ⁴Li совпадает с импульсным

Рис. 4. Угловые распределения вторичных частиц из реакции /2/ /обозначения те же, что и на рис. 3/.

распределением ядра ⁸Li , а уровни возбуждения ⁴He* равны /22,4±2,O/ МэВи/24,3±2,O/ МэВ. Данные расчетов по такому механизму /штрих-пунктирные линии на рис. 3 и 4/ несколько лучше согласуются с экспериментальными данными. Так, например, величина $\chi^2/\tilde{\chi}^2$ для углов между направлениями вылета ядра ⁴He* и нейтрино равна 1,7 / рис. 4г/. Следует, однако, отметить, что для более детального анализа механизмов реакции /2/ необходимо значительное увеличение статистического материала.

Для анализа реакции $\mu^{-} + {}^{12}C \rightarrow {}^{8}Li + {}^{2}H + p + n + \nu/4/$ были использованы трехлучевые события с Т-образным следом, для которых не было получено решений по каналам реакций μ^{-} -захвата без испускания нейтрона на легких ядрах в фотоэмульсии (C, N, O).

Такая выборка событий определена тем, что в реакции /4/ в конечном состоянии вылетают две нейтральные частицы, поэтому строгое выделение каждого события невозможно и приходится пользоваться общими кинематическими критериями.

Распределение выделенных событий по недостающей массе процесса /4/ представлено на *рис. 6а.* На том же *рис.6* для случаев, имеющих величину М_п > 940 *МэВ*,

11

Рис. 5. Схема захвата μ^{-2} мезона кластером ⁴Li.

Рис. 6. Недостающие масса /а/, импульс /б/ и энергия /в/ для событий реакции /4/ /обозначения те же, что и на рис. 3/.

приведены недостающий импульс / puc. 66/ и недостающая энергия / puc. 68/, полученные путем расчетов по реакции /4/.

Было проведено моделирование реакции /4/ аналогично моделированию процессов /1/ и /2/ по схеме

II)
$$\mu^{-} + {}^{12}C \rightarrow {}^{12}B^* + \nu$$

 $\downarrow \rightarrow {}^{4}He^* + {}^{8}Li$
 $\downarrow \rightarrow {}^{2}H + p$

с уровнями возбуждения 12 В* - /44±6/ МэВ, 4 Не* - /28,5±2,0/ МэВ и через захват μ^{-} -мезона квазиядром 4 Li с образованием промежуточного возбужденного ядра 4 Не в состоянии /28,5±2,0/ МэВ. В результате моделирования не удалось получить хорошего описания экспериментальных данных как по схеме (II) / рис. 6 и 7, штриховые линии/, так и путем расчетов по кластерной модели / рис. 6 и 7, штрихпунктирные линии/.

+ n

12

Рис. 8. Энергетические распределения вторичных частиц: а/ протоны, б/ дейтроны, в/ ядра ⁸Li.

Такой результат, по-видимому, является следствием малой вероятности образования высоковозбужденных состояний ⁴Не^{*}, и, возможно, вызван влиянием взаимодействия медленных вторичных частиц / *рис.* 8/ в конечном состоянии, которое сильно искажает экспериментальные энергетические и угловые распределения.

ЗАКЛЮЧЕНИЕ

1. Определены величины относительных вероятностей всех возможных каналов поглощения μ^- -мезонов ядром углерода с испусканием ⁸Li в трехлучевых $\sigma_{\mu}^$ звездах. Для вторичных частиц в реакциях /2/ - /4/ измерены энергетические и угловые распределения.

2. Из анализа полученных экспериментальных данных по захвату μ^- -мезона ядром ¹²С с образованием ⁸Li следует, что основным каналом является реакция

 $\mu^{-12}C \rightarrow {}^{8}Li {}^{3}Hen \nu / 1/$, имеющая величину относительной вероятности по крайней мере на порядок выше, чем для всех других рассмотренных каналов μ^{-3} захвата. Для реакции $\mu^{-12}C \rightarrow {}^{8}Li {}^{3}Hp\nu / 2/$ получена неожиданно малая величина относительной вероятности.

3. Из результатов исследования возможных механизмов реакций захвата μ^- -мезона ядрами углерода можно сделать вывод, что в реакциях с испусканием ядра ⁸Li в промежуточном состоянии образуется возбужденное ядро ⁴He* преимущественно в состоянии /22,5±2,0/ МэВ.

Качественно энергетические и угловые распределения вторичных частиц от реакций /1/ и /2/ описываются при моделировании исследуемых процессов по механизму прямого поглощения μ^{-} -мезонов малонуклонной ассоциацией ⁴Li.

Однако вопрос детального изучения механизма захвата μ^- -мезонов ядрами углерода требует дальнейших экспериментальных и теоретических исследований.

ЛИТЕРАТУРА

- 1. Батусов Ю.А. и др. ЯФ, 1971, 14, 1206.
- 2. Батусов Ю.А. и др. ЯФ, 1975, 22, 320.
- 3. Батусов Ю.А. и др. ЯФ, 1967, 6, 1151.
- 4. Mejerov W.E., Tombrello T.A. Nucl. Phys., 1968. A109. 1.
- 5. Агабабян Н.М. и др. ОИЯИ, Р15-5077, Дубна, 1970.
- 6. Батусов Ю.А. и др. ЯФ, 1973, 18, 962.
- 7. Батусов Ю.А. и др. ЯФ, 1975, 21, 1215.
- 8. Агабабян Н.М. и др. ОИЯИ, 10-5891, Дубна, 1971.
- 9. Например: Батусов Ю.А. и др. ЯФ, 1965, 1, 526.
- 10. Балашов В.В., Эрамжян Р.А. Atomic Energy Renev, 1967, 5, 3.

Рукопись поступила в издательский отдел 30 ноября 1977 года.