- 167 объединенный институт ядерных исследований

1 - 10889

ГАЛСТЯН Джемма Ашотовна

НЕУПРУГИЕ РАССЕЯНИЯ НА ЯДРАХ ЭЛЕКТРОНОВ И ФОТОНОВ С ЭНЕРГИЕЙ ДО 4,5 ГЭВ

Специальность 01.04.01 - экспериментальная физика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Ереванском физическом институте

Официальные оппоненты:

доктор физико-математических наук старший научный сотрудник Александр Авсеевич Вайсенберг

доктор физико-математических наук старший научный сотрудник Виктор Михайлович Сидоров

Ведущее научно-исследовательское учреждение: Харьковский физико-технический институт АН УССР.

Автореферат разослан "_____ 1977 г.

Защита диссертации состоится "______ 1977 г.

в час. на заседании Специализированного совета ДО47.0I.02 при Лаборатории высоких энергий Объединенного института ядерных исследований, г.Дубна, Московской области, Лаборатория высоких энергий СИЯИ, конференц-зал.

С диссертацией можно ознакомиться в библиотеке ЛВЭ ОИЯИ.

Ученый секретарь Совета Маихагер

М.Ф.Лиха

Исследование неупругих рассеяний электронов и фотонов высокой энергии на ндрах представляет интерес как для физики элементарных частиц, в частности, для понимания механизма их образования, так и для физики атомного ядра.

При высоких энергиях процесс фотопоглощения (виртуальных или реальных фотонов) на ядрах различных элементов позволяет получить информацию относительно адронной структуры фотонов, проверить модель векторной доминантности.

Боли фотон взаимодействует с ядром как сильновзаимодействурщая частица – векторный мезон, то полное сечение фотопоглощения будет пропорционально $\mathcal{A}^{2/3}$, т.е. фотон взаимодействует с поверхностными нуклонами ядра. В случае прямого взаимодействия сечение процесса $\mathcal{C}(\gamma N)$ в $\simeq 200$ рав меньше сечения поглощения сильновзаимодействурщей частицы, так что длина взаимодействия больше, фотон мохет взаимодействовать со всеми нуклонами ядра, и полное сечение фотопоглощения будет- \mathcal{A} . По экспериментальным данным по полному сеченив фотопоглощения на ядрах различных элементов показатель степени \mathcal{A} находится между 2/3 и І. В области энергии \mathcal{J} - квантов от 4,0 ГэВ до 18 ГэВ $\mathcal{C}(\gamma \mathcal{A})$ изменяется с атомным номером ядра как $\sim \mathcal{A}^{0.9}(\mathcal{I}\mathcal{I})$. Эффективное число нуклонов, с которым взаимодействует фотон, оказывается меньше \mathcal{A} , т.е. происходит затенение нуклонов ядра.

По экспериментальным данным по неупругому электрообразованию частиц на ядрах эффект затенения нуклонов ядра уменьшается с ростом квадрата 4-мерного передаваемого импульса – массы виртуального фотона – κ^2 . В области энергии электронов от 4,5 ГэВ до 19,5 ГзВ и 0,4 $\leq \kappa^2 \leq 3,7$ (ГзВ/с)² сечение неупругого рассеяния электронов на ядрах различных элементов в пределах опибок равно сумме сечений рассеяния на отдельных нуклонах ядра,

> объедаленный киститут адерных погледования БИБЛИОТЕКА

т.е. ~ (e ふ) ~ ふ ~ (e N 2]. Затенение нуклонов не наблюдается, что противоречит модели векторной доминантности.

Исследование фотопоглоцения на ядрах эмульсии было выполнено при энергии χ - квантов до $E_{\chi_{max}} = 1143 \text{ МэВ}^{237}$. С другой стороны, облучение фотоэмульсионных слоев пучком χ - квантов с энергией $E_{\chi_{max}} = 1,0$ ГзВ представляет интерес не только для определения полного сечения фотопоглощения на ядрах, но и для исследования реакций ядерного расцепления, в частности, для определения парциального сечения образования различных частиц, ядер и т.д.

Инклюзивное электро – и фотообразование частиц является предметом исследования многих экспериментальных работ. Наиболее примечательным фактом является избыток положительных адронов, отмеченный в ряде работ при определенных кинематических условиях. В работах по изучению инклюзивной электрогенерации адронов на протоне и дейтроне избыток положительных частиц наблюдается как от протонной, так и от нейтронной мишеней ℓ^4 , 57. Полученный результат авторы работ объясняют моделью партонов, согласно которой ожидается избыток положительных частиц от протонной и сравнительно меньщий – от нейтронной мишеней. Проблема избытка положительных частиц требует своего дальнейшего теоретического и экспериментального исследования.

В диссертационной работе изучаются:

I. Инклюзивное электрообразование *ज*[±]- мезонов, К[±]- мезонов и протонов на ядрах меди.

 Фотоядерные реакции с образованием нестабильных ядер бериллия.

2

Диссертация состоит из трех глав, введения и заключения.

В первой главе приводятся литературные данные по электро-и фотообразованию частиц на нуклонах и ядрах.

Во второй главе приводятся экспериментальные данные по образованию π^{\pm} - мезонов, \mathcal{K}^{\pm} - мезонов и протонов при облучении медной мишени электронами с энергией 4,0 ГэВ.

Электро- и фотообразование π^{\pm} - мезонов и протонов при различных энергиях начальной частицы и на различных ядрах изучалось во многих работах. Сравнительно меньше изучен процесс фотообразования κ^{\pm} - мезонов, до 1972 года полностью отсутствовали данные по алектрообразованию κ^{\pm} - мезонов. В связи с этим с использованием возможностей электронно-кольцевого ускорителя ЕФИ [6] в 1966-1967 г.г. был предложен и в 1971 году выполнен эксперимент по определению сечения электрообразования κ^{\pm} - мезонов методом ядерных фотоэмульсий [7].

В § I гл. П приведены схема установки и условия облучения фотозмульсионной камеры. Мишень - медная фольга толщиной \simeq I,5·IO⁻³ рад. ед. Фотозмульсконная камера, собранная из слоев НИКФИ БР-2 размером IO x IO см², толщиной 600 мкм, располагалась на расстоянии (2,08 ± 0,0I) м от мишени под углом (60 ± I,4)⁰ к направлению злектронного пучка. Во время облучения фотозмульсионная камера находилась в свинцовой защите, толщина передней стенки - \simeq 85 мм. Пучок взаимодействующих влектронов мониторировался квантометром, расположенным на расстоянии \simeq 70 м от мишени. Заряд, накопленный на квантометре, измерялся электрометром с постоянной $C \simeq 2,25 \cdot 10^{-16}$ Кл/ГзВ. До места расположения квантометра происходила двойная коллимация цучка (на расстоянии \simeq 10 м и \simeq 50 м), которая ослабляла пучок в \simeq (790 ± 90) раз.

Облучение фотовмульсионной камеры производилось при энергим влектронов 4,0 ГаВ, частоте сброса на мишень $\simeq 50$ Гц. За время экспозиции квантометром было зарегистрировано $N_{\chi} = (1,00\pm0,06) \cdot 10^{11}$ вкв. квантов, что соответствовало числу χ – квантов на выходе из мишени $N_{\chi} = (7,90\pm0,99) \cdot 10^{13}$ экв. квантов. С целью калибровки фотовмульсионных слоёв фотокамера повторно облучалась пучком π – мезонов с импульсом 4,0 ГаВ/с от синхрофавотрона ЛВЭ ОИЯИ. Маркировка и фотохимическая обработка слоев были выполнены в ДВЭ ОИЯИ.

د جم

В § 2 гл. П приведены данные по просмотру и идентификации остановивлихся частиц. Просмотр фотопластинок проводился вдоль "серого" или "чёрного" следа, входящих через торец частиц при увеличении $15x20^{X}$ на микроскопе МЕИ-9. Точка остановки частиц неоднократно просматривалась под увеличением $15x60^{X}$ с целью обнаружения распадной частицы. На участке фотоэмульсионной камеры с телесным углом λ^{2} (1,2 ± 0,01).10⁻⁵ ср. было прослежено 1029 частиц. Эффективность просмотра - 0,82.

Из 1029 частиц 98 были фоновыми – вторичные частицы, выходящие из взаимодействия или уменьшающие ионизацию вглубь эмульсии; 55 частиц вышли из стопки; 141 след частиц – следы протонов отдачи от взаимодействия нейтронов с ядрами эмульсии; 74 следа частиц прерывались в эмульсии; 40 частиц образовали звезды. Оставлиеся 621 идентифицировались следующим образом.

Известно, что медленные \mathcal{J}^{\pm} - мезоны оставляют в эмульсии характерный след, при остановке \mathcal{J}^{\pm} - мезоны распадаются по схеме $\mathcal{J}^{\pm} \rightarrow /^{\pm} \rightarrow e^{\pm}$, \mathcal{J}^{\pm} - мезоны захватываются ядром эмульсии, образуя \mathcal{D}^{\pm} - или \mathcal{G}^{\pm} - звезды. Идентификация этих частиц проводилась также по измерению массы частицы по ионизационным потерям и остаточному пробегу. Идентификация \mathcal{K}^{\pm} - мезонов с пробегом > 20 мм проводилась измерением массы по ионизации и пробегу. Для χ^{\pm} -мезонов с пробегом ≤ 20 мм идентификация проводилась визуально, по распадам или по δ^{-} н β^{-} звездам. Неточность идентификации на короткой длине составляла $\simeq 0.81$.

Ошибка в определении массы частиц складывалась из ошибок измерения ионизации и пробега. Основной вклад вносиме ошибка в измерении ионизации. В нашем случае ошибка в измерении ионизации вторичных частиц составляла \simeq (3+4)%, что приводило к ошибке в определении массы частиц \simeq 10%.

Таким образом, были выделены 72 π^{\pm} мезона, из которых по $\pi \rightarrow f \rightarrow e$ – распадам идентифицировались 46 π^{\pm} мезонов и по \mathcal{G} – и \mathcal{G} – звездам – 26 π^{-} мезонов; 42 χ^{\pm} мезона, из которых 3 случая $\chi \rightarrow \pi \rightarrow f \rightarrow e$, 14 случаев с распадной частицей (e, f, π). Природа распадной частицы не определялась. 10 событий идентифицировались как \mathcal{G} – звезды, и 15 – когда нельзя было четко наблюдать распадную частицу. 507 частиц не распадались, не захватывались ндром эмульсии. Такие частицы причислялись к протонам.

Отновение числа π^- и π^+ - мезонов было получено равным $N(\pi^-)/N(\pi^+) = 0,565 \pm 0,14$.

В § 3 гл. II даны результаты вычислений различных поправок, вводимых нами при определении сечений образования частиц. I. Поправка за счёт многократного рассеяния частиц при прохождении черев свинцовую "защиту": для JT[±] - мезонов ≃ 0,80; для χ^{\pm} - мезонов ≃ 0,98.

2. Поправка за счёт ядерного взаимодействия частиц в "защите": для π^{\pm} - мезонов \simeq 0,48; для χ^{\pm} - мезонов \simeq 0,57; для протонов \simeq 0,64.

3. Поправка на фон вторичных частиц от взаимодействия в "защите" 2 (10 + 15)% в малоэнергичной части спектра протонов.

4. Поправка за счёт распада " на лету " нестабильных частиц на пути от мишени до фотовмульсионной камеры: для π^{\pm} - мезонов \simeq 0,89; для κ^{\pm} - мезонов \simeq 0,62.

5. Поправка на фон от распадных частиц, ~ 5% от распада К[⊥] -мезонов.

6. Поправка за счёт перезарядки частиц на ядрах эмульсии: для J - мезонов ≃ 0,93; для К - мезонов ≃ 0,98; для протонов ≃ 0,93.

7. Поправка на эффективность просмотра \simeq 0,82 и эффективность идентификации K - мезонов на короткой длине \simeq 0,81.

Неточности в оценке поправок составляли в сумме ~ 10%.

В § 4 гл. П приводятся расчёты сечений с учётом всех попра вок.

Дифференциальные по углу и энергии сечения электрообразования частиц получены равными:

$$\begin{pmatrix} \frac{d^2 \sigma}{d \vartheta d \varepsilon} \end{pmatrix}_{\pi^+} = (0,42 \pm 0,10 \pm 0,04) \cdot 10^{-32} \text{ cm}^2/\text{ cp. MB} \\ \begin{pmatrix} \frac{d^2 \sigma}{d \vartheta d \varepsilon} \end{pmatrix}_{\pi^-} = (0,22 \pm 0,05 \pm 0,02) \cdot 10^{-32} \text{ cm}^2/\text{ cp. MB} \\ \text{MB} \\ \pi^+ - \text{M} \\ \pi^- - \text{MBORDB};$$

 $\left(\frac{d^{1} - \frac{d}{2}}{d \lambda d E}\right)_{k^{\pm}} = (0,81 \pm 0,16 \pm 0,08) \cdot 10^{-33} \text{ см}^{2}/\text{ср. MэB}$ для $k^{\pm} - \text{мевонов};$

÷η.

 $\left(\frac{d^{*}\sigma}{d \log e}\right)_{P} = (1,37 \pm 0,19 \pm 0,14) \cdot 10^{-33} \text{ cm}^{2}/\text{cp. MaB}$

для протонов. Сечения рассчитаны на нуклон ядра меди. Первая ошибка статистическая и ошибка мониторирования, вторая - систематическая ошибка, связанная с неточностью в оценке поправок.

В § 5 гл. П обсуждаются экспериментальные данные. Дифференциальное сечение инклюзивного электрообразования протонов сравнивается с интерполированным по экспериментальным данным ^[8] значением сечения. Сечения согласуются между собой в пределах точности измерения.

Процесс электрообразования сводится к процессу фотообразования частиц в случае регистрации только одной частицы из реакции $e + p - \pi^+ + \dots$. Основной вклад в матрицу рассеяния вносят малые значения квадрата 4-мерного передаваемого импульса κ^2 , приближение Вайцзеккера-Вильямса.

Процесс взаимодействия электронов с ядром с образованием ($\mathcal{J} - \mathcal{R} - \mathcal{P}$) частиц можно качественно представить следурщим образом. Электроны взаимодействуют с отдельным нуклоном ядра, затем происходит внутриядерный процесс (каскад, перерассеяние и т.д.). В таком предположении был выполнен расчёт сечения образования \mathcal{J}^+ мезонов с использованием приближения Вайцзеккера-Вильямса и зависимости полного сечения фотспоглощения ст атомного номера ядра, $\mathcal{C}(\gamma \mathcal{A}) \simeq \mathcal{A}^{q, 2} \mathcal{C}(\gamma \mathcal{N})$. Расчётное сечение электрогенерации \mathcal{J}^+ мезонов было получено равным

 $\left(\frac{d^{2}\sigma}{d \log E}\right)_{\pi^{+}} = 0,36 \cdot 10^{-32} \text{ cm}^{2}/\text{cp. MBB.}$

Измеренное и расчётное сечения согласуются между собой в пределах точности.

В третьей главе дано описание эксперимента по изучению процесса фоторасщепления ядер эмульсии тормозными 🔏 - квантами с энергией от I,O ГэВ до 4,5 ГэВ.

В § I гл.Ш приводится описание экспериментальной установки по изучению фоторасщепления ядер эмульсии тормозными выведенного пучка электронного синхротрона Ереванского физического института.

Тормозные χ - кванты конвертировались на внутренней мишени ускорителя, проходили через коллиматоры и дважды очищались магнитом типа СП-57. Фотоэмульсионные слои типа НИКФИ ЕР-2 размером 5 x IO см² толщиной \simeq 600 мкм облучались очищенным пучком χ квантов. Облучение проводилось по одному слою при каждом опыте, фотоэмульсионные слои располагались перпендикулярно пучку χ -квантов. Максимальная энергия χ - квантов была I,0; I,5; 2,0; 3,0; 3,5; 4,0; 4,5 ГэВ.

Облученные слои транспортировались в ОИЯИ, где были выполнены маркировка и фотохимическая обработка слоев.

Просмотр фотопластинок проводился на микроскопе МБИ-9 при увеличении 15х20^х, просматривалась область прохождения пучка, регистрировались фотозвезды с числом лучей $L \ge 2$. Кроме того, просматривалась площадь, находящаяся вне пучка для оценки числа фоновых звезд от ускорителя и космических лучей. Эффективность просмотра находилась в пределах (0,77 + 0,85).

Известно, что сечение фоторасшепления определяется следующим образом:

$$g = \frac{E_{gmax}}{\int_{E_{max}}^{E_{gmax}} E_{g} \cdot \mathcal{N}(E_{g}, E_{gmax}) dE_{g}}{\int_{E_{gmax}}^{E_{gmax}} E_{g} \cdot \mathcal{N}(E_{g}, E_{gmax}) dE_{g}}, \qquad (I)$$

где \Im_{χ} - сечение фоторасщепления ядер при определённой энергии χ -квантов; $h(E_{\xi}, E_{\xi m q_{\chi}})$ - спектр тормозного излучения. Фотозвезды образуются χ - квантами от высокоэнергичной части спектра тормозного излучения, где спектр в хорошем приближении может быть описан в виде

$$h(E_{\chi_1}E_{\chi_{\max}}) \simeq \frac{N_{\mathcal{H},\mathcal{H}}}{E_{\chi}} .$$
 (2)

Подставляя (2) в формулу (I), можно получить

$$V_{\gamma} = \frac{\Delta \sigma_{\alpha}}{\Delta l_{\mu} F_{\gamma}}$$
(3)

 \mathcal{N}_{γ} определяется наклоном прямой зависимости \mathcal{N}_{γ} от $\mathcal{L}_{E_{\gamma}}$. По нашим данным, $\mathcal{N}_{\gamma} = (170 \pm 14)$ мкон/нуклон для энергии γ -квантов в интервале $E_{\gamma} = (1,0+4,5)$ ГэВ [9].

В § 2 гл. Ш дано обсуждение результатов. По модели векторной доминантности число нуклонов, с которыми взаимодействует высокоэнергичный фотон, уменьшается за счёт теневого эффекта, $A_3 \gamma \gamma / A$ меняется с изменением энергии γ - квантов. При энергии γ -квантов $E_{\gamma} = I,0$ ГэВ $A_3 p \gamma / A = I,0$. При более высокой энергии $A_3 \gamma \gamma / A \simeq 0.75$. Нами $A_3 \gamma \gamma / A$ определяется по формуле (4)

$$\mathcal{A} \rightarrow \gamma \gamma / \mathcal{A} = \frac{\mathcal{O}(\gamma N)}{\overline{\mathcal{O}}_{\gamma}(E_{\gamma})}, \qquad (4)$$

где \mathcal{O}_{Y} - иэмеренное нами сечение в расчёте на нуклон; $\overline{\mathcal{O}}(YN)$ - значение сечения фотопоглощения на нуклоне, усредненное в интервале энергии $\Xi_{Y} = (I, 0 + 4, 5)$ ГзВ. По формуле (4) нами получено

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} = 0,707 \pm 0,08$$

Приведенная ошибка включает в себя как ошибку измерения, так и ошибку от усреднения сечения $\mathscr{O}(\gamma N)$ в интервале энергий $E_{0} = (1,0 + 4,5)$ ГэВ.

По экспериментальным данным по фотопоглощению на ядрах при высоких энергиях известно, что в процессе взаимодействия вклад модели векторной доминантности составляет № 80%. По формуле (5) оценивается вклад модели векторной доминантности

$$\frac{1}{A} \cdot \mathscr{O}(\gamma A) = \overline{\mathscr{O}_{\gamma}} = [1 - \omega + \omega \cdot A^{-0,1}] \overline{\mathscr{O}}(\gamma N), \quad (5)$$

 $\chi = 0,91 \pm 0,103.$

Несмотря на большие ошибки, полученное значение показывает, что в области энергии X - квантов до 4,5 ГэВ при взаимодействии фотонов с ядром, вклад модели векторной доминантности ≥ 80%.

Параграфы 3,4,5 гл. II посвящены изучению процесса образования ядер бериллия в фотоядерных реакциях.

В последнее время возрос интерес к процессам генерации многозарядных частиц ($\geq \geq 2$) - фрагментации ядер - во взаимодействиях частиц высокой энергии с ядрами. Фрагментация ядер под действием адронов изучена во многих работах. Сравнительно меньше данных по изучению расщепления ядер под действием \mathcal{X} - квантов, особенно в области энергии I, O ГаВ. Имеющиеся экспериментальные данные не дают однозначного ответа относительно механизма фрагментации ядер - прямая реакция, испарение, деление и т.д.

Нами изучался процесс образования ядер ⁸Ве, при взаимодействии тормозных X - квантов с энергией от I,5 до 4,5 ГэВ с ядрами фотоэмульсии /107. В § 3 гл.Ш приводится методика по отбору событий, содержащих распадные случаи ядер бериллия.

Известно, что в ядерных реакциях образуются два различных состояния ядер $\binom{8}{8} \underset{j}{e_{y}} \underset{i=1}{\overset{}{}}$ и $\binom{8}{8} \underset{i=1}{\overset{}{e_{y}}} \underset{i=1}{\overset{}{}}$. Ядро $\binom{8}{8} \underset{i=1}{\overset{}{e_{y}}} \underset{i=1}{\overset{}{}}$ с чётным угловым моментом за время $\simeq 10^{-16}$ с распадается на две \measuredangle - частицы, $\binom{8}{8} \underset{j}{\overset{}{e_{y}}} \underset{i=1}{\overset{}{}} \sim 2 \overset{7}{H} \underset{e_2}{\overset{}{}}$. Для ядра $\binom{8}{8} \underset{j}{\overset{}{e_{y}}} \underset{i=1}{\overset{}{}} c$ нечётным угловым моментом разрешен только \daleth - переход $\binom{8}{8} \underset{e_{y}}{\overset{}{e_{y}}} \underset{i=1}{\overset{}{}} \underset{e_{z}}{\overset{}{}} + \oiint$. Ввиду того, что энергия связи двух \measuredangle - частиц в основном состоянии ядра маленькая $\pounds \simeq 96$ КзВ, распадные \checkmark - частицы не дадут видимого следа в эмульсии. В случае распада " на лету " \measuredangle - частицы имеют близкие энергии и вылетают из центра расщепления в одном направлении. Нами выделялись фотоядерные реакции с узкими парами частиц.

В § 4 гл. Ш приведены энергетические и угловые распределения ядер бериллия. Энергия ядер бериллия определяется как сумма кинетических энергий $\sim -$ частиц. Средняя энергия ядер ${}^{g}B_{e_{x}}$ получена равной $\widetilde{E}_{s_{b_{x_y}}} = (44,5 \pm 0,7)$ МаВ. Распределение по энергии согласуется с максвелловским спектром с параметрами: величина потенциального барьера V = II МаВ; температура возбуждения ядра T = I7МаВ; скорость остаточного ядра $\mathcal{S} = 0,005$. Энергетический спектр слабо зависит от начальной энергии частиц.

Угловое распределение ядер бериллия рассматривается относительно направления движения первичного фотона. По нашим данным, угловая анизотропия распределения – отношение числа фрагментов с углом вылета $\leq 90^{\circ}$ к числу фрагментов с углом $> 90^{\circ}$, B/H, получена равной $B/H = (I,37 \pm 0,17)$. Анизотропия углового распределения слабо зависит от начальной знергии X - квантов, медленно растёт с повышением энергии X - квантов.

В § 5 гл. Ш определяется сечение образования ядер бериллия. Анализируются 9475 фотозвёзд, образованных χ - квантами с знер гией от I,5 ГзВ до 4,5 ГзВ. Из 9475 фотозвёзд были отобраны 272 события, которые содержали распадные случаи ядер бериллия. Наблюдаемое количество событий с ${}^{8}B_{e_{\chi}}$ поправлялось на ряд факторов: число случайных пар частиц, имитирующих распад ядер бериллия; на эффективность регистрации ядер бериллия и фотозвезд; на потерю событий из-за конечной толщины фотозмульсионного слоя и т.д.

В интервале энергии χ -квантов $E_{\chi} = (1,5 \div 4,5)$ ГэВ нами получено сечение образования ядер бериллия $\overline{\delta_{\chi}}_{g_{\chi}} = (7,15\pm1,5)$ мкбн/нуклон или, в расчёте на ядро змульсии ($\mathcal{A} = 49,6$), сечение получено равным $\overline{\delta_{\chi}}_{1,B_{\chi}} = (0,36\pm0,08)$ мбн.

В разделе "Заключение" приводится перечень полученных в работе результатов.

I. Изучен процесс образования ($\mathcal{J} - \mathcal{K} - \mathcal{P}$) частиц в реакции взаимодействия электронов с энергией 4 ГэВ с ядрами меди под углом 60°к направлению движения электронов. Измерены дифференциальные по углу и энергии сечения электрообразования \mathcal{J}^{\pm} - мезонов, \mathcal{K}^{\pm} -мевонов и протонов. Получены первые данные по сечению электрообравования \mathcal{K}^{\pm} - мезонов. Выполнены расчёты сечения образования \mathcal{J}^{\pm} - мезонов на ядрах меди с использованием приближения Вайцзеккера-Вильямса и зависимости полного сечения фотопоглощения от атомного номера ядра. Сечение образования Л⁺ - мезонов примерно вдвое больше сечения Л⁻ - мезонов. Отношение л⁻/л⁺ получено равным

 $2 \sim (\pi^{-}) / N_{\pi} + = 0,38 \pm 0,12,$

где Z - число протонов; N - число нейтронов.

 Изучен процесс фоторасщепления ядер эмульсии в области знергии X - квантов от I,О ГэВ до 4,5 ГэВ. Измерено полное сечение фотопоглощения на ядрах эмульсии.

3. Впервые в фотоядерных реакциях изучен процесс образования нестабильных ядер бериллия. Определено сечение фрагментации ядер бериллия в области энергии χ' - квантов до 4,5 ГэВ. Энергетические и угловые распределения ядер бериллия похожи на данные по адронным экспериментам. В фотоядерных реакциях и в реакциях, вызванных адронами, выход фрагментов бериллия больше фрагментов лития, что требует своего дальнейшего изучения. Отношение парциального сечения образования ядер бериллия к полному адронному фотосечению остается постоянным в широком интервале энергии начальной частицы. По адронным данным, отношение парциального к геометрическому сечению также остается постоянным в широком интервале энергии начальной частицы. Все это подтверждает адронную структуру фотонов.

Материал диссертационной работы докладывался на Сессии отделения ядерной физики АН СССР (Москва, 1971 г); на совещаниях фотоэмульсионного комитета СИЯИ и опубликован в работах. [6],[7],[9],[10]

ЛИТКРАТУРА

1.	D.O.Galdwell, V	.Elings,	W.P.Hes	se et a	1. Phys.	Rev. Lett.
2.4	<u>25,</u> 609, 1970;	ibid. Ph	ys. Rev.	Lett.	<u>23</u> , 1256	, 1969; t bid
	Phys. Rev. D7,	1362, 19	73.			

- W.R.Ditzler, M.Breidenback, I.I.Fridman et al. Phys. Lett. B57, 201, 1975.
- V.Z.Peterson, C.E.Roos. Phys. Rev. <u>105</u>, 1620, 1957; ibid Phys. Rev. <u>124</u>, 1610, 1961.
- J.T.Dakin, G.J.Feldman, F.Martin et al. Phys. Rev. Lett. <u>31</u>, 786, 1973; ibid. Phys. Rev. Lett. <u>29</u>, 746, 1972; ibid. Phys. Rev. Lett. <u>30</u>, 143, 1973.
- 5. J.Dakin. Preprint SLAC-PUB-1236, 1973.
- 6. Д.А.Галстян. Препринт СМЯМ 1-3974, Дубна, 1968.
- 7. Л.А.Галстян. В.М.Харитонов. ЯФ. 14, 771, 1971.
- K.W.Chen, J.B.Dunning et al. Phys. Rev. <u>B135</u>, 1030, 1964.
 A.A.Cone, K.W.Chen, J.K.Dunning et al. Phys. Rev. 156, 1490. 1967.
- 9. Дж.А.Галстян, А.М.Зверев и др. ЯФ, <u>17</u>, 907, 1973.
- 10. Дж.А.Галстян, А.М.Зверев. ЯФ, 19, 1177, 1974.

Рукопись поступила в издательский отдел 25 июля 1977 года.