ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

А.И.Аношин, В.Б.Любимов, Л.И.Сарычева, М.И.Соловьев, М.Сулейманов, Д.Тувдендорж

4182/2 -74

A-697

СВОЙСТВА ЛИДИРУЮЩИХ МЕЗОНОВ, ОБРАЗОВАННЫХ ВО ВЗАИМОДЕЙСТВИЯХ *я*⁻ -МЕЗОНОВ С ЯДРАМИ УГЛЕРОДА И НУКЛОНАМИ ПРИ Р_{*я*} = 40 ГЭВ/С

17/4-74

1 - 10804

А.И.Аношин,¹ В.Б.Любимов, Л.И.Сарычева,¹ М.И.Соловьев, М.Сулейманов,² Д.Тувдендорж

СВОЙСТВА ЛИДИРУЮЩИХ МЕЗОНОВ, ОБРАЗОВАННЫХ ВО ВЗАИМОДЕЙСТВИЯХ *я* - - МЕЗОНОВ С ЯДРАМИ УГЛЕРОДА И НУКЛОНАМИ ПРИ Р_я - = 40 ГЭВ/С

Направлено в ЯФ

¹ Московский государственный университет. ² Институт физики АН АзССР, г. Баку.

Аношин А.И. и др.

1 - 10804

Свойства лидирующих мезонов, образованных во взаимодействиях *т*-мезонов с ядрами углерода и нуклонами при Р_л = 40 ГэВ/с

На основе феноменологического определения понятий "лидирующая" и "сохранившаяся" частица предложен способ выявления таких частиц в *п*-нуклонных и *п*-углеродных взаимодействиях и получены их характеристики.

Показано, что импульсные спектры лидирующих и сохранившихся пионов почти не зависят от типа взаимодействия, а сами пионы коллимированы в пределах малого телесного угла.

Получены верхние оценки для коэффициентов неупругости в $\pi^- p_$ и π^{-12} С -взаимодействиях, соответственно равные 0,83±0,01 и 0,86±0,01.

Работа выполнена в Лаборатории высоких энергий ОНЯИ.

Препринт Объединенного института ядерных исследований. Дубиа 1977

© 1977 Объединенный инспинут ядерных исследований Дубна

1. ВВЕДЕНИЕ

Эта работа посвящена исследованию свойств "лидирующих" частиц, возникающих в адрон-адронных столкновениях. Происхождение понятия "лидирование" связано с известным из опытов с космическими лучами фактом существования среди вторичных частиц таких, которые имеют энергию, близкую по величине к энергии первичной частицы /1.2. Несмотря на сравнительную давность возникновения этого понятия, до настоящего времени существует трудность с его четким определением. Естественно, что результаты исследования, сопоставления и интерпретации свойств "лидирующих" частиц зависят от способа их выделения. При разнообразии в определениях "лидирования" различные авторы, однако, отмечают некоторые общие свойства "лидирующих" частиц /1-5/.

Одним из важных вопросов физики высоких энергий является вопрос о свойствах коэффициента неупругости, т.е. величины, определяющей долю энергии, переходящей во вновь рожденные частицы. Эту величину можно определить, если знать долю энергии, уносимую первичной частицей после ее столкновения с частицей мишени. В связи с этим возникает задача выявления такой частицы среди вторичных. Задача становится особенно трудной в случае, когда первичная частица – пион, т.к. в основном вторичными частицами являются тоже пионы. При решении последней задачи предполагается, что первичная частица после столкновения остается среди лидирующих частиц. Это допушение делается по аналогии с рр-и рА -столкновениями, где первичный протон является лидирующим и его можно отделить от вторичных пионов^{/1,2,/}. Как и авторы работ^{/1-3/}, назовем "сохранившейся" частицу, уцелевшую после взаимодействия, имеющую такие же квантовые числа, как и первичная частица, и будем искать ее среди лидирующих частиц.

Целью настоящей работы было сравнить свойства лидирующих частиц и сохранившихся π -мезонов в пион-нуклонных и пион-ядерных взаимодействиях.

В качестве лидирующей рассматривалась самая быстрая в данном событии частица. Эта частица может быть как заряженной, так и нейтральной. В данной работе при выявлении самой быстрой частицы нейтральные частицы не рассматривались.

Предполагая, что дифференциальные сечения рождения положительных и отрицательных пионов одинаковы, будем считать, что избыток отрицательных "лидирующих" частиц над положительными в передней полусфере системы центра инерции пион-нуклон (С -система) обусловлен наличием л -мезонов, которые и назовем "сохранившимися".

2. ЛИДИРУЮЩИЕ ЧАСТИЦЫ

В работе использованы данные, полученные с помощью двухметровой пропановой камеры, облученной *т*-мезонами с импульсом 40 ГэВ/с. В соответствии с ранее установленными критериями (см.,например,^{/6/}) все найденные события классифицировались как'*π*⁻ р'',''*π*⁻ п''- и''*π*⁻ С '' взаимодействия. Полное число *π*⁻¹² С -взаимодействий определялось по формуле

$$N(\pi^{-12} C) = N("\pi^{-} C") + N("\pi^{-} n") + \alpha N("\pi^{-} p"), \qquad (1)$$

где *a* = 0,44<u>+0</u>,03⁷⁷.Рассматривались события, для которых отсутствовали неизмеримые треки и относительная ошибка в определении импульса самой быстрой частицы составляла менее 30%.

На рис. la,б показаны спектры импульсов в лаб.системе лидирующих π^- - и π^+ -мезонов, возникших в

 π^- р -, π^- п -, π^- С - и π^{-12} С -взаимодействиях. Видно, что спектры лидирующих мезонов почти не зависят от типа взаимодействия, причём спектры лидирующих π^- мезонов более пологие. В табл. 1 приведены средние значения импульсов <P>, поперечных импульсов <P₁> и углов вылета < θ > лидирующих мезонов относительно направления движения первичного π^- -мезона. Из табл.1 следует, что лидирующие частицы характеризуются малыми углами вылета, причём во всех типах взаимодействий, кроме π^- п -взаимодействий, угол вылета π^- -мезона меньше угла вылета π^+ -мезона. Разности между средними углами вылета и между средними импульсами π^+ и π^- -мезонов почти не зависят от типа взаимодействия.

Тип Собн— тия	Лиди- рующий пион	⟨₽⟩, <u>^{ГаВ}</u>	$\langle P_{1} \rangle_{, c}^{\Gamma_{\partial B}}$	(Ф, град	Кол-во Событий
"π . "	冗+	II,6±0,02	0,47 <u>+</u> 0,0I	5,I <u>+</u> 0,I	1473
	冗 ⁻	I6,9±0,2	0,49 <u>+</u> 0,0I	3,9 <u>+</u> 0,I	3308
Jī-n"	π+	12,5 <u>+</u> 0,3	9 ,47 <u>+</u> 0,01	5,4±0,I	506
	π-	15,0 <u>+</u> 0,3	0,45 <u>+</u> 0,01	7,6±0,I	1445
πτ	冗+	9,8 <u>+</u> 0,3	0,52 <u>+</u> 0,02	6,7 <u>±</u> 0,I	487
	元 ⁻	I4;2 <u>+</u> 0,4	0,50 <u>+</u> 0,0I	4,5 <u>±</u> 0,I	833
π"2	π+	II,I <u>+</u> 0,2	0,5I±0,0I	8,6 <u>+</u> 0,I	1089
	π ⁻	I5,3 <u>+</u> 0,2	0,49±0,0I	6,I <u>+</u> 0,I	2265

Таблица 1

3. СОХРАНИВШИЕСЯ ЧАСТИЦЫ

Для выявления "сохранившихся" п -мезонов в передней полусфере С -системы из спектра продольных импульсов лидирующих п - мезонов вычитался спектр продольных импульсов лидирующих п⁺-мезонов. Полученные таким образом для $\pi^- p$ -, $\pi^- n$ -, $\pi^- C$ - и $\pi^{-12}C$ -взаимодействий разностные спектры представлены на рис.2. Кроме того, были построены разностные спектры по той же методике, как и на рис.2, для всех π^- - и π^+ -мезонов с $\cos\theta^* > 0.7$ и $\cos\theta^* > 0.9$ (θ^* - угол вылета пионов в С -системе). Оказалось, что с изменением θ^* в области 0 < P₁* < 1,5 ГэВ/с форма разностных спектров резко меняется, тогда как при P₁₁* ≥ 1,5 ГэВ/с форма спектров не меняется и, кроме того, полностью совпадает с формой спектров сохранившихся п -мезонов. В качестве примера на рис.3 для случая лр -взаимодействий приведены спектры сохранившихся пионов и разностные спектры всех π^- - и π^+ -пионов при $\cos \theta^* > 0.7$ и $\cos\theta^* > 0.9$.

С уменьшением угла θ^* достигается такое критическое эначение угла θ^*_{kp} , после которого начинается плавное снижение разностного спектра π^- и π^+ -мезонов. Последний факт указывает на то, что сохранившиеся π^- мезоны вылетают в пределах узкого конуса в переднюю полусферу.

Отметим, что для всех рассмотренных типов взаимодействий спектры продольных импульсов в С-системе сохранившихся π -мезонов разделяются на две части с границей при P* = 1,5 ГэВ/с. В лаб. системе величина P* = 1,5 ГэВ/с соответствует $\mathbf{x}_{ИЗЛ.} \simeq 0,3$ ($\mathbf{x} = P/P_0$, где P- импульс сохранившегося, а $P_0 = 40$ ГэВ/с - импульс первичного пиона). В интегральном импульсном распределении заряженных пионов имеется излом при этом же значении $\mathbf{x} = 0,3$. На это обстоятельство неоднократно обращалось внимание в экспериментах с космическими лучами^{/1,2/} где указанный излом объясняется существованием сохранившихся частиц, способных уносить значительную ($\geq 0,5$) долю энергии первичной частицы. Причём величина $\mathbf{x}_{изл}$ не зависит от энергии первичной

Рис.2. Спектры продольных импульсов в С-системе, полученные как разности между спектрами лидирующих π^- – и π^+ –мезонов в π^- р –, π^- п –, π^- ¹² С –, π^- С – взаимодействиях.

частицы и от типа взаимодействия. Так как мы не можем с уверенностью определить форму спектра сохранившихся π^- -мезонов при P * <1,5 ГэВ/с, то при определении характеристик сохранившихся пионов использовалась часть спектра с нижней границей при P * =1,5 ГэВ/с, Полученные результаты (<n> - средняя множественность, <P*> - средний импульс в С -системе, <u> средняя доля энергии, уносимая сохранившимися частицами) приведены в табл.2. Величина <n> для π^- р

Рис.3. Спектры продольных импульсов в С-системе для π р-взаимодействий, полученные как разности между спектрами отрицательно и положительно заряженных пионов при $\cos\theta^* > 0.7$; $\cos\theta^* > 0.9$ и для случая, когда пионы только лидирующие.

взаимодействий совпадает в пределах ошибок с величиной (0,25+0,05), найденной для сохранившихся *п*-мезонов в работе /3/.

4. АНАЛИЗ п⁻¹²С-ВЗАИМОДЕЙСТВИЙ

Рассмотрим угловые распределения заряженных π^- мезонов в С-системе. На рис.4 приведены разностные распределения (F_{π} +) для π^+ - и π^- -мезонов:

Рис.4. Разностные угловые распределения π^{\pm} -мезонов в С-системе для π^{-12} С-взаимодействий (пояснения см. текст, формулы (2) и (3)).

Таблица 2

Тип события	<n></n>	$\langle P^* \rangle_{C}^{\frac{\Gamma_{3}B}{C}}$	<u> </u>
、	0,24 <u>1</u> 0,02	3,08±0,03	0,17±0,01
	0,23 <u>1</u> 0,03	2,80±0,04	0,15±0,02
	0,14 <u>1</u> 0,04	3,06±0,07	0,10±0,01
	0,20 <u>1</u> 0,01	2,96±0,03	0,14±0,01

Reparence, with a Change

$$\mathbf{F}_{\pi} + \equiv \frac{1}{\sigma} \frac{d\sigma}{d \mid \cos \theta_{\pi}^* \mid} = \mathbf{F}_{b\pi} + -\mathbf{F}_{f\pi}^+ , \qquad (2)$$

$$\mathbf{F}_{\pi} - = \frac{1}{\sigma} \frac{\mathbf{d}\sigma}{\mathbf{d} | \cos \theta *]}_{\pi} = \mathbf{F}_{\mathbf{f}} - \mathbf{F}_{\mathbf{b}\pi}, \qquad (3)$$

где $F_{f_{\pi}\pm}$ - угловое распределение π^{\pm} -мезонов в передней полусфере, $F_{b\pi}\pm$ - угловое распределение π^{\pm} -мезонов в задней полусфере.

Видно, что в пределах ошибок эти распределения совпадают при $0 \le |\cos \theta^*| \le 0.94$, что свидетельствует об одинаковой по величине и противоположной по знаку асимметричности угловых распределений π^- и π^+ -мезонов в указанном диапазоне углов θ^* . При $|\cos \theta^*| \ge 0.94$. асимметрия углового распределения π^- -мезонов, летящих вперед, превосходит асимметрию углового распределения π^+ -мезонов, летящих назад. Эта разница обусловлена существованием сохранившихся π^- -мезонов, вылетающих в пределах узкого конуса.

При анализе спектров продольных импульсов заряженных пионов в С -системе обнаружилась следующая особенность. Спектр продольных импульсов π -мезонов в задней полусфере С -системы и аналогичный спектр π^+ -мезонов в передней полусфере можно описать одной и той же функцией вида A $\exp(B|P^*|)$. Причём A $(\pi^-)/A(\pi^+) =$ = 1,04±0,03 и B $(\pi^-)/B(\pi^+) =$ 1,01±0,02. Эта особенность позволяет сделать предположение, что спектры продольных импульсов пионов состоят по крайней мере из двух частей. Первая – симметричная как в передней, так и задней полусфере ("симметричная вперед – назад") и одинаковая для π^- и π^+ -мезонов, вторая – асимметричная в передней полусфере ("асимметричная вперед") для π^- -мезонов и в задней полусфере ("асимметричная назад") для π^+ -мезонов.

На рис.5 приведены спектры $(\Phi_{\pi^{\pm}}) \pi^{+} - \mu \pi^{-}$ -мезонов, полученые следующим образом (разностные спектры):

10

Рис.5. Разностные спектры продольных импульсов π^{\pm} - мезонов в С-системе для π^{-12} С -взаимодействий (пояснения – см. текст).

$$\Phi_{\pi^{+}} = \frac{1}{\sigma} \left(\frac{d \sigma}{d P_{\parallel}^{*}} \right)_{\pi^{+}} = \Phi_{b\pi^{+}} - \Phi_{f\pi^{+}}, \qquad (4)$$

$$\Phi_{\pi^{-}} = \frac{1}{\sigma} \left(\frac{d\sigma}{dP_{\parallel}^{*}} \right)_{\pi^{-}} = \Phi_{f\pi^{-}} - \Phi_{b\pi^{-}}, \qquad (5)$$

где $\Phi_{f\pi} \pm$ - распределение продольных импульсов для $\pi \pm$ -мезонов в передней полусфере, $\Phi_{b\pi} \pm$ - распреде-

ление продольных импульсов π^{\pm} -мезонов в задней полусфере. Из рисунка видно, что при $0 \le |P_1^*| < 1,5$ ГэВ/с оба распределения совпадают. Этот факт указывает на существование одинаковой по величине и противоположной по знаку асимметрии импульсных распределений π^- -мезонов передней полусферы и π^+ -мезонов задней полусферы в указанном диапазоне импульсов, При $|P_1^*| \ge$ $\ge 1,5$ ГэВ/с оба распределения отличаются, что, по-видимому, соответствует событиям, обусловливающим разницу в асимметричности угловых распределений, показанных на рис. 4 для π^- - и π^+ -мезонов при $|\cos \theta^*| \ge 0.94$, т.е. сохравнившимся π^- -мезонам.

На рис.5 приведено также распределение, полученное путем вычитания разностных распределений π^- и π^+ мезонов ($\Phi_{\pi^-} - \Phi_{\pi^+}$). Это распределение соответствует "избыточным вперед" π^- -мезонам. В табл. З приведены средние характеристики этих мезонов вместе с результатами для"асимметричных вперед" π^- -мезонов и "асимметричных назад" π^+ -мезонов. Величины $<n > u < P^* >$ одинаковы для "асимметричных вперед" π^- -мезонов и "асимметричных назад" π^+ -мезонов и отличаются от соответствующих значений для "избыточных" π^- -мезонов.

Таблица З

Тип частицы	<n></n>	$\langle P_{\mu}^{*} \rangle \frac{T \rightarrow B}{c}$	<u></u>
ЛС - асним. ЛС - вперец"	0,35 ± 0,03	I,0 <u>+</u> 0,2	0,08 <u>+</u> 0,0I
Л ⁻ - "Эперед"	0,10 <u>±</u> 0,01	3,33 <u>+</u> 0,04	0,08 <u>+</u> 0,0I
<i>Гс⁺-</i> асими.	0,39 ± 0,03	-(I,03 <u>+</u> 0,02)	0,006 <u>+</u> 0,002
Всвго	0,84 <u>+</u> 0,04		0,16 <u>+</u> 0,01

Сформулируем основные выводы работы.

На основе феноменологического определения понятий "лидирующая" и "сохранившаяся" частица предложен способ выявления таких частиц в π^- -нуклонных и π^- углеродных взаимодействиях и получены их характеристики. Показано, что импульсные спектры лидирующих и сохранившихся пионов почти не зависят от типа взаимодействия, а сами пионы коллимированы в пределах малого телесного угла. Определяя средний коэффициент неупругости по формуле < k > = 1 -<u>. где <u>- доля энергии, уносимая сохранившимися π^- -мезонами, получаем верхние оценки для величин коэффициентов неупругости 0,83±0,01 и 0,86±0,01 в π^- р - и π^- 12С-взаимодействиях соответственно.

В заключение авторы выражают глубокую благодарность участникам Сотрудничества по обработке снимков с двухметровой пропановой камеры за полезные дискуссии и помощь в работе.

ЛИТЕРАТУРА

- 1. Мурзин В.С., Сарычева Л.И. Космические лучи и их взаимодействие. М., Атомиздат, 1968.
- 2. Мурзин В.С., Сарычева Л.И. Множественные процессы при высоких энергиях. М., Атомиздат, 1974.
- 3. Сотрудничество: Будапешт-Бухарест-Дубна-Краков-София-Тбилиси-Ташкент-Улан-Батор-Ханой. ОИЯИ, Р1-8064, Дубна, 1974.
- 4. Абдурахимов А.У. и др. ОИЯИ, Р1-7680, Дубна, 1974.
- 5. Калинкин Б.Н. и др. ОИЯИ, Р2-8770, Дубна, 1975.
- 6. B-B-C-D-H-S-S-T-T-UB-W Collaboration, Phys.Lett., 1972, 39B, 371.
- 7. Сотрудничество: Будапешт-Бухарест-Дубна-Краков-София-Тбилиси-Ташкент-Улан-Батор-Ханой. ОИЯИ, Р1-9792, Дубна, 1976.

Рукопись поступила в издательский отдел 1 июля 1977 года.