5-955 объединенный институт ядерных исследований

1 - 10766

БЫСТРИЦКИЙ Вячеслав Михайлович

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ НЕКОТОРЫХ МЕЗОАТОМНЫХ И МЕЗОМОЛЕКУЛЯРНЫХ ПРОЦЕССОВ В ГАЗООБРАЗНОМ ВОДОРОДЕ

Специальность 01.04.01 - экспериментальная физика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Дубна 1977

Работа выполнена в Лаборатории ядерных проблем Объединенного института ядерных исследований (г. Дубна)

Научные руководители: член-корреспондент АН СССР профессор В. П. ДЖЕЛЕПОВ, кандидат физико-математических наук В.В. ФИЛЬЧЕНКОВ.

Официальные оппоненты:

доктор физико-математических наук А.И. МУХИН, доктор физико-математических наук В.Б. БЕЛНЕВ.

Ведущее научно-исследовательское учреждение: Институт атомной энергии им. И.В. Курчетова, г. Москва.

Автореферат разослан " " _____ 1977 г.

Защита диссертации состоится "_____ 1977 года в "часов на заседании Ученого совета Лаборатории ядерных проблем ОИЯИ.

С диссертацией можно ознакомиться в библиотеке Объединенного института ядерных исследовений.

Ученый секретарь совета кандидат физико-математических наук

10.A. BATYCOB

Исследование мезоатомных и мезомолекулярных процессов, а также ядерных реакций синтеза в "холодном" водороде представляет ь настоящее время самостоятельный раздел физики мюонов. Повышенный интерес к изучению таких посцессов связан в основном с лвумя обстоятельствани: во-поремх, с необходимостью иметь о них сведения для корректной постановки экспериментов и интерпретации данных по ядерному захвату мюсное протонами (дейтронами) и во-вторых. с экспериментальным открытием группой Альвареца (L.W.Alvarez. H.Brander et al. Phys.Rev., 105, 1127 (1957)) ИНТЕРЕСНОГО ЯВЛЕНИЯ -- катализа мюнами ядерных реакций синтеза изотопов водорода. Последний эффект был ранее предсказан теоретически на основе своеобразной картины поведения отрицательно заряженных мюонов малой энергии в водороде (Я.Б.Зельдович. ДАН, 95, 493 (1954)). Мюоны, попадая в водород, испытывают потери энергии на ионизацию и захватызаются на высоковозбужденные квантовые орбиты ри-атома. В результате девозбуждения ри -атома мисн оказывается на К -орбите за время, гораздо меньшее его времени жизни (~10⁻¹²с в жидком водороде). Мезоатомы $ho\mu$, благодаря малым размерам и электронейтральности, проникают через электронную оболочку других атомов и приближаются к их ядрам на расстояния порядка мезоатомной единицы длины $\alpha_{\mu} = 2,56 \cdot 10^{-11}$ см.

Такое солижение сопрсвождается целым рядом мезоатомных и мезомолекулярных процессов (S.S.Gershtein, L.I.Ponomarev.MUON PHYSICS, V.III, Chemistry and Solids, Academic Press, N.-Y., 1975, p.141.):

б/ переходом мюонов от легких изотопов водорода к тяжелым;

в/ перехватом мюонов от изотопов водорода к ядрам других элементов с зарядом ∠> I;

г/ переходами между уровнями сверхтонкой структуры $\rho/4 - \mu$ $d\mu$ - атомов при столкновении их с протонами или дейтронами (переходы $F = I \rightarrow F = 0$ для р μ -атомов и $F = 3/2 \rightarrow F = 1/2$ для $d\mu$ -атомов, F - полный момент мезоатома);

д/ образованием мюонных молекул pp/, pd/, dd/ при столкнотениях мезоатомов с ядрами молекул водорода.

В мезомолекулах водорода возможны подбарьерные ядерные реакции слияния изотопое водорода, входящих в состав мюонной молекулы:

SACPRESS LOVER ROBARTS **EMEJIMOTEKA**

$$Pd\mu \frac{\lambda_{F}}{\lambda_{2}} = \frac{1}{2} \frac{He^{3}\mu}{\mu^{2}} + \mu^{2}(5, 5M3B) \quad (I a)$$

$$dd\mu \frac{\lambda_t}{\lambda_1} \frac{h^3 + n + \mu^-}{\rho + t + \mu^-} \qquad (2a)$$

Таким образом, картина мезоатомных и мезомолекулярных явлений представляет собой многоступенчатую и разветвленную цепь процессов, количественные данные о которых крайне важно иметь при изучении фундаментальных реакций слабого взаимодействия:

$$\mu^{-} + \rho \rightarrow n + \sqrt{\mu}, \qquad (3)$$
$$\mu^{-} + d \rightarrow n + n + \sqrt{\mu}. \qquad (4)$$

Мезоатомные и мезомолекулярные пропессы могут существенно изменить вероятность ядерного захвата мкона. В частности, при полном переходе $\rho\mu(F=I) \rightarrow \rho\mu(F=0)$ скорость процесса (3) возрастает примерно в 4 раза по сравнению со случаем, когда состояния F = I и F = 0 заполнены статистически, а переход $d\mu(3/2) \rightarrow d\mu(I/2)$ приводит к увеличению в 3 раза скорости процесса (4) по сравнению со случаем статистической заселенности состояний сверхтонкой структурн $d\mu$ -атома. Кроме того, отмеченные мезоатомные пропессы являются источниками нейтронного фона по отношению к исследуемым реакциям (3) и (4). Такими источниками в случае реакции (3) является μ -захват в рр μ -молекуле со скоростью, отличной от скорости μ -захват в изолированном р μ -атоме, а в случае реакция (4)- μ -захват протоном или дейтроном в р $d\mu$ -молекуле, реакция ядерного синтеза (2 а) в $dd\mu$ -молекуле, μ -захват в системе He³ μ , образующейся в реакции синтеза (I а).

Для правильной интерпретации экспериментов (3) и (4) необходимо знать следующие величины: I) скорость перехода р μ - и $d\mu$ -атомов между состояниями сверхтонкой структуры, с целью определения характера заселенности спиновых состояний $\rho\mu$ -и $d\mu$ - атомов в момент ядерного захвата; 2) скорости образования рр μ -, р $d\mu$ -, $dd\mu$ -молекул; 3) скорости перехвата мюна с протона (дейтрона) к ядрам сZ > I; 4) скорости ядерного синтеза в р $d\mu$ -, $dd\mu$ -молекулах.

С теоретической точки зрения интерес к таким пропессам обусловлен тем обстоятельством, что в столкновениях мезоатомов в чистом виде реализуется квантово-механическая задача трех тел, взаимодействующих по закону Кулона.

2

Своеобразие и богатство мезоатомных и мезомолекулярных процессов и проблемы, связанные с захватом мюона протоном (дейтроном), инициировали большое количество теоретических и экспериментальных работ.

Переходя к описанию экспериментальных работ и полученным результатам, отметим, что большинство этих работ было выполнено с жидким водородом.

Значения величины $\lambda_{\rho\rho\mu}$ скорости образования рр μ - молекулы, полученные с жидким водородом ((I,9 ± 0,2).10⁶c^{-I} - Е.Вleser, E.W.Anderson et al.Phys.Rev.,132,2679(1963);(2,55+0,18).10⁶c⁻¹ -G.Conforto, C.Rubbia et al.Nuovo Cim., 33, 1001 - (1964)) и с газообразным водородом ((I,5 ± 0,6).10⁶c^{-I} - В.П.Лжелепов, П.Ф.Ермолов и др. Труды XII Международной конференции по физике высоких энергий, Дубна, т.І, 878, 1964, М., Атомиздат, 1966.); ((2,74 ± 0,25).10⁶c^{-I} - Ю.Г.Будяшов, П.Ф.Ермолов и др. Препринт ОИЯИ, PI5-3964, Дубна (1968)), различаются между собой в пределах до двух статистических ошибок. Во-первых, такая ситуация не позволяет сделать однозначный вывод о наличии или отсутствии зависимости скорости образования рр μ -молекул от температуры среды, что весьма важно для проверки расчетных значений $\lambda_{\rho\rho\mu}$. Вовторых, точное знание этой Беличины в газе позволит уменьшить неопределенность при анализе данных опытов по определению скоростей захвата моона протоном или дейтроном (реакции (3) и (4)).

Что касается образования $pd\mu$ -молекулы, то прямых измерений $\lambda_{pd\mu}$ -скорости этого процесса в газе выполнено не было, а результаты экспериментов, проведенных с кидким водородом ((5,8 ± 0,3)·10⁶c⁻¹ - E.Bleser, E.W.Anderson et al. Phys.Rev., 132, 2679 (1963) ; (6,82 ± 0,25)·10⁶c⁻¹ - G.Conforto, C.Rubbia et al. Nuovo Cim.,33,1001(1964)), различаются между собой более чем на три статистических ошибки и не согласуются с расчетными значениями (1,3·10⁶c⁻¹ - Я.Б.Зельдович, С.С.Герштейн. УФН, 71, 581 (1960); 3,0·10⁶c⁻¹ - S.Cohen, D.L.Judd et al., Phys.Rev.,119, 397 (1960)). В то же время знание этой величины (как и в случае рри -молекулы) крайне необходимо для анализа экспериментальных данных опыта (4) и для установления зависимости $\lambda_{pd\mu}$ от энергии $d\mu$ -атома. Кроме того, суммарная скорость реакции синтеза λ_F в $pd\mu$ -молекуле найдена лишь в одной работе

((0,305 ± 0,01)·10⁶c⁻¹ - E.Bleser, E.W.Anderson et al. Phys.Rev., 132, 2679 (1963)) с использованием при обработке экспериментального материала гипотези о статистическом характере заселенности спиновых состояний dµ -системы в момент образования рdµ --молекулы.

Скорость образования $dd\mu$ -молекулы ($\lambda dd\mu$), измеренная с помощью пузырьковых камер ((0.076 ± 0.015)·106с⁻¹ - J.G.Fetkovich et al. Phys.Rev.Lett., 4, 570 (1960) $(0.103 \pm 0.004) \cdot 10^6 c^{-1}$ _ J.H.Doede, Phys.Rev., 132, 1782 (1963) : $T \approx 35^{\circ} K$). почти на порядок меньше соответствующей величины, полученной с использованием диффузионной камеры ((0.75 \pm 0.11) · 10⁶ c⁻¹ -В.П.Джеленов, П.Ф.Ермолов и др. ЖЭТФ, 50, 1235 (1966): T ~ 240°K). Такое различие в значениях $\lambda_{dd\mu}$ может свидетельствовать о зависимости скорости образования ddu-молекулы от температуры среды. Для объяснения столь резкого различия в экспериментальных значениях $\lambda_{dd\mu}$ в работе (Э.А.Весман. Препринт ОИЯИ, Р-3256. Пубна (1967)) было высказано предположение о существовании резонансного по энергии $d\mu$ -атома механизма образования $dd\mu$ -молекулы. Однако небольшой набор экспериментальных данных не позволяет однозначно ответить на вопрос о справедливости этой модели. В свете этого целесообразны новые эксперименты по определению Adu. при различных температурных условиях и с использованием методики, обеспечивающей одновременное измерение как выхода, так и вида временного распределения нейтронов от реакции синтеза (2 а), что позволит найти не только $\lambda_{dd\mu}$, но и скорость синтеза в ddµ-молекуле.

Анализируя вопрос о характере заселенности спиновых состояний $d\mu$ -атома в момент ядерного захвата мюсна дейтроном, заметим, что до последнего времени прямые измерения λ_d -скорости перехода $d\mu$ (3/2) $\rightarrow d\mu$ (1/2) не были выполнены, а имелись только два расчетных значения скорости процесса $d\mu$ (3/2) + $d \rightarrow d\mu$ (1/2)+ + d, которые различаются между собой на порядок. Результаты экспериментов (E.Bleser, E.W.Anderson et al. Phys.Rev., 132, 2679

(1963); I.-T.Wang et al.Phys.Rev.,139, 1528 (1965); A.Placci et al. Phys.Rev.Lett.,25,475(1970); Phys.Rev., 8D,11,3774 (1973)) неоднозначны и свидетельствурт о существенно различном характере заселенности спиновых состояний $d\mu$ -атома в момент μ -захвата. Для выяснения этого вопроса необходимо проведение дополнительных экспериментов по измерению λd в газообразном водороде с примесью дейтерия. Целью исследований, обобщенных в диссертации, являлось:

а) определение прямым методом и с более высокой точностью некоторых уже ранее измерявшихся основных мезомолекулярных констант, таких как $\lambda_{\rho\rho\mu}$, $\lambda_{\rhod\mu}$, $\lambda_{dd\mu}$ при нормальной температуре (T = 300°K);

б) измерение ряда неизрестных, также важных характеристик мезоатомных и мезомолекулярных процессов: скоростей реакций синтеза в р $d\mu$ -и $dd\mu$ -молекулах, заселенности спиновых состояний $d\mu$ -атомов в момент ядерного захвата мюона дейтроном и др. В связи с этим на синхроциклотроне ЛЯП ОИЯИ с 1971 года по 1976 год был выполнен цикл исследований в газообразном водороде, ставивший своей целью:

а) прямое измерение скоростей образования ppµ- и pdµ -молекул и скорости синтеза в мезомолекуле pdµ;

б) определение характера заселенности спиновых состояний р $d\mu$ -молекулы и измерение λd -скорости перехода $d\mu$ -атома из состояния с суммарным спином F = 3/2 в нижнее состояние F = I/2;

в) измерение $\lambda_{dd\mu}$ -скорости образования $dd\mu$ -молекулы при T = 300°К с помощью электронной методики для проверки существования зависимости $\lambda_{dd\mu}$ от температуры среды. Напомним, что. прежние данные были получены на основании измеренных выходов реакций (2 a, 2 б) и предположения $\lambda_f >> \lambda_o$ (λ_o -скорость распада свободного мюона);

г) получение непосредственной информации о скорости реакции синтеза λ_f в мезомолекуле $dd\mu$ путем измерения выхода и вида временного распределения нейтронов от реакции (2 а). Полученные экспериментальные данные позволили пробести достаточно ширское сравнение с имеющимися теоретическими расчетами.

Результаты исследований и их анализ излагаются в диссертации. состоящей из пяти глав.

В первой главе описывается созданная нами экспериментальная аппаратура, которая использовалась при проведении экспериментов. Она включает в себя: а) установку для получения сверхчистого газообразного водорода при давлении до 50 атм¹¹; б) систему вакуумирования и заполнения мишени (с внутренными сцинтилляторами из Cs J (Tl)) водородом²²; в) регистрирующую аппаратуру ^{3,4/}.

При исследовании мезоатомных и молекулярных процессов в водороде предъявляются очень высокие требования к чистоте волорода

1

(концентрация примесей с Z> I не более 10⁻⁷ объемных долей при изучении мезомолекулярных процессов и не более 10⁻⁸ объемных долей при изучении *м*-захвата протоном (дейтроном)). Для получения водорода (изотопов водорода) указанной чистоты нами была создана установка диффузионной очистки // (палладиевый фильтр), работа которой основана на большой проницаемости палладия и его сплавов по отношению к водороду.

Достоинством установки диффузионной очистки является ее компактность, простота в эксплуатации и возможность получения сверхчистого водорода под давлением до 50 атм без использования компримирущих устройств. Средние величины производительности установки в интервале давлений 0 - 50 атм, при температурах на палладиевом фильтре 280°С и 120°С, составляли 0,72 л.атм/мин и 0,148 л.атм/мин. Анализы водорода после очистки показали, что суммарное содержание.примесей с Z > I в водороде порядка 10⁻⁸ объемных долей.

Всдород с выхода установки дифузионной очистки через систему вакуумирования и заполнения мишени водородом⁽²⁾ поступал в газовую мишень, которая представляла собой сосуд из нержавеющей стали с расположенными внутри сцинтилляторами С*s*⁽¹⁾(T*l*): один в виде стакана длиной 205 мм и диаметром I30 мм (счетчик 5), другой в виде тонкого диска толщиной 250 мкм (счетчик 4) и диаметром I20 мм.

На рис. I схематически изображена основная часть экспериментальной установки – мишень и детекторы. Для уменьшения фона установка была размещена в специально созданной лаборатории и окружена водяной защитой. Все эксперименты проводились на моонном пучке с импульсом P = I30 МаВ/о и интенсивностью $I = 2 \cdot 10^4$ I/с. В зависимости от цели опыта вокруг мишени располагались либо девять е – детекторов с кристаллами стильбена (С_{I4} H_{I2}) диаметром 70 мм и толщиной 30 мм для регистрации нейтронов и электронов от распада мюонов (эксперимент по измерению $\lambda_{dd\mu}$ и λ_f в мезомолекуле $dd\mu$), либо четыре е-детектора и два f-детектора с кристаллами $\lambda a \mathcal{J}(Tl)$ размерами I50хI00 мм² для регистрации мезорентгеновского излучения Xeµ-атомов и электронов от распада моонов (эксперименты по измерению $\lambda_{pp\mu}$, $\lambda_{pd\mu}$, λ_d , λ_f).

<u>В главе II</u> описнвается программа, созданная для вычисления эффективностей регистрации нейтронов (\mathcal{E}_n) от реакций (2 а), (3) и электронов (\mathcal{E}_e) от распада моонов нашей экспериментальной установкой /5/ (регистрация нейтронов и электронов осуществлялась с помощью девяти е-детекторов).

Знание величины \mathcal{E}_n необходимо для определения абсолотного Енхода нейтронов в наших опытах ^{6,7/}, а \mathcal{E}_e – для определения числа остановок мюонов в мишени, заполненной водородом либо смесью изотопов водорода. Задача об определении эффективностей регистрации нейтронов в условиях плохой геометрии установки (протяженные размеры мишени) решалась путем численного моделирования с помощью метода Монте-Карло. Расчеты производились на ЭЕМ БССМ-6. Последовательность расчетов состояла из следующих этапов: 1) моделирование точки остановки мюона в мишени и угла вылета нейтрона (электрона); 2) моделирование взаимодействия нейтрона (алектрона) с веществом внутренних сцинтилляторов и стенок мишени; 3) моделирование взаимодействий нейтрона (электрона) в стильбене и построение амплитудных распределений событий, зарегистрирсванных е-детекторами. Окснчательные значения эффективностей ре-

гистрации нейтронов и электронов экспериментальной установкой составили: $\mathcal{E}_{n} = 0,0462 \pm 0,0009$ (реакция (3)); $\mathcal{E}_{n} = 0,0679 \pm 0,0017$ (реакция (2 а)); $\mathcal{E}_{e} = 0,1782 \pm 0,0033$.

Схема экспериментальной установки (газовая мишень и детекторы).

(A)

<u>Глава III</u> посвящена описанию эксперимента ^{/6/} по измерению $\lambda_{dd\mu}$ - скорости образования $dd\mu$ - молекулы и λ_{f} -скорости синтеза в нёй в газообразном дейтерии при T = 300°К. Метод определения величин $\lambda_{dd\mu}$ λ_{f} был основан на измерении выхода и временного распределения нейтронов от реакции (2 а) и последующем анализе его путем аппроксимации выражением, являющимся функцией укаванных величин. Работа выполнялась на пучке моонов с использованием газовой мишени, заполненной сверхчистым дейтерием ($C_{z} < 10^{-8}$ объемных долей) до давления 4I атм. Мооны после прохождения счетчиков I,2, 3 (см. рис. I) тормозились фильтром 6 и попадали в объем газовой мишени. Методы выделения остановок мюонов с помощью сцинтилляторов из Сs J (Tl), находящихся внутри мишени (счетчики 4,5), рассмотрены в работе /4/. На рис. 2 представлена блок-схема электронной аппаратуры. Импульс остановки мюсна (2345) запускал "ворота" длительностьр 4 мкс, в течение которых анализировались события, зарегистрированные е-детекторами. Многоканальная система регистрации нейтрснов описана в работе /3/. Блок выделения компонент осуществлял разделение нейтронов и / -квантов по форме сцинтилляционного импульса в стильбене. В результате разделэния на выходе БЕК появлялись два импульса: амплитуда одного пропорциснальна площади "обстрой" компоненты ("EK"), а амплитуда другого - полной площади светового импульса ("E"). Блок сумматора и номера детектора вырабатывал также два импульса: один логический (е), другой - аналоговый. Логический сигнал (е) свидетельствовал о том, что в одном из е-детекторов

зарегистрировано событие, а амплитуда аналогового импульса соответствовала номеру данного детектора ("№"). Время появления сигнала с е-детектора ("Т") относительно момента остановки мюона измерялось с помощью время-амплитудного преобразователя Т → А. Электронная логика производила отбор событий, зарегистрированных е-детекторами, согласно критериям.

Аналоговые сигналы ("ЕК", "Е", "Т"), соответствующие отобранному событию, поступали на вход блока многомерного анализа (БМАА), выполненного на основе анализатора AU -4096. После заполнения 4096 ячеек памяти анализатора числовой массив передавался на ЭЕМ "Минск-22" с записью на магнитную ленту и частичной его обработкой. Число остановок мюонов в дейтерии определялось путем измерения выхода электронов от распада мюонов в течение временных "ворот" и использования ранее найденного нами расчетного значения эффективности регистрации электронов. Фон случайных совпадений был измерен в опыте с вакуумированной мишенью и его вклад оказался равным 15%. Экспериментальное временное распределение нейтронов приведено на рис. 3. При анализе временного распределения нейтронов использовались: число мюонных остановок \mathcal{N}_{μ} =(3,12 ± 0,10)·10⁶; число нейтронных событий, зарегистрированных е-детекторами

 $\mathcal{N}_{n} = II48 \pm 34;$ эффективность регистрации нейтронов $\mathcal{E}_{n} = (I,430 \pm 0,088) \cdot 10^{-2};$ временное распределение фона случайных совпадений, измеренное в опыте с вакуумированной мишенью.

Для определения величин $\lambda_{dd\mu}$ λ_f это распределение фитировалось с помощью выражения:

Сравнение полученных данных с

результатами работ (J.G.Fetko-

vich et al. Phys.Rev.Lett., 4,

подтверждает наличие зависимос-

ти скорости образования ddµ-

-молекулы от температуры среды.

при рассмотрении в совокупности

с данными работы (В.П.Джелепов.

П.Ф.Ермолов и др. ЖЭТФ, 50, 1235

(1966)) не противоречат предпо-

сного механизма образования ddu

-молекулы. Найденное нижнее гра-

ничное значение величины λ_+

показывает, что скорость ядер-

ной реакции в ddµ-молекуле су-

ложению существования резонан-

В то же время эти результаты

570(1960); J.H.Doede, Phys.

Rev., 132, 1782 (1963))

Рис. З

Временное распределение нейтронов, измеренное в экспозициях с дейтерием. По оси абснисе отложено время относительно момента остановки миона, по оси ординат - число событий в интервале 0,5 мкс. Линия ссответствует зависимости (5) с найденным значением $\lambda ddu.$

(4)

щественно превосходит скорость распада моона и свидетельствует в пользу справедливости теоретических оценок, дающих для λ_f большое значение $\approx 10^{11} \text{c}^{-1}$ (Э.А.Весман. Препринт ОИЯИ, Р-3256, Дубна (1967)).

<u>В главе IУ</u> описывается эксперимент ^{/8/}, целью которого являлось прямое измерение скоростей образования pp μ - и pd μ -молекул в газообразном водороде. В процессе эксперимента было получено также отношение скоростей перехвата мюона с протона и дейтрона на ксенон. В работе был применен метод измерения, в эснове которого лежат использование смеси водорода с малой примесью газа Z > I (в нашем случае был взят ксенон с атомарной концентрацией ~ 10^{-5}). Временные распределения γ -квантов мезорентгеновского излучения Z_{μ} -атомов (возникшего в результате перехвата мюона с протона (дейтрона) к ядрам ксенона) и электронов от распада мюонов можно записать единым образом для смесй H_2 + Xe (опыт по определению $\lambda_{PP\mu}$) и H_2 + I_2 + Xe (опыт по определению $\lambda_{Pd\mu}$): $\frac{dne}{dt} = (\lambda_o - \frac{\lambda'_o \lambda_{xe}}{\lambda_s - \lambda'_o - \lambda_{xe}} - \frac{\lambda_o \lambda_x}{\lambda_s - \lambda_o} e^{-\lambda_o t}$ (7)

 $\frac{dt}{dt} = (\Lambda_o - \lambda_s - \lambda'_{ee} - \lambda'_{ee} - \lambda_s - \lambda_o)e + \frac{d}{\lambda_s - \lambda_o}e . (7)$ Здесь для смеси $H_2 + \chi_e$ $\lambda_s = \lambda_o + \mathcal{V}\lambda_{pp\mu}(1-C_p) + \mathcal{V}C_{xe}\lambda_{xe} + \mathcal{V}C_p\lambda_{pd};$ $\lambda_s = \lambda_{pp\mu}, \lambda_{xe} = \lambda_{xe} ,$ а для смеси $H_2 + \chi_e + H_2$ $\lambda_s = \lambda_o + \mathcal{V}(1-C_p)\lambda_{pd\mu} + \mathcal{V}C_p\lambda_{dd\mu} + \mathcal{V}C_{xe}\lambda_{xe}, \lambda_x = \lambda_{pd\mu}, \lambda_{xe} = \lambda_{xe}',$ $\lambda_s^P \cdot \lambda_{pd}^d$ -скорость перехвата мюона с протона на дейтрона) к ядрам χ_e, Λ_{pd} -скорость перехвата мюона с протона на дейтрон; С χ_e, C_{Π} - атомарные конгентрации ксепона и дейтерия соответственно; \mathcal{V}_{ee} - отношение плотности газа к плотности жидкого водорода; λ_{xe}^{edp} - скорость захвата мюона ядром ксенона; λ_o -скорость распада мюона на орбите $\chi_e \mu$ - атома.

Анализ экспериментальных временных распределений с помощью выражений типа (6) и (7) с целью определения параметров указанных экспонент дает возможность найти искомые величины λ_x , λ_{xe} .

Пучок мюонов, газовая мишень, система очистки водорода и методы выделения остановок мюонов в объеме мишени были теми же, что и в опытах по измерению скорости образования $dd\mu$ -молекулы⁶. Регистрация β -квантов мезорентгеновского излучения Xe_{μ} -атомов и электронов от распада мюонов осуществлялась двумя детекторами (γ_1 , γ_2) и четырымя счетчиками ($e_1 \div e_4$). Преобразованная в цифровой код амплитудно-временная информация о событии, зарегистрированном β -или е-детектором, вместе с содержимым регистра логических признаков передавелась в ЭЕМ HP-2116.

На пучке мюонов было проведено четыре экспозиции. Условия опытов приведены в таблице I.

Во всех четырех опытах проводилось измерение временных спектров событий, зарегистрированных $\int u e - детекторами в совпа$ дениях и антисовпадениях с сигналом от детектора 5 (спектры e+5, $e-5, <math>\gamma$ +5, γ -5). Кроме того, измерялись также амплитудные распределения импульсов от детекторов $\mathcal{M}(\mathcal{T}^{\ell})$. Характерные временные распределения событий, зарегистрированных в опыте H_2 + Xe, приведены на рис. 4. Для нахождения величин $\lambda \rho \rho \mu$, $\lambda \rho d\mu$, $B = \frac{\lambda d^2}{\lambda d^2}$ были проанализированы по методу наименьших квадратов временные распределения событий, зарегистрированных γ -и е-детекторами в экспозициях "I", "III", "III".

m .	-
таолица	-

•				
Экспо- зиция	Наполнение мишени	Давление смеси га- зов в ми- шени при t =20°С	Концентра- ция ксено- на (С _{Хе})	Концен т рация дейтерия (С _Д)
"I" "II" "III" "Iy"	Н ₂ Н ₂ + Хе Н ₂ + Хе + Д ₂ Бакуум	40 атм 40 атм 43 атм 10 ⁻⁵ атм	- 5 ≈ 3•10 ⁻⁵ ≈ 3•10 ⁻⁵ -	< 10 ⁻⁶ < 10 ⁻⁶ ≈ 0,07

Фоновые распределения, полученные в опыте "ІУ" и приведенные к условиям соответствующей экспозиции, вычитались поканально. Максимальный вклад фона не превышал 3%. В результате обработки экспериментальных данных найдены следующие значения величин λ_{PPM} ,

Полученное нами значение $\lambda_{\rho\rho\mu}$ скорости образования pp μ -молекуль хорошо согласуется с экспериментальными данными (E.Bleser, E.W.Anderson et al. Phys. Rev., <u>132</u>, 2679 (1963); G.Conforto, C.Rubbia et al. Nuovo Cim., <u>33</u>, 1001 (1964); B.П.Джелепов, П.Ф.Брмолов и др. Труди XIII Международной конференции по физике высоких энергий, Дубна, т.І, 878, 1964, М., Атомиздат, 1966; Ю.Г.Будяшов, П.Ф.Брмолов и др.Препринт ОИНИ, P I5-3964, Дубна (1968)) и с результатами (Я.Б.Зельдович, С.С.Герштейн. УФН, 71,581(1960); Л.И.Пономарев, М.П.Файфман. ЖЭТФ, 71, I689 (1976)), а значение $\lambda_{\rho d\mu}$ совпадает с данными работы

(E.Bleser, E.W.Anderson et al. Phys. Rev., 132, 2679

(1963)) и вычислениями (Л.И.Пономарев, М.П.Файфман. ЖЭТФ. 71.

Ерзменные спектры событий, зарегистрированных где-текторами в опыте "П" (нормигованный фон вычтен); a совпадения с сигналом от детектора 5 (/5), 6 - антисовпадения с_сигналом от денип - расчетные кривые.

1689 (1976)). Сопостаеление данных измерений величин Драни Лран, выполненных в различных экспериментальных условиях, позволяет сделать заключение, что скорости образования мезомолекул pp μ и p $d\mu$ в жидком и газообразном водороде не различаются, т.е. отсутствует зависимость рри-и скоростей образования р $d\mu$ -молекул от энергии р μ ($d\mu$) атома.

В главе У представлены результаты ряда экспериментов, выполненных для определения как характера заселенности спиновых состояний а и--атома (в момент образования р d µ --молекулы) в газообразном водороде с примесью дейтерия порядка нескольких процентов, так и скорости синтеза в р $\alpha\mu$ -молекуле⁹. Хотя при образовании $d\mu$ -атомов оба состотектора 5 (35); сплошные ли- яния сверхтонкой структуры со спином F = 3/2 и F = I/2 заселяются

статистически, тем не менее к моменту ядерного μ -захвата или образования мезомолекулы р $d\mu$ характер заселенности может изменяться из-за возможных переходов $\mathcal{CM}(3/2 \rightarrow 1/2)$ в соударениях: $d\mu(3/2) + d - d\mu(1/2) + d$, (8)

 $d\mu$ (3/2) + p- $d\mu$ (1/2) + p. (9)

Результаты экспериментов (E.Bleser, E.W.Anderson et al. Phys. Rev., 132, 2679(1963); I.-T.Wang et al. Phys. Rev., 139, 1528

(1965)) свидетельствуют о статистическом характере заселенпости спиновых состояний $d\mu$ -атомов в момент μ -захвата, тогда как полученная в опыте (A.Placci et al. Phys. Rev.

Lett., 25, 475 (1970); Phys.Rev., 8D, 11, 3774 (1973)) величина скорости захвата согласуется с теоретическими расчетами этой селичины лишь при допущении, что к моменту и -захвата все $d\mu$ -атомы переходят в состояние F = I/2. Из вычисленного значе-ния λ_d скорости процесса (8) ($\lambda_d = 7 \cdot 10^6 c^{-1}$ - С.С.Герштейн.

жЭТФ, 40, 698 (1961); авторы полагают, что переходы 3/2→1/2 возможны только в столкновсниях (8)) следует. что как в условиях SKCHEPMMCHTOE (E.Bleser, E.W.Anderson et al. Phys. Rev., 132, 2679 (1963); I.-T.Wang et al. Phys.Rev., 139, 1528 (1965)), так и в условиях опыта (A.Placci et al. Phys. Rev. Lett.,

Phys. Rev., 8D, 11, 3774 (1973)) 25, 475 (1970); влияние этого процесса пренебрежимо мало. Для объяснения резуль-TATOB CECETO ONNTA (A.Placci et al. Phys.Rev. Lett., 25, 475(1970);

Phys. Rev., 8D, 11, 3774 (1973)) авторы предположили, что интенсивный переход dµ (3/2 - I/2) обусловлен столкновениями (9). Следует этметить, чтэ такой механизм приводил бы в условиях экспериментов (E.Bleser, E.W.Anderson et al. Phys.Rev., 132,2679(1963); I.-T.Wang et al. Phys.Rev., 139, 1528 (1965)) к ICO% переходу du-атомов в нижнее состояние с F = I/2, что яено противоречит результатам данных работ. Поэтому предположение о существовании интенсивного перехода $d\mu(3/2) \rightarrow d\mu(1/2)$ за счет процесса (9) не снимает расходдение между данными опытов

(A.Placci et al. Phys. Rev. Lett., 25, 475 (1970);

Phys.Rev., 8D, 11, 3774 (1973)) M (E.Bleser, E.W.Anderson et al. Phys.Rev., <u>132</u>, 2679 (1963); I.-T.Wang et al. Phys.Rev., 139,1528 (1965)). Для однозначного установления характера заселенности спиновых состояний $d\mu$ -атома (предполагается, что пере $d\mu$ (3/2) \rightarrow $d\mu$ (1/2) происходят только в столкновениях(8)) холы не обходимо знание величины λ_{d} . Неличину λ_{d} можно опрэделить путем измерения временчого распределения и абсолютного выхода Х-квантов от реакции (I а), который существенно зависит от распределения du -атомов по спиновым состояниям в момент образования р $d\mu$ - молекулы. Это связано со следующими обстоятельствами: I) заселенность подуровней основного состояния р $d\mu$ -молекулы $(\mathcal{Y} = 2, I (два уговня), 0; \mathcal{Y} - полный момент р<math>d\mu$ -молекулы) определяется характером распределения du-атомов по спиновым состояниям F = 3/2 и F = 1/2; 2) скорость реакции (I a) зависит от значения момента $pd\mu$ -молекулы (при $\mathcal{Y}=2$ реакция не псоисходит, в остальных состояниях она протекает со скорсстями, значения которых найдены в работе (С.С.Герштейн. ЖЭТФ, 40, 698 (1961)).

Бременное распределение 🔏 -квантов эт реакции (I а) можно представить следующим сбразом:

 $\frac{dn_{F}}{dt} = A \mathcal{E}_{F} P; P = f(a_{i}, b_{i}, d_{i}, \lambda_{P} d\mu, \lambda_{F}, \lambda_{d}), (I0)$ где i = I, 2, 3 - индекс, соответствующий определенному

Таблица 2.

состоянию $pd\mu$ - молекулы (J = 0, I (два состояния)); А - коэффициент, пропорциональный числу остановок мюонов в мишени; \mathcal{E}_{π} - эффективность регистрации γ -квантов от реакции (I а); a_i . b_i - статистические веса подуровней р $d\mu$ -молекулы, приведенные в работе (С.С.Герштейн. ЖЭТФ, 40,698 (1961)), образованной из

 $d\mu$ -атомов, находящихся в состоянии со спином F = 3/2 и F = 1/2 соответственно; di - отношение скорости реакции синтеза (I а) для определенного состояния р $d\mu$ -молекулы с моментом $\mathcal J$ к значению скорости синтеза в р $d\mu$ -молекуле с , $\gamma = 0$.

Исксмые скорости λ_d , λ_F были определены путем аппроксимации экспериментальных временных распределений 🔊 🖉 -квантов выражением (10) при использовании найденного нами ранее значения

 $\lambda_{pd\mu} = (5,53 \pm 0,16) \cdot 10^{6} c^{-1}$ и величини \mathcal{E}_{r} , измеренной в дополнительных экспериментах.

При проведении данного эксперимента использовалась та же экспериментальная аппаратура, что и в опыте по измерению скоростей образования ppµ-и pdµ -молекул (глава IУ).

ь эксперименте онли проведены две экспозиции: "A" - со смесью H₂ + Д₂ и "E" - опыт с гелием (фоновый). Условия проведения эксперимента и основные данные, характеризующие опыти, приведены в таблице 2. Для каждой экспозиции производилось построение амплитудных спектров / -квантов, зарегистрированных / -детекторами в антисовпадениях с сигналом от счетчика 5.

уС целью эпределения эффективности регистрации / -квантов, образующихся в реакции (I а), был проведен эксперимент с мишенью из Та, которая располагалась в разных точках внутри стакана сцинтиллятора детектора 5 (Cs \mathcal{J} (T ℓ)).

Енбор танталовой мишени был обусловлен тем, что энергия перехода 2p - Is в Таµ -атоме (E(K_x) = 5,35 МаВ) близка по величине к энергии 🖉 -квантов (5,5 МэВ) от реакции (I а). Обработка амплитудных спектров, полученных в данном опыте, проводилась в области, соответствующей энергии / -квантов от 4, I МэВ до 6, I МэВ. Енбор этих границ позволил полностью исключить вклад L , М и других серий 🧗 -кеантов. Вклад более жестких линий К-серий составлял ≲2% и был учтен при обработке. Найденные значения эффективности регистрации 🧨 -квантов для обоих детекторов помещены в таблице 2.

Экспериментальные данные

Опыт	ЧИСЛО ОСТАНОВОН МЮОНОВ В ГАЗС	Наполнение мишени и давление в (атм)	Число ў -квантов, за- регистрирэванных де- текторами при энерге- тическом пороге Епор=4,1 МэВ		Эффективность регистроции Г-квантов Кпор=4, I МэЕ	
		алан 1917 - Алан 1917 - Алан	детектор Г1	детектор ў 2	детек- тор Л	детек- тор <i>ј</i> 2
"A"	2,9.IO ⁶	$H_{2}+7\%$ I_{2}	I550	2020	0.0229^{\pm} 0.0025	0.0297^{\pm}
"B"	1,57•10 ⁶	He (47)	280 [#]	350 [#]	u , usio	0,000

*Эти значения нормированы на число остановок мюонов в экспозиции "A".

Временные распределения Х-квантов (Х5), полученные в опыте "В" и нормированные к условиям экспозиции "А", вычитались по каналам из соответствующих временных распределений, измеренных в опыте "А". Интегральный вклад фона при энергетическом пороге регистрирующей аппаратуры 4, I МаВ не превышал 18%.

Результирующие временные распределения (у5), полученные с помощью обоих детекторов, обрабатывались по методу наименьших квадратов путем аппроксимации их выражением (IO) с целью определения скорости перехода λ_d и скорости синтеза λ_F в мезомолекуле р $d\mu$ (puc. 5).

Получены следующие значения величин: $\lambda_F = (0,287 \pm 0,022) \cdot 10^6 c^{-1}; \lambda_d < 15 \cdot 10^6 c^{-1}$ на уровне 90% достоверности.

Значение Л_F находится в хорошем согласии с результатами экспериментальной работн (E.Bleser, E.W.Anderson et al. Phys.Rev., <u>132</u>,2679(1963)) и вычислений (0,263·10⁶c⁻¹ - S.Gallone et al. *Muovo* Сів., 6, 168(1958) ; 0,294·10⁶c⁻¹ - B.P.Carter. Phys. Rev., 141,863 (1966)). Найденная верхняя граница скорости перекода (8) хорошо согласуется с данными экспериментов (E.Bleser.

E.W.Anderson et al. Phys. Rev., 632,2679(1963); I.-T.Wang et al, Рыув. Rev., 139, 1528 (1965)) И с расчетным \$начением - 7•10⁶с⁻¹ (С.С.Герштейн. ЖЭТФ, 40,698 (1961)). Из подученной нами оценки Ад следует, что при небольших концентрациях дейтерия (порядка нескольких процентов) в смесях Н. + Д. характер

заселенности спиновых состояний $d\mu$ -атомов в момент ядерного захвата мюона дейтроном близок к статистическому. Это заключение

к статистическому. Это заключение расходится с выводами авторов работн (A.Placci et al. Phys.Rev.

Lett., 25, 475 (1970); Рыув. Rev., 8D, 11, 3774 (1973)), причем расхождение сохраняет силу независимо от характера предположения о роли процесса (9) в переходах $d\mu(3/2) - d\mu(1/2)$.

Действительно, если не пренебрегать вкладом процесса (9), то наш результат можно представить в виде:

Puc. 5

Гременное распределение / -квантое от реакции синтеза в мезомолзкуле ра/и (нормированный Сон внутен). По оси ординат число собитий не интервал 0,378 мкс. Сплошная линия расчетная кривая.

Емть в ниде: $\lambda d + \frac{\lambda - C_P}{C_P} \lambda'_P < 15 \cdot 10^6 c^{-1}$ и для λ'_d -скорости пронесса (9) следует $\lambda'_d < I, I \cdot 10^6 c^{-1}$ (C_D -атомарная концентрация дейтерия). Пля условий эксперимента (A.Placci et al. Phys. Rev. Lett., 25, 475 (1970); Phys. Rev., 8D, 11, 3774(1973))

на осговании полученных нами значений λ_d и λ'_d вытекает ограничение:

 λ (3/2 \rightarrow 1/2) < 0,2·10⁵c⁻¹, что резко отличается от оценкл авторов работы (A.Placci et al. Phys. Rev. Lett.,

25, 475(1970); Phys.Rev., 8D, 11,3774 (1973)), согласно которой λ(3/2 → I/2) > 5.10 с^{-I}.

Основные результати, изложенные в диссертации, сводятся к следующему:

I. Создана установка для получения сверхчистого газообразного водорода при давления 50 атмосфер (Pd – фильтр) и система накуумирования и заполнения мишени (с внуточними сцинтилляторами Cs J (Tl)) газообразным водогодом до давления 40 атмосфер. Еся систана в целом позволяет получать и сохранять водород в мишени в течение 100-150 часових экспозиций на пучке мюонов, обеспечивая необходимые требования по чистоте (суммарное содержание примесей N_2 , Ори др. в водороде порядка 10⁻⁸ объемних долей).

2. Создана универсальная программа для расчота эффективностей

регистрации нейтронов и электронов методом Монте-Карло в экспериментах с мюонами. Получены энергетические и амплитудные спектры нейтронов и электронов, зарегистрированных детекторами с кристаллами стильбена (С_{Т.4}H_{T.2}).

3. Еыполнен эксперимент по измерению $\lambda dd_{\mathcal{U}}$ - скорости образования $dd\mu$ -молекулы в газообразном дейтерии при T = 300° K и определено нижнее граничное значение λ_f -скорости синтеза в $dd\mu$ -молекуле. Беличины $\lambda dd\mu$ и λ_f оказались равными: $\lambda dd\mu = (0,73^{\pm}0,07) \cdot 10^{\circ} c^{-1}$ ($\beta_D = 4,22 \cdot 10^{22}$ I/см³); $\lambda_f > 1,8 \cdot 10^{\circ} c^{-1}$ (на уровне 90% достоверности). Найденное значение $\lambda dd\mu$ подтверждает существование зависимости скорости образования $dd\mu$ -молекул от температуры среды, а полученное значение для λ_f не противоречит предсказаниям теории о большой величине скорости реакции синтеза в $dd\mu$ -молекуле.

4. Измерены прямым методом скорости образования рр μ -и р $d\mu$ -молекул в газообразном водороде. В ходе работы было получено также отношение В скоростей перехвата мюона с протона и дейтрона к ядрам ксенона. Найдены следующие значения скоростей образования рр μ -, р $d\mu$ -молекул и величины В: $\lambda_{PP\mu} = (2,34\pm0,17)\cdot10^6 c^{-1}$; $\lambda_{Pd\mu} = (5,53\pm0,16)\cdot10^6 c^{-1}$; В = I,62±0,05. Сравнение значений $\lambda_{PP\mu}$ и $\lambda_{Pd\mu}$, полученных нами в газообразном

водороде с соответствующими величинами, найденными в эксперимен-. тах с жидким водородом, позволяет сделать заключение, что скорости образования мезомолекул pp μ и p $d\mu$ в газообразном и жидком водороде не различаются.

5. В опыте с газовой мишенью, заполненной смесью $H_2+7\%$ I_2 под давлением 42 атм, измерена скорость реакции синтеза λ_F в мезомолекуле р $d\mu$ и найдено верхнее граничное значение скорости перехода λ_d между уровнями сверхтонкой структуры $d\mu$ -атомое в соударениях $d\mu(3/2) + d \rightarrow d\mu$ (I/2) + d. Получены следуорошие значения величин: $\lambda_F = (0.287\pm0.022)\cdot10^6c^{-1}$; $\lambda_d \ll 15\cdot10^6c^{-1}$. Из найденной оценки величины λ_d следует, что при небольших концентрациях дейтерия (порядка нескольких процентов) в смесях H_2+I_2 характер заселенности спиновых состояний $d\mu$ -атомов в момент яперного захвата мюона дейтроном близок к статистическому.

Материал, изложенный в диссертации, основан на работах /1,2,5,6,8,9/ опубликованных в ЖЭТФ, ПТЭ, препринтах ОИЯИ, и докладывался на III Международном симпозиуме по физике высоких энергий и элементарных частиц (г.Синая, СРР, 1973г.) и на УІ Международной конференции по физике высоких энергий и структуре ядра (Санта-Фэ, США, 1975).

Литература

- І. Е.М.Быстрицияй, Р.П.Джелепов, П.Ф.Ермолов, К.О.Оганесян, М.Н.Омельяненко, С.Ю.Пороховой, А.А.Родина, В.Е.Теплов, Е.Е.Фильченков. ПТЭ, 2, 226 (1972).
- Е.М.Быстрицкий, Б.П.Джелепов, П.Ф.Ермолов, Л.С.Котова, В.И.Лепилов, К.О.Оганесян, М.Н.Омельяненко, С.Ю.Пороховой, А.И.Руденко, В.В.Фильченков. Сообщение ОИНИ, I3-7246, Дубна (1973).
- В.М.Быстрицкий, В.П.Джелепов, П.Ф.Врмолов, К.О.Оганесян, М.Н.Омельяненко, С.Ю.Пороховой, В.В.Фильченков. ПТЭ, I, 65 (1972).
- Е.М.Бистрицкий, В.П.Джелепов, П.Ф.Ермолов, К.О.Оганесян, М.Н.Омельяненко, С.Ю.Пороховой, В.В.Фильченков. ПТЭ, 4, 86 (1971).
- 5. Е.М.Бистрицкий, Л.С.Бертоградов, В.В.Фильченков. Сообщение ОМЯИ, I - 7527, Дубна (1973).
- Б.М.Быстрицкий, В.П.Джеленов, К.О.Оганесян, М.Н.Омельяненко, С.Ю.Пороховой, А.И.Руденко, Е.Б.Фильченков. ДЭТФ, 66, 61 (1974).
- Е.М.Быстрицкий, Б.П.Джелепов, П.Ф.Брмолов, К.О.Оганесян, М.Н.Омельяненко, С.Ю.Пороховой, Е.Е.Фильченков. ЖЭТФ, 66, 43 (1974).
- В.М.Быстрицкий, В.П.Джелепов, В.И.Цетрухин, А.И.Руденко, Е.М.Суворов, Е.В.Фильченков, Г.Хемниц, Н.Н.Хованский, Б.А.Хоменко. ЖЭТФ, 70, II67 (1976).

Рукопись поступила в издательский отдел 17 ирня 1977 года.